Advertisement

Gastrointestinal Hormones and Obesity

  • Yan Wang
  • Efi Kokkotou
Chapter

Abstract

Apart from digesting and absorbing nutrients, the gastrointestinal (GI) tract also possesses important sensing and signaling functions. It is estimated that more than 50 hormones and regulatory peptides are synthesized in the GI, primarily in response to food entering the digestive system [1, 2]. The majority of the bioactive peptides are generated from a larger precursor (pro-hormone) by proteolytic cleavage mediated by various proconvertases (PC), and followed by modifications such as amidation [3]. Gut hormones are secreted from specialized enteroendocrine cells, different types of which are located in the stomach (G-cells), duodenum (D-cells), and the large intestine (L-cells).

Keywords

Gastric Bypass Anorexia Nervosa Gastric Emptying Ghrelin Level Pancreatic Polypeptide 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Neary, M. T. & Batterham, R. L. (2009). Gut hormones: implications for the treatment of obesity. Pharmacology & Therapeutics, 124, 44–56.Google Scholar
  2. 2.
    Strader, A. D. & Woods, S. C. (2005). Gastrointestinal hormones and food intake. Gastroenterology, 128, 175–191.PubMedGoogle Scholar
  3. 3.
    Bataille, D. (2007). Pro-protein convertases in intermediary metabolism: islet hormones, brain/gut hormones and integrated physiology. Journal of Molecular Medicine (Berlin, Germany), 85, 673–684.Google Scholar
  4. 4.
    Williams, G. T. (2007). Endocrine tumours of the gastrointestinal tract-selected topics. Histopathology, 50, 30–41.PubMedGoogle Scholar
  5. 5.
    Bray, G. A. (2000). Afferent signals regulating food intake. The Proceedings of the Nutrition Society, 59, 373–384.PubMedGoogle Scholar
  6. 6.
    Berthoud, H. R. (2008). Vagal and hormonal gut-brain communication: from satiation to satisfaction. Neurogastroenterology and Motility: The Official Journal of the European Gastrointestinal Motility Society, 20, Suppl 1, 64–72.Google Scholar
  7. 7.
    Cummings, D. E. & Overduin, J. (2007). Gastrointestinal regulation of food intake. The Journal of Clinical Investigation, 117, 13–23.PubMedGoogle Scholar
  8. 8.
    Chaudhri, O., Small, C. & Bloom, S. (2006). Gastrointestinal hormones regulating ­appetite. Philosophical Transactions of the Royal Society of London. Series B, Biological sciences, 361, 1187–1209.PubMedGoogle Scholar
  9. 9.
    Wren, A. M. & Bloom, S. R. (2007). Gut hormones and appetite control. Gastroenterology, 132, 2116–2130.PubMedGoogle Scholar
  10. 10.
    Camilleri, M. (2009). Peripheral mechanisms in the control of appetite and related ­experimental therapies in obesity. Regulatory Peptides, 156, 24–27.PubMedGoogle Scholar
  11. 11.
    Roth, C. L. & Reinehr, T. Roles of gastrointestinal and adipose tissue peptides in childhood obesity and changes after weight loss due to lifestyle intervention. Archives of Pediatrics & Adolescent Medicine, 164, 131–138.Google Scholar
  12. 12.
    Field, B. C., Chaudhri, O. B. & Bloom, S. R. (2009). Obesity treatment: novel peripheral targets. British Journal of Clinical Pharmacology, 68, 830–843.PubMedGoogle Scholar
  13. 13.
    Moran, T. H. (2009). Gut peptides in the control of food intake. International Journal of Obesterics (London), 33, Suppl 1, S7–10.Google Scholar
  14. 14.
    Vincent, R. P. & le Roux, C. W. (2008). The satiety hormone peptide YY as a regulator of appetite. Journal of Clinical Pathology, 61, 548–552.PubMedGoogle Scholar
  15. 15.
    le Roux, C. W., Aylwin, S. J., Batterham, R. L., Borg, C. M., Coyle, F., Prasad, V., et al. (2006). Gut hormone profiles following bariatric surgery favor an anorectic state, facilitate weight loss, and improve metabolic parameters. Annals of Surgery, 243, 108–114.PubMedGoogle Scholar
  16. 16.
    Lindner, D., Stichel, J. & Beck-Sickinger, A. G. (2008). Molecular recognition of the NPY hormone family by their receptors. Nutrition (Burbank, Los Angeles County, California), 24, 907–917.Google Scholar
  17. 17.
    Badman, M. K. & Flier, J. S. (2005). The gut and energy balance: visceral allies in the obesity wars. Science, 307, 1909–1914.PubMedGoogle Scholar
  18. 18.
    Scharf, M. T. & Ahima, R. S. (2004). Gut peptides and other regulators in obesity. Seminars in Liver Disease, 24, 335–347.PubMedGoogle Scholar
  19. 19.
    Vincent, R. P., Ashrafian, H. & le Roux, C. W. (2008). Mechanisms of disease: the role of gastrointestinal hormones in appetite and obesity. Nature Clinical Practice Gastroenterology & Hepatology, 5, 268–277.Google Scholar
  20. 20.
    Kojima, M., Hosoda, H., Date, Y., Nakazato, M., Matsuo, H. & Kangawa, K. (1999). Ghrelin is a growth-hormone-releasing acylated peptide from stomach. Nature, 402, 656–660.PubMedGoogle Scholar
  21. 21.
    Tritos, N. A. & Kokkotou, E. G. (2006). The physiology and potential clinical applications of ghrelin, a novel peptide hormone. Mayo Clinic Proceedings, Mayo Clinic, 81, 653–660.Google Scholar
  22. 22.
    Sun, Y., Wang, P., Zheng, H. & Smith, R. G. (2004). Ghrelin stimulation of growth hormone release and appetite is mediated through the growth hormone secretagogue receptor. Proceedings of the National Academy of Sciences of the United States of America, 101, 4679–4684.PubMedGoogle Scholar
  23. 23.
    Zhang, J. V., Ren, P. G., Avsian-Kretchmer, O., Luo, C. W., Rauch, R., Klein, C., et al. (2005). Obestatin, a peptide encoded by the ghrelin gene, opposes ghrelin’s effects on food intake. Science, 310, 996–999.PubMedGoogle Scholar
  24. 24.
    Tschop, M., Wawarta, R., Riepl, R. L., Friedrich, S., Bidlingmaier, M., Landgraf, R., et al. (2001). Post-prandial decrease of circulating human ghrelin levels. Journal of Endocrinological Investigation, 24, RC19–21.PubMedGoogle Scholar
  25. 25.
    Karra, E. & Batterham, R. L. The role of gut hormones in the regulation of body weight and energy homeostasis. Molecular and Cellular Endocrinology, 316, 120–128.Google Scholar
  26. 26.
    Cummings, D. E., Purnell, J. Q., Frayo, R. S., Schmidova, K., Wisse, B. E. & Weigle, D. S. (2001). A preprandial rise in plasma ghrelin levels suggests a role in meal initiation in humans. Diabetes, 50, 1714–1719.PubMedGoogle Scholar
  27. 27.
    Wren, A. M., Seal, L. J., Cohen, M. A., Brynes, A. E., Frost, G. S., Murphy, K. G., et al. (2001). Ghrelin enhances appetite and increases food intake in humans. The Journal of Clinical Endocrinology and Metabolism, 86, 5992.PubMedGoogle Scholar
  28. 28.
    Druce, M. R., Wren, A. M., Park, A. J., Milton, J. E., Patterson, M., Frost, G., et al. (2005). Ghrelin increases food intake in obese as well as lean subjects. International Journal of Obesterics (London), 29, 1130–1136.Google Scholar
  29. 29.
    Tschop, M., Smiley, D. L. & Heiman, M. L. (2000). Ghrelin induces adiposity in rodents. Nature, 407, 908–913.PubMedGoogle Scholar
  30. 30.
    Zigman, J. M., Nakano, Y., Coppari, R., Balthasar, N., Marcus, J. N., Lee, C. E., et al. (2005). Mice lacking ghrelin receptors resist the development of diet-induced obesity. The Journal of Clinical Investigation, 115, 3564–3572.PubMedGoogle Scholar
  31. 31.
    Theander-Carrillo, C., Wiedmer, P., Cettour-Rose, P., Nogueiras, R., Perez-Tilve, D., Pfluger, P., et al. (2006). Ghrelin action in the brain controls adipocyte metabolism. The Journal of Clinical Investigation, 116, 1983–1993.PubMedGoogle Scholar
  32. 32.
    Leidy, H. J., Gardner, J. K., Frye, B. R., Snook, M. L., Schuchert, M. K., Richard, E. L., et al. (2004). Circulating ghrelin is sensitive to changes in body weight during a diet and exercise program in normal-weight young women. The Journal of Clinical Endocrinology and Metabolism, 89, 2659–2664.PubMedGoogle Scholar
  33. 33.
    Cummings, D. E., Weigle, D. S., Frayo, R. S., Breen, P. A., Ma, M. K., Dellinger, E. P., et al. (2002). Plasma ghrelin levels after diet-induced weight loss or gastric bypass surgery. The New England Journal of Medicine, 346, 1623–1630.PubMedGoogle Scholar
  34. 34.
    Korbonits, M., Gueorguiev, M., O’Grady, E., Lecoeur, C., Swan, D. C., Mein, C. A., et al. (2002). A variation in the ghrelin gene increases weight and decreases insulin secretion in tall, obese children. The Journal of Clinical Endocrinology and Metabolism, 87, 4005–4008.PubMedGoogle Scholar
  35. 35.
    Cummings, D. E., Clement, K., Purnell, J. Q., Vaisse, C., Foster, K. E., Frayo, R. S., et al. (2002). Elevated plasma ghrelin levels in Prader Willi syndrome. Nature Medicine, 8, 643–644.PubMedGoogle Scholar
  36. 36.
    Zorrilla, E. P., Iwasaki, S., Moss, J. A., Chang, J., Otsuji, J., Inoue, K., et al. (2006). Vaccination against weight gain. Proceedings of the National Academy of Sciences of the United States of America, 103, 13226–13231.PubMedGoogle Scholar
  37. 37.
    Moran, T. H. & Kinzig, K. P. (2004). Gastrointestinal satiety signals II. Cholecystokinin. American Journal of Physiology. Gastrointestinal and Liver Physiology, 286, G183–188.PubMedGoogle Scholar
  38. 38.
    Beglinger, C. (2002). Overview. Cholecystokinin and eating. Current Opinion in Investigational Drugs (London, England: 2000), 3, 587–588.Google Scholar
  39. 39.
    Brennan, I. M., Little, T. J., Feltrin, K. L., Smout, A. J., Wishart, J. M., Horowitz, M., et al. (2008). Dose-dependent effects of cholecystokinin-8 on antropyloroduodenal motility, gastrointestinal hormones, appetite, and energy intake in healthy men. American Journal of Physiology. Endocrinology and Metabolism, 295, E1487–1494.PubMedGoogle Scholar
  40. 40.
    Little, T. J., Horowitz, M. & Feinle-Bisset, C. (2005). Role of cholecystokinin in appetite control and body weight regulation. Obesity Reviews: An Official Journal of the International Association for the Study of Obesity, 6, 297–306.Google Scholar
  41. 41.
    West, D. B., Fey, D. & Woods, S. C. (1984). Cholecystokinin persistently suppresses meal size but not food intake in free-feeding rats. The American Journal of Physiology, 246, R776–787.PubMedGoogle Scholar
  42. 42.
    Moran, T. H. (2000). Cholecystokinin and satiety: current perspectives. Nutrition (Burbank, Los Angeles County, California), 16, 858–865.Google Scholar
  43. 43.
    Tomasik, P. J., Sztefko, K. & Starzyk, J. (2004). Cholecystokinin, glucose dependent insulinotropic peptide and glucagon-like peptide 1 secretion in children with anorexia nervosa and simple obesity. Journal of Pediatric Endocrinology & Metabolism, 17, 1623–1631.Google Scholar
  44. 44.
    Miyasaka, K., Takiguchi, S. & Funakoshi, A. (2007). Cholecystokinin 1A receptor polymorphisms. Current Topics in Medicinal Chemistry, 7, 1205–1210.PubMedGoogle Scholar
  45. 45.
    Baggio, L. L. & Drucker, D. J. (2007). Biology of incretins: GLP-1 and GIP. Gastroenterology, 132, 2131–2157.PubMedGoogle Scholar
  46. 46.
    Meier, J. J. & Nauck, M. A. (2004). GIP as a potential therapeutic agent? Hormone and Metabolic Research. Hormon- und Stoffwechselforschung., 36, 859–866.Google Scholar
  47. 47.
    Drucker, D. J. (2005). Biologic actions and therapeutic potential of the proglucagon-derived peptides. Nature Clinical Practice. Endocrinology & Metabolism, 1, 22–31.Google Scholar
  48. 48.
    Bell, G. I., Sanchez-Pescador, R., Laybourn, P. J. & Najarian, R. C. (1983). Exon duplication and divergence in the human preproglucagon gene. Nature, 304, 368–371.PubMedGoogle Scholar
  49. 49.
    Kieffer, T. J. & Habener, J. F. (1999). The glucagon-like peptides. Endocrine Reviews, 20, 876–913.PubMedGoogle Scholar
  50. 50.
    Flint, A., Raben, A., Astrup, A. & Holst, J. J. (1998). Glucagon-like peptide 1 promotes satiety and suppresses energy intake in humans. The Journal of Clinical Investigation, 101, 515–520.PubMedGoogle Scholar
  51. 51.
    Verdich, C., Flint, A., Gutzwiller, J. P., Naslund, E., Beglinger, C., Hellstrom, P. M., et al. (2001). A meta-analysis of the effect of glucagon-like peptide-1 (7-36) amide on ad libitum energy intake in humans. The Journal of Clinical Endocrinology and Metabolism, 86, 4382–4389.PubMedGoogle Scholar
  52. 52.
    Scrocchi, L. A., Brown, T. J., MaClusky, N., Brubaker, P. L., Auerbach, A. B., Joyner, A. L., et al. (1996). Glucose intolerance but normal satiety in mice with a null mutation in the glucagon-like peptide 1 receptor gene. Nature Medicine, 2, 1254–1258.PubMedGoogle Scholar
  53. 53.
    Kinnamon, S. C. (2000). A plethora of taste receptors. Neuron, 25, 507–510.PubMedGoogle Scholar
  54. 54.
    Jayasena, C. N. & Bloom, S. R. (2008). Role of gut hormones in obesity. Endocrinology and Metabolism Clinics of North America, 37, 769–787, xi.PubMedGoogle Scholar
  55. 55.
    Carr, R. D., Larsen, M. O., Jelic, K., Lindgren, O., Vikman, J., Holst, J. J., et al. Secretion and dipeptidyl peptidase-4-mediated metabolism of incretin hormones after a mixed meal or glucose ingestion in obese compared to lean, nondiabetic men. The Journal of Clinical Endocrinology and Metabolism, 95, 872–878.Google Scholar
  56. 56.
    Ashrafian, H. & le Roux, C. W. (2009). Metabolic surgery and gut hormones - a review of bariatric entero-humoral modulation. Physiology & Behavior, 97, 620–631.Google Scholar
  57. 57.
    Amori, R. E., Lau, J. & Pittas, A. G. (2007). Efficacy and safety of incretin therapy in type 2 diabetes: systematic review and meta-analysis. The Journal of the American Medical Association, 298, 194–206.Google Scholar
  58. 58.
    Drucker, D. J. & Nauck, M. A. (2006). The incretin system: glucagon-like peptide-1 receptor agonists and dipeptidyl peptidase-4 inhibitors in type 2 diabetes. Lancet, 368, 1696–1705.PubMedGoogle Scholar
  59. 59.
    Bradley, D. P., Kulstad, R. & Schoeller, D. A. Exenatide and weight loss. Nutrition ( Burbank, Los Angeles County, California), 26, 243–249.Google Scholar
  60. 60.
    Ahmad, S. R. & Swann, J. (2008). Exenatide and rare adverse events. The New England Journal of Medicine, 358, 1970–1971; discussion 1971–1972.PubMedGoogle Scholar
  61. 61.
    Faludi, P., Brodows, R., Burger, J., Ivanyi, T. & Braun, D. K. (2009). The effect of exenatide re-exposure on safety and efficacy. Peptides, 30, 1771–1774.PubMedGoogle Scholar
  62. 62.
    Astrup, A., Rossner, S., Van Gaal, L., Rissanen, A., Niskanen, L., Al Hakim, M., et al. (2009). Effects of liraglutide in the treatment of obesity: a randomised, double-blind, ­placebo-controlled study. Lancet, 374, 1606–1616.PubMedGoogle Scholar
  63. 63.
    Ahren, B. (2003). Gut peptides and type 2 diabetes mellitus treatment. Current Diabetes Reports, 3, 365–372.PubMedGoogle Scholar
  64. 64.
    Asmar, M. & Holst, J. J. Glucagon-like peptide 1 and glucose-dependent insulinotropic polypeptide: new advances. Current Opinion in Endocrinolology, Diabetes and Obesterics, 17, 57–62.Google Scholar
  65. 65.
    Beck, B. (1989). Gastric inhibitory polypeptide: a gut hormone with anabolic functions. Journal of Molecular Endocrinology, 2, 169–174.PubMedGoogle Scholar
  66. 66.
    Miyawaki, K., Yamada, Y., Ban, N., Ihara, Y., Tsukiyama, K., Zhou, H., et al. (2002). Inhibition of gastric inhibitory polypeptide signaling prevents obesity. Nature Medicine, 8, 738–742.PubMedGoogle Scholar
  67. 67.
    Nauck, M. A. & Meier, J. J. (2005). Glucagon-like peptide 1 and its derivatives in the treatment of diabetes. Regulatory Peptides, 128, 135–148.PubMedGoogle Scholar
  68. 68.
    Baggio, L. L., Huang, Q., Brown, T. J. & Drucker, D. J. (2004). Oxyntomodulin and glucagon-like peptide-1 differentially regulate murine food intake and energy expenditure. Gastroenterology, 127, 546–558.PubMedGoogle Scholar
  69. 69.
    Wynne, K. & Bloom, S. R. (2006). The role of oxyntomodulin and peptide tyrosine-tyrosine (PYY) in appetite control. Nature Clinical Practice. Endocrinology & Metabolism, 2, 612–620.Google Scholar
  70. 70.
    Dakin, C. L., Small, C. J., Park, A. J., Seth, A., Ghatei, M. A. & Bloom, S. R. (2002). Repeated ICV administration of oxyntomodulin causes a greater reduction in body weight gain than in pair-fed rats. American Journal of Physiology. Endocrinology and Metabolism, 283, E1173–1177.PubMedGoogle Scholar
  71. 71.
    Wynne, K., Park, A. J., Small, C. J., Meeran, K., Ghatei, M. A., Frost, G. S., et al. (2006). Oxyntomodulin increases energy expenditure in addition to decreasing energy intake in overweight and obese humans: a randomised controlled trial. International Journal of Obesterics (London), 30, 1729–1736.Google Scholar
  72. 72.
    Wynne, K., Park, A. J., Small, C. J., Patterson, M., Ellis, S. M., Murphy, K. G., et al. (2005). Subcutaneous oxyntomodulin reduces body weight in overweight and obese subjects: a double-blind, randomized, controlled trial. Diabetes, 54, 2390–2395.PubMedGoogle Scholar
  73. 73.
    Schjoldager, B. T., Baldissera, F. G., Mortensen, P. E., Holst, J. J. & Christiansen, J. (1988). Oxyntomodulin: a potential hormone from the distal gut. Pharmacokinetics and effects on gastric acid and insulin secretion in man. European Journal of Clinical Investigation, 18, 499–503.PubMedGoogle Scholar
  74. 74.
    Field, B. C., Wren, A. M., Peters, V., Baynes, K. C., Martin, N. M., Patterson, M., et al. PYY3-36 and oxyntomodulin can be additive in their effect on food intake in overweight and obese humans. Diabetes 59, 1635–1639.Google Scholar
  75. 75.
    Batterham, R. L., Cowley, M. A., Small, C. J., Herzog, H., Cohen, M. A., Dakin, C. L., et al. (2002). Gut hormone PYY(3-36) physiologically inhibits food intake. Nature, 418, 650–654.PubMedGoogle Scholar
  76. 76.
    Grudell, A. B. & Camilleri, M. (2007). The role of peptide YY in integrative gut physiology and potential role in obesity. Current Opinion in Endocrinolology, Diabetes and Obesterics, 14, 52–57.Google Scholar
  77. 77.
    Batterham, R. L., Heffron, H., Kapoor, S., Chivers, J. E., Chandarana, K., Herzog, H., et al. (2006). Critical role for peptide YY in protein-mediated satiation and body-weight regulation. Cell Metabolism, 4, 223–233.PubMedGoogle Scholar
  78. 78.
    Degen, L., Oesch, S., Casanova, M., Graf, S., Ketterer, S., Drewe, J., et al. (2005). Effect of peptide YY3-36 on food intake in humans. Gastroenterology, 129, 1430–1436.PubMedGoogle Scholar
  79. 79.
    Batterham, R. L., Cohen, M. A., Ellis, S. M., Le Roux, C. W., Withers, D. J., Frost, G. S., et al. (2003). Inhibition of food intake in obese subjects by peptide YY3-36. The New England Journal of Medicine, 349, 941–948.PubMedGoogle Scholar
  80. 80.
    Pfluger, P. T., Kampe, J., Castaneda, T. R., Vahl, T., D’Alessio, D. A., Kruthaupt, T., et al. (2007). Effect of human body weight changes on circulating levels of peptide YY and peptide YY3-36. The Journal of Clinical Endocrinology and Metabolism, 92, 583–588.PubMedGoogle Scholar
  81. 81.
    le Roux, C. W., Batterham, R. L., Aylwin, S. J., Patterson, M., Borg, C. M., Wynne, K. J., et al. (2006). Attenuated peptide YY release in obese subjects is associated with reduced satiety. Endocrinology, 147, 3–8.PubMedGoogle Scholar
  82. 82.
    Ahituv, N., Kavaslar, N., Schackwitz, W., Ustaszewska, A., Collier, J. M., Hebert, S., et al. (2006). A PYY Q62P variant linked to human obesity. Human Molecular Genetics, 15, 387–391.PubMedGoogle Scholar
  83. 83.
    Asakawa, A., Inui, A., Yuzuriha, H., Ueno, N., Katsuura, G., Fujimiya, M., et al. (2003). Characterization of the effects of pancreatic polypeptide in the regulation of energy balance. Gastroenterology, 124, 1325–1336.PubMedGoogle Scholar
  84. 84.
    Batterham, R. L., Le Roux, C. W., Cohen, M. A., Park, A. J., Ellis, S. M., Patterson, M., et al. (2003). Pancreatic polypeptide reduces appetite and food intake in humans. The Journal of Clinical Endocrinology and Metabolism, 88, 3989–3992.PubMedGoogle Scholar
  85. 85.
    Ueno, N., Inui, A., Iwamoto, M., Kaga, T., Asakawa, A., Okita, M., et al. (1999). Decreased food intake and body weight in pancreatic polypeptide-overexpressing mice. Gastroenterology, 117, 1427–1432.PubMedGoogle Scholar
  86. 86.
    Bueter, M. & le Roux, C. W. (2009). Sir David Cuthbertson Medal Lecture. Bariatric surgery as a model to study appetite control. The Proceedings of the Nutrition Society, 68, 227–233.PubMedGoogle Scholar
  87. 87.
    Kahn, S. E., Andrikopoulos, S. & Verchere, C. B. (1999). Islet amyloid: a long-recognized but underappreciated pathological feature of type 2 diabetes. Diabetes, 48, 241–253.PubMedGoogle Scholar
  88. 88.
    Christopoulos, G., Perry, K. J., Morfis, M., Tilakaratne, N., Gao, Y., Fraser, N. J., et al. (1999). Multiple amylin receptors arise from receptor activity-modifying protein interaction with the calcitonin receptor gene product. Molecular Pharmacology, 56, 235–242.PubMedGoogle Scholar
  89. 89.
    Larhammar, D. (1996). Structural diversity of receptors for neuropeptide Y, peptide YY and pancreatic polypeptide. Regulatory Peptides, 65, 165–174.PubMedGoogle Scholar
  90. 90.
    Chapman, I., Parker, B., Doran, S., Feinle-Bisset, C., Wishart, J., Strobel, S., et al. (2005). Effect of pramlintide on satiety and food intake in obese subjects and subjects with type 2 diabetes. Diabetologia, 48, 838–848.PubMedGoogle Scholar
  91. 91.
    Reinehr, T., de Sousa, G., Niklowitz, P. & Roth, C. L. (2007). Amylin and its relation to insulin and lipids in obese children before and after weight loss. Obesity (Silver Spring), 15, 2006–2011.Google Scholar
  92. 92.
    Edelman, S., Garg, S., Frias, J., Maggs, D., Wang, Y., Zhang, B., et al. (2006). A double-blind, placebo-controlled trial assessing pramlintide treatment in the setting of intensive insulin therapy in type 1 diabetes. Diabetes Care, 29, 2189–2195.PubMedGoogle Scholar
  93. 93.
    Hollander, P. A., Levy, P., Fineman, M. S., Maggs, D. G., Shen, L. Z., Strobel, S. A., et al. (2003). Pramlintide as an adjunct to insulin therapy improves long-term glycemic and weight control in patients with type 2 diabetes: a 1-year randomized controlled trial. Diabetes care, 26, 784–790.PubMedGoogle Scholar
  94. 94.
    Roth, J. D., Roland, B. L., Cole, R. L., Trevaskis, J. L., Weyer, C., Koda, J. E., et al. (2008). Leptin responsiveness restored by amylin agonism in diet-induced obesity: evidence from nonclinical and clinical studies. Proceedings of the National Academy of Sciences of the United States of America, 105, 7257–7262.PubMedGoogle Scholar
  95. 95.
    Huda, M. S., Wilding, J. P. & Pinkney, J. H. (2006). Gut peptides and the regulation of appetite. Obesity Reviews: An Official Journal of the International Association for the Study of Obesity, 7, 163–182.Google Scholar
  96. 96.
    Dumoulin, V., Dakka, T., Plaisancie, P., Chayvialle, J. A. & Cuber, J. C. (1995). Regulation of glucagon-like peptide-1-(7-36) amide, peptide YY, and neurotensin secretion by neurotransmitters and gut hormones in the isolated vascularly perfused rat ileum. Endocrinology, 136, 5182–5188.PubMedGoogle Scholar
  97. 97.
    Gutzwiller, J. P., Drewe, J., Hildebrand, P., Rossi, L., Lauper, J. Z. & Beglinger, C. (1994). Effect of intravenous human gastrin-releasing peptide on food intake in humans. Gastroenterology, 106, 1168–1173.PubMedGoogle Scholar
  98. 98.
    Jensen, R. T., Battey, J. F., Spindel, E. R. & Benya, R. V. (2008). International Union of Pharmacology. LXVIII. Mammalian bombesin receptors: nomenclature, distribution, pharmacology, signaling, and functions in normal and disease states. Pharmacological Reviews, 60, 1–42.PubMedGoogle Scholar
  99. 99.
    Ohki-Hamazaki, H., Watase, K., Yamamoto, K., Ogura, H., Yamano, M., Yamada, K., et al. (1997). Mice lacking bombesin receptor subtype-3 develop metabolic defects and obesity. Nature, 390, 165–169.PubMedGoogle Scholar
  100. 100.
    Guan, X. M., Chen, H., Dobbelaar, P. H., Dong, Y., Fong, T. M., Gagen, K., et al. Regulation of energy homeostasis by bombesin receptor subtype-3: selective receptor agonists for the treatment of obesity. Cell Metabolism, 11, 101–112.Google Scholar
  101. 101.
    Mitchell, J. D., Maguire, J. J. & Davenport, A. P. (2009). Emerging pharmacology and ­physiology of neuromedin U and the structurally related peptide neuromedin S. British Journal of Pharmacology, 158, 87–103.PubMedGoogle Scholar
  102. 102.
    Hanada, R., Teranishi, H., Pearson, J. T., Kurokawa, M., Hosoda, H., Fukushima, N., et al. (2004). Neuromedin U has a novel anorexigenic effect independent of the leptin signaling pathway. Nature Medicine, 10, 1067–1073.PubMedGoogle Scholar
  103. 103.
    Drucker, D. J. (2001). Glucagon-like peptide 2. The Journal of Clinical Endocrinology and Metabolism, 86, 1759–1764.PubMedGoogle Scholar
  104. 104.
    Vickers, S. P. & Kennett, G. A. (2005). Cannabinoids and the regulation of ingestive ­behaviour. Current Drug Targets, 6, 215–223.PubMedGoogle Scholar
  105. 105.
    de Kloet, A. D. & Woods, S. C. (2009). Minireview: Endocannabinoids and their receptors as targets for obesity therapy. Endocrinology, 150, 2531–2536.PubMedGoogle Scholar
  106. 106.
    Dockray, G. J. (2009). Cholecystokinin and gut-brain signalling. Regulatory Peptides, 155, 6–10.PubMedGoogle Scholar
  107. 107.
    Trevaskis, J. L., Turek, V. F., Griffin, P. S., Wittmer, C., Parkes, D. G. & Roth, J. D. ­Multi-hormonal weight loss combinations in diet-induced obese rats: therapeutic potential of cholecystokinin? Physiology & Behavior, 100, 187–195.Google Scholar
  108. 108.
    Korner, J. & Leibel, R. L. (2003). To eat or not to eat - how the gut talks to the brain. The New England Journal of Medicine, 349, 926–928.PubMedGoogle Scholar
  109. 109.
    Neary, N. M., Small, C. J., Druce, M. R., Park, A. J., Ellis, S. M., Semjonous, N. M., et al. (2005). Peptide YY3-36 and glucagon-like peptide-17-36 inhibit food intake additively. Endocrinology, 146, 5120–5127.PubMedGoogle Scholar
  110. 110.
    Wideman, R. D. & Kieffer, T. J. (2009). Mining incretin hormone pathways for novel ­therapies. Trends in Endocrinology and Metabolism, 20, 280–286.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Gastroenterology Division, Department of Medicine, Beth Israel Deaconess Medical CenterHarvard Medical SchoolBostonUSA

Personalised recommendations