Advertisement

Adipokines in Health and Disease

  • Rexford S. Ahima
  • Marcus D. Goncalves
Chapter

Abstract

Obesity has become a major public health problem [1]. It is currently estimated that more than 1.6 billion adults worldwide are overweight [body mass index (BMI) >25] and 400 million are obese (BMI >30). The incidence of obesity in children is also very high [1]. The obesity epidemic is attributed mainly to excessive intake of foods rich in fat and sugar, and lack of exercise [1]. Obesity increases the risk of diabetes, hypertension, coronary artery disease, sleep apnea, cancer, and various diseases; therefore, there is enormous interest in understanding the pathogenesis of obesity [1, 2].

Keywords

Fatty Acid Oxidation Subcutaneous Adipose Tissue Arcuate Nucleus Gastric Inhibitory Polypeptide Induce Insulin Resistance 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work was supported by grant RO1-DK62348 and PO1-DK49210 from the National Institutes of Health.

References

  1. 1.
    James, W. P. (2008). The epidemiology of obesity: the size of the problem. Journal of Internal Medicine 263(4), 336–352.PubMedCrossRefGoogle Scholar
  2. 2.
    Badman, M. K., & Flier, J. S. (2007). The adipocyte as an active participant in energy balance and metabolism. Gastroenterology 132(6), 2103–2115.PubMedCrossRefGoogle Scholar
  3. 3.
    Belanger, C., Luu-The, V., Dupont, P., & Tchernof A. (2002). Adipose tissue intracrinology: potential importance of local androgen/estrogen metabolism in the regulation of adiposity. Hormone and Metabolic Research, 34(11–12), 737–745.PubMedCrossRefGoogle Scholar
  4. 4.
    Wellen, K. E., & Hotamisligil, G. S. (2003). Obesity-induced inflammatory changes in adipose tissue. Journal of Clinical Investigation, 112(12), 1785–1788.PubMedGoogle Scholar
  5. 5.
    Ahima, R. S., Saper, C. B., Flier, J. S., & Elmquist, J. K. (2000). Leptin regulation of neuroendocrine systems. Frontiers in Neuroendocrinology, 21(3), 263–307.PubMedCrossRefGoogle Scholar
  6. 6.
    Ahima, R. S., Prabakaran, D., Mantzoros, C., et al. (1996). Role of leptin in the neuroendocrine response to fasting. Nature, 382(6588), 250–252.PubMedCrossRefGoogle Scholar
  7. 7.
    Farooqi, I. S., Matarese, G., Lord, G. M., et al. (2002). Beneficial effects of leptin on obesity, T cell hyporesponsiveness, and neuroendocrine/metabolic dysfunction of human congenital leptin deficiency. Journal of Clinical Investigation, 110(8), 1093–1103.PubMedGoogle Scholar
  8. 8.
    Ahima, R. S., Qi, Y., Singhal, N. S., Jackson, M. B., & Scherer, P. E. (2006). Brain adipocytokine action and metabolic regulation. Diabetes, 55(Suppl 2), S145–S154.PubMedCrossRefGoogle Scholar
  9. 9.
    Licinio, J., Negrao, A. B., Mantzoros, C., et al. (1998). Sex differences in circulating human leptin pulse amplitude: clinical implications. Journal of Clinical Endocrinology and Metabolism, 83(11), 4140–4147.PubMedCrossRefGoogle Scholar
  10. 10.
    Banks, W. A., Kastin, A. J., Huang, W., Jaspan, J. B., & Maness, L. M. (1996). Leptin enters the brain by a saturable system independent of insulin. Peptides, 17(2), 305–311.PubMedCrossRefGoogle Scholar
  11. 11.
    Lord, G. M., Matarese, G., Howard, J. K., Baker, R. J., Bloom, S. R., & Lechler, R. I. (1998). Leptin modulates the T-cell immune response and reverses starvation-induced immunosuppression. Nature, 394(6696), 897–901.PubMedCrossRefGoogle Scholar
  12. 12.
    Munzberg, H., & Myers, M. G., Jr. (2005). Molecular and anatomical determinants of central leptin resistance. Nature Neuroscience, 8(5), 566–570.PubMedCrossRefGoogle Scholar
  13. 13.
    Bjorbaek, C., Uotani, S., da Silva, B., & Flier, J. S. (1997). Divergent signaling capacities of the long and short isoforms of the leptin receptor. Journal of Biological Chemistry, 272(51), 32686–32695.PubMedCrossRefGoogle Scholar
  14. 14.
    Clement, K., Vaisse, C., Lahlou, N., et al. (1998). A mutation in the human leptin receptor gene causes obesity and pituitary dysfunction. Nature, 392(6674), 398–401.PubMedCrossRefGoogle Scholar
  15. 15.
    Montague, C. T., Farooqi, I. S., Whitehead, J. P., et al. (1997). Congenital leptin deficiency is associated with severe early-onset obesity in humans. Nature, 387(6636), 903–908.PubMedCrossRefGoogle Scholar
  16. 16.
    Cohen, P., Zhao, C., Cai, X., et al. (2001). Selective deletion of leptin receptor in neurons leads to obesity. Journal of Clinical Investigation, 108(8), 1113–1121.PubMedGoogle Scholar
  17. 17.
    Bates, S. H., Stearns, W. H., Dundon, T. A., et al. (2003). STAT3 signalling is required for leptin regulation of energy balance but not reproduction. Nature, 421(6925), 856–859.PubMedCrossRefGoogle Scholar
  18. 18.
    Bjornholm, M., Munzberg, H., Leshan, R. L., et al. (2007). Mice lacking inhibitory leptin receptor signals are lean with normal endocrine function. Journal of Clinical Investigation, 117(5), 1354–1360.PubMedCrossRefGoogle Scholar
  19. 19.
    Banks, W. A., & Farrell, C. L. (2003). Impaired transport of leptin across the blood-brain barrier in obesity is acquired and reversible. American Journal of Physiology. Endocrinology and Metabolism, 285(1), E10–E15.PubMedGoogle Scholar
  20. 20.
    Kievit, P., Howard, J. K., Badman, M. K., et al. (2006). Enhanced leptin sensitivity and improved glucose homeostasis in mice lacking suppressor of cytokine signaling-3 in POMC-expressing cells. Cellular Metabolism, 4(2), 123–132.CrossRefGoogle Scholar
  21. 21.
    Zabolotny, J. M., Bence-Hanulec, K. K., Stricker-Krongrad, A., et al. (2002). PTP1B regulates leptin signal transduction in vivo. Developmental Cell, 2(4), 489–495.PubMedCrossRefGoogle Scholar
  22. 22.
    Bence, K. K., Delibegovic, M., Xue, B., et al. (2006). Neuronal PTP1B regulates body weight, adiposity and leptin action. Nature Medicine, 12(8), 917–924.PubMedCrossRefGoogle Scholar
  23. 23.
    Farooqi, I. S., Bullmore, E., Keogh, J., Gillard, J., O’Rahilly, S., & Fletcher, P. C. (2007). Leptin regulates striatal regions and human eating behavior. Science, 317(5843), 1355.PubMedCrossRefGoogle Scholar
  24. 24.
    Dark, J. (2005). Annual lipid cycles in hibernators: integration of physiology and behavior. Annual Review of Nutrition, 25, 469–497.PubMedCrossRefGoogle Scholar
  25. 25.
    Grattan, D. R., Ladyman, S. R., & Augustine, R. A. (2007). Hormonal induction of leptin resistance during pregnancy. Physiology & Behavior, 91(4), 366–374.CrossRefGoogle Scholar
  26. 26.
    Fulton, S., Pissios, P., Manchon, R. P., et al. (2006). Leptin regulation of the mesoaccumbens dopamine pathway. Neuron, 51(6), 811–822.PubMedCrossRefGoogle Scholar
  27. 27.
    Hommel, J. D., Trinko, R., Sears, R. M., et al. (2006). Leptin receptor signaling in midbrain dopamine neurons regulates feeding. Neuron, 51(6), 801–810.PubMedCrossRefGoogle Scholar
  28. 28.
    Kahn, B. B., Alquier, T., Carling, D., & Hardie, D. G. (2005). AMP-activated protein kinase: ancient energy gauge provides clues to modern understanding of metabolism. Cellular Metabolism, 1(1), 15–25.CrossRefGoogle Scholar
  29. 29.
    Niswender, K. D., Baskinm D. G., & Schwartz, M. W. (2004). Insulin and its evolving partnership with leptin in the hypothalamic control of energy homeostasis. Trends in Endocrinology and Metabolism, 15(8), 362–369.PubMedGoogle Scholar
  30. 30.
    Cowley, M. A., Smart, J. L., Rubinstein, M., et al. (2001). Leptin activates anorexigenic POMC neurons through a neural network in the arcuate nucleus. Nature, 411(6836), 480–484.PubMedCrossRefGoogle Scholar
  31. 31.
    Pinto, S., Roseberry, A. G., Liu, H., et al. (2004). Rapid rewiring of arcuate nucleus feeding circuits by leptin. Science, 304(5667), 110–115.PubMedCrossRefGoogle Scholar
  32. 32.
    Ahima, R. S., Bjorbaek, C., Osei, S., & Flier, J. S. (1999). Regulation of neuronal and glial proteins by leptin: implications for brain development. Endocrinology, 140(6), 2755–2762.PubMedCrossRefGoogle Scholar
  33. 33.
    Matochik, J. A., London, E. D., Yildiz, B. O., et al. (2005). Effect of leptin replacement on brain structure in genetically leptin-deficient adults. Journal of Clinical Endocrinology and Metabolism, 90(5), 2851–2854.PubMedCrossRefGoogle Scholar
  34. 34.
    Kusminski, C. M., McTernan, P. G., Schraw, T., et al. (2007). Adiponectin complexes in human cerebrospinal fluid: distinct complex distribution from serum. Diabetologia, 50(3), 634–642.PubMedCrossRefGoogle Scholar
  35. 35.
    Yamauchi, T., Kamon, J., Ito, Y., et al. (2003). Cloning of adiponectin receptors that mediate antidiabetic metabolic effects. Nature, 423(6941), 762–769.PubMedCrossRefGoogle Scholar
  36. 36.
    Bouret, S. G., Draper, S. J., & Simerly, R. B. (2004). Trophic action of leptin on hypothalamic neurons that regulate feeding. Science, 304(5667), 108–110.PubMedCrossRefGoogle Scholar
  37. 37.
    Bouret, S. G., Gorski, J. N., Patterson, C. M., Chen, S., Levin, B. E., & Simerly, R. B. (2008). Hypothalamic neural projections are permanently disrupted in diet-induced obese rats. Cellular Metabolism, 7(2), 179–185.CrossRefGoogle Scholar
  38. 38.
    Baicy, K., London, E. D., Monterosso, J., et al. (2007). Leptin replacement alters brain response to food cues in genetically leptin-deficient adults. Proceedings of the National Academy of Sciences of the United Stats of America, 104(46), 18276–18279.CrossRefGoogle Scholar
  39. 39.
    Rosenbaum, M., Sy, M., Pavlovich, K., Leibel, R. L., & Hirsch, J. (2008). Leptin reverses weight loss-induced changes in regional neural activity responses to visual food stimuli. Journal of Clinical Investigation, 118(7), 2583–2591.PubMedGoogle Scholar
  40. 40.
    Lieb, W., Beiser, A. S., Vasan, R. S., et al. (2009). Association of plasma leptin levels with incident Alzheimer disease and MRI measures of brain aging. JAMA, 302(23), 2565–2572.PubMedCrossRefGoogle Scholar
  41. 41.
    Unger, R. H. (2003). The physiology of cellular liporegulation. Annual Reviews in Physiology, 65, 333–347.CrossRefGoogle Scholar
  42. 42.
    Hedbacker, K., Birsoy, K., Wysocki, R. W., et al. (2010). Antidiabetic effects of IGFBP2, a leptin-regulated gene. Cellular Metabolism, 11(1), 11–22.CrossRefGoogle Scholar
  43. 43.
    Seufert, J., Kieffer, T. J., Leech, C. A., et al. (1999). Leptin suppression of insulin secretion and gene expression in human pancreatic islets: implications for the development of adipogenic diabetes mellitus. Journal of Clinical Endocrinology and Metabolism, 84(2), 670–676.PubMedCrossRefGoogle Scholar
  44. 44.
    Morioka, T., Asilmaz, E., Hu, J., et al. (2007). Disruption of leptin receptor expression in the pancreas directly affects beta cell growth and function in mice. Journal of Clinical Investigation, 117(10), 2860–2868.PubMedCrossRefGoogle Scholar
  45. 45.
    De Rosa, V., Procaccini, C., Cali, G., et al. (2007). A key role of leptin in the control of regulatory T cell proliferation. Immunity, 26(2), 241–255.PubMedCrossRefGoogle Scholar
  46. 46.
    Karsenty, G. (2006). Convergence between bone and energy homeostases: leptin regulation of bone mass. Cellular Metabolism, 4(5), 341–348.CrossRefGoogle Scholar
  47. 47.
    Shi, Y., Yadav, V. K., Suda, N., et al. (2008). Dissociation of the neuronal regulation of bone mass and energy metabolism by leptin in vivo. Proceedings of the National Academy of Sciences of the United Stats of America, 105(51), 20529–20533.CrossRefGoogle Scholar
  48. 48.
    Kadowaki, T., & Yamauchi, T. (2005). Adiponectin and adiponectin receptors. Endocrine Reviews, 26(3), 439–451.PubMedCrossRefGoogle Scholar
  49. 49.
    Pajvani, U. B., Hawkins, M., Combs, T. P., et al. (2004). Complex distribution, not absolute amount of adiponectin, correlates with thiazolidinedione-mediated improvement in insulin sensitivity. Journal of Biological Chemistry, 279(13), 12152–12162.PubMedCrossRefGoogle Scholar
  50. 50.
    Mao, X., Kikani, C. K., Riojas, R. A., et al. (2006). APPL1 binds to adiponectin receptors and mediates adiponectin signalling and function. Nature Cell Biology, 8(5), 516–523.PubMedCrossRefGoogle Scholar
  51. 51.
    Yamauchi, T., Nio, Y., Maki, T., et al. (2007). Targeted disruption of AdipoR1 and AdipoR2 causes abrogation of adiponectin binding and metabolic actions. Nature Medicine, 13(3), 332–339.PubMedCrossRefGoogle Scholar
  52. 52.
    Kubota, N., Terauchi, Y., Yamauchi, T., et al. (2002). Disruption of adiponectin causes insulin resistance and neointimal formation. Journal of Biological Chemistry, 277(29), 25863–25866.PubMedCrossRefGoogle Scholar
  53. 53.
    Maeda, N., Shimomura, I., Kishida, K., et al. (2002). Diet-induced insulin resistance in mice lacking adiponectin/ACRP30. Nature Medicine, 8(7), 731–737.PubMedCrossRefGoogle Scholar
  54. 54.
    Civitarese, A. E., Ukropcova, B., Carling, S., et al. (2006). Role of adiponectin in human skeletal muscle bioenergetics. Cellular Metabolism, 4(1), 75–87.CrossRefGoogle Scholar
  55. 55.
    Goldstein, B. J., Scalia, R. (2004). Adiponectin: A novel adipokine linking adipocytes and vascular function. Journal of Clinical Endocrinology and Metabolism, 89(6), 2563–2568.PubMedCrossRefGoogle Scholar
  56. 56.
    Shibata, R., Sato, K., Pimentel, D. R., et al. (2005). Adiponectin protects against myocardial ischemia-reperfusion injury through AMPK- and COX-2-dependent mechanisms. Nature Medicine, 11(10), 1096–1103.PubMedCrossRefGoogle Scholar
  57. 57.
    Klein, S., Fontana, L., Young, V. L., et al. (2004). Absence of an effect of liposuction on insulin action and risk factors for coronary heart disease. New England Journal of Medicine, 350(25), 2549–2557.PubMedCrossRefGoogle Scholar
  58. 58.
    Kim, J. Y., van de Wall, E., Laplante, M., et al. (2007). Obesity-associated improvements in metabolic profile through expansion of adipose tissue. Journal of Clinical Investigation, 117(9), 2621–2637.PubMedCrossRefGoogle Scholar
  59. 59.
    Stefan, N., Kantartzis, K., Machann, J., et al. (2008). Identification and characterization of metabolically benign obesity in humans. Archives in Internal Medicine, 168(15), 1609–1616.CrossRefGoogle Scholar
  60. 60.
    Qi, Y., Takahashi, N., Hileman, S. M., et al. (2004). Adiponectin acts in the brain to decrease body weight. Nature Medicine, 10(5), 524–529.PubMedCrossRefGoogle Scholar
  61. 61.
    Kubota, N., Yano, W., Kubota, T., et al. (2007). Adiponectin stimulates AMP-activated protein kinase in the hypothalamus and increases food intake. Cellular Metabolism, 6(1), 55–68.CrossRefGoogle Scholar
  62. 62.
    Coope, A., Milanski, M., Araujo, E. P., et al. (2008). AdipoR1 mediates the anorexigenic and insulin/leptin-like actions of adiponectin in the hypothalamus. FEBS Letters, 582(10), 1471–1476.PubMedCrossRefGoogle Scholar
  63. 63.
    Bjursell, M., Ahnmark, A., Bohlooly, Y. M., et al. (2007). Opposing effects of adiponectin receptors 1 and 2 on energy metabolism. Diabetes, 56(3), 583–593.PubMedCrossRefGoogle Scholar
  64. 64.
    Fry, M., Smith, P. M., Hoyda, T. D., et al. (2006). Area postrema neurons are modulated by the adipocyte hormone adiponectin. Journal of Neuroscience, 26(38), 9695–9702.PubMedCrossRefGoogle Scholar
  65. 65.
    Hoyda, T. D., Fry, M., Ahima, R. S., & Ferguson, A. V. (2007). Adiponectin selectively inhibits oxytocin neurons of the paraventricular nucleus of the hypothalamus. Journal of Physiology, 585(Pt 3), 805–816.PubMedCrossRefGoogle Scholar
  66. 66.
    Hoyda, T. D., Samson, W. K., & Ferguson, A. V. (2009). Adiponectin depolarizes parvocellular paraventricular nucleus neurons controlling neuroendocrine and autonomic function. Endocrinology, 150(2), 832–840.PubMedCrossRefGoogle Scholar
  67. 67.
    Hoyda, T. D., Smith, P. M., & Ferguson, A. V. (2009). Adiponectin acts in the nucleus of the solitary tract to decrease blood pressure by modulating the excitability of neuropeptide Y neurons. Brain Research, 1256, 76–84.PubMedCrossRefGoogle Scholar
  68. 68.
    Steppan, C. M., Bailey, S. T., Bhat, S., et al. (2001). The hormone resistin links obesity to diabetes. Nature, 409(6818), 307–312.PubMedCrossRefGoogle Scholar
  69. 69.
    Rajala, M. W., Qi, Y., Patel, H. R., et al. (2004). Regulation of resistin expression and circulating levels in obesity, diabetes, and fasting. Diabetes, 53(7), 1671–1679.PubMedCrossRefGoogle Scholar
  70. 70.
    Way, J. M., Gorgun, C. Z., Tong, Q., et al. (2001). Adipose tissue resistin expression is severely suppressed in obesity and stimulated by peroxisome proliferator-activated receptor gamma agonists. Journal of Biological Chemistry, 276(28), 25651–25653.PubMedCrossRefGoogle Scholar
  71. 71.
    Patel, S. D., Rajala, M. W., Rossetti, L., Scherer, P. E., Shapiro, L. (2004). Disulfide-dependent multimeric assembly of resistin family hormones. Science, 304(5674), 1154–1158.PubMedCrossRefGoogle Scholar
  72. 72.
    Hansotia, T., Maida, A., Flock, G., et al. (2007). Extrapancreatic incretin receptors modulate glucose homeostasis, body weight, and energy expenditure. Journal of Clinical Investigation, 117(1), 143–152.PubMedCrossRefGoogle Scholar
  73. 73.
    Kim, S. J., Nian, C., & McIntosh, C. H. (2007). Resistin is a key mediator of glucose-dependent insulinotropic polypeptide (GIP) stimulation of lipoprotein lipase (LPL) activity in adipocytes. Journal of Biological Chemistry, 282(47), 34139–34147.PubMedCrossRefGoogle Scholar
  74. 74.
    Rajala, M. W., Obici, S., Scherer, P. E., & Rossetti, L. (2003). Adipose-derived resistin and gut-derived resistin-like molecule-beta selectively impair insulin action on glucose production. Journal of Clinical Investigation, 111(2), 225–230.PubMedGoogle Scholar
  75. 75.
    Satoh, H., Nguyen, M. T., Miles, P. D., Imamura, T., Usui, I., Olefsky, J. M. (2004). Adenovirus-mediated chronic “hyper-resistinemia” leads to in vivo insulin resistance in normal rats. Journal of Clinical Investigation, 114(2), 224–231.PubMedGoogle Scholar
  76. 76.
    Banerjee, R. R., Rangwala, S. M., Shapiro, J. S., et al. (2004). Regulation of fasted blood glucose by resistin. Science, 303(5661), 1195–1198.PubMedCrossRefGoogle Scholar
  77. 77.
    Muse, E. D., Obici, S., Bhanot, S., et al. (2004). Role of resistin in diet-induced hepatic insulin resistance. Journal of Clinical Investigation, 114(2), 232–239.PubMedGoogle Scholar
  78. 78.
    Kim, K. H., Lee, K., Moon, Y. S., & Sul, H. S. (2001). A cysteine-rich adipose tissue-specific secretory factor inhibits adipocyte differentiation. Journal of Biological Chemistry, 276(14), 11252–11256.PubMedCrossRefGoogle Scholar
  79. 79.
    Kim, K. H., Zhao, L., Moon, Y., Kang, C., & Sul, H. S. (2004). Dominant inhibitory adipocyte-specific secretory factor (ADSF)/resistin enhances adipogenesis and improves insulin sensitivity. Proceedings of the National Academy of Sciences of the United Stats of America, 101(17), 6780–6785.CrossRefGoogle Scholar
  80. 80.
    Qi, Y., Nie, Z., Lee, Y. S., et al. (2006). Loss of resistin improves glucose homeostasis in leptin deficiency. Diabetes, 55(11), 3083–3090.PubMedCrossRefGoogle Scholar
  81. 81.
    Kos, K., Harte, A. L., da Silva, N. F., et al. (2007). Adiponectin and resistin in human cerebrospinal fluid and expression of adiponectin receptors in the human hypothalamus. Journal of Clinical Endocrinology and Metabolism, 92(3), 1129–1136.PubMedCrossRefGoogle Scholar
  82. 82.
    Muse, E. D., Lam, T. K., Scherer, P. E., & Rossetti, L. (2007). Hypothalamic resistin induces hepatic insulin resistance. Journal of Clinical Investigation, 117(6), 1670–1678.PubMedCrossRefGoogle Scholar
  83. 83.
    Singhal, N. S,, Lazar, M. A., & Ahima, R. S. (2007). Central resistin induces hepatic insulin resistance via neuropeptide Y. Journal of Neuroscience, 27(47), 12924–12932.PubMedCrossRefGoogle Scholar
  84. 84.
    Lazar, M. A. (2007). Resistin- and obesity-associated metabolic diseases. Hormone and Metabolic Research, 39(10), 710–716.PubMedCrossRefGoogle Scholar
  85. 85.
    Savage, D. B., Sewter, C. P., Klenk, E. S., et al. (2001). Resistin/Fizz3 expression in relation to obesity and peroxisome proliferator-activated receptor-gamma action in humans. Diabetes, 50(10), 2199–2202.PubMedCrossRefGoogle Scholar
  86. 86.
    Conneely, K. N., Silander, K., Scott, L. J., et al. (2004). Variation in the resistin gene is associated with obesity and insulin-related phenotypes in Finnish subjects. Diabetologia, 47(10), 1782–1788.PubMedCrossRefGoogle Scholar
  87. 87.
    Menzaghi, C., Coco, A., Salvemini, L., et al. (2006). Heritability of serum resistin and its genetic correlation with insulin resistance-related features in nondiabetic Caucasians. Journal of Clinical Endocrinology and Metabolism, 91(7), 2792–2795.PubMedCrossRefGoogle Scholar
  88. 88.
    Ochi, M., Osawa, H., Hirota, Y., et al. (2007). Frequency of the G/G genotype of resistin single nucleotide polymorphism at -420 appears to be increased in younger-onset type 2 diabetes. Diabetes, 56(11), 2834–2838.PubMedCrossRefGoogle Scholar
  89. 89.
    Xu, J. Y., Sham, P. C., Xu, A., et al. (2007). Resistin gene polymorphisms and progression of glycaemia in southern Chinese: a 5-year prospective study. Clinical Endocrinology (Oxford), 66(2), 211–217.CrossRefGoogle Scholar
  90. 90.
    Gerber, M., Boettner, A., Seidel, B., et al. (2005). Serum resistin levels of obese and lean children and adolescents: biochemical analysis and clinical relevance. Journal of Clinical Endocrinology and Metabolism, 90(8), 4503–4509.PubMedCrossRefGoogle Scholar
  91. 91.
    Lee, J. H., Chan, J. L., Yiannakouris, N., et al. (2003). Circulating resistin levels are not associated with obesity or insulin resistance in humans and are not regulated by fasting or leptin administration: cross-sectional and interventional studies in normal, insulin-resistant, and diabetic subjects. Journal of Clinical Endocrinology and Metabolism, 88(10), 4848–4856.PubMedCrossRefGoogle Scholar
  92. 92.
    Frankel, D. S., Vasan, R. S., D’Agostino, R. B., Sr., et al. (2009). Resistin, adiponectin, and risk of heart failure the Framingham offspring study. Journal of the American College of Cardiology, 53(9), 754–762.PubMedCrossRefGoogle Scholar
  93. 93.
    Osawa, H., Tabara, Y., Kawamoto, R., et al. (2007). Plasma resistin, associated with single nucleotide polymorphism -420, is correlated with insulin resistance, lower HDL cholesterol, and high-sensitivity C-reactive protein in the Japanese general population. Diabetes Care, 30(6), 1501–1506.PubMedCrossRefGoogle Scholar
  94. 94.
    Reilly, M. P., Lehrke, M., Wolfe, M. L., Rohatgi, A., Lazar, M. A., & Rader, D. J. (2005). Resistin is an inflammatory marker of atherosclerosis in humans. Circulation, 111(7), 932–939.PubMedCrossRefGoogle Scholar
  95. 95.
    Anderson, P. D., Mehta, N. N., Wolfe, M. L., et al. (2007). Innate immunity modulates adipokines in humans. Journal of Clinical Endocrinology and Metabolism, 92(6), 2272–2279.PubMedCrossRefGoogle Scholar
  96. 96.
    Lo, J., Bernstein, L. E., Canavan, B., et al. (2007). Effects of TNF-alpha neutralization on adipocytokines and skeletal muscle adiposity in the metabolic syndrome. American Journal of Physiology. Endocrinology and Metabolism, 293(1), E102–E109.PubMedCrossRefGoogle Scholar
  97. 97.
    Bernstein, L. E., Berry, J., Kim, S., Canavan, B., & Grinspoon, S. K. (2006). Effects of etanercept in patients with the metabolic syndrome. Archives in Internal Medicine, 166(8), 902–908.CrossRefGoogle Scholar
  98. 98.
    Qatanani, M., Szwergold, N. R, Greaves, D. R., Ahima, R. S., & Lazar, M. A. (2009). Macrophage-derived human resistin exacerbates adipose tissue inflammation and insulin resistance in mice. Journal of Clinical Investigation, 119(3)531–539.CrossRefGoogle Scholar
  99. 99.
    Tilg, H., & Moschen, A. R. (2006). Adipocytokines: mediators linking adipose tissue, inflammation and immunity. Nature Reviews. Immunology, 6(10), 772–783.PubMedCrossRefGoogle Scholar
  100. 100.
    Hotamisligil, G. S., Shargill, N. S., & Spiegelman, B. M. (1993). Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science, 259(5091), 87–91.PubMedCrossRefGoogle Scholar
  101. 101.
    Ruan, H., Miles, P. D., Ladd, C. M., et al. (2002). Profiling gene transcription in vivo reveals adipose tissue as an immediate target of tumor necrosis factor-alpha: implications for insulin resistance. Diabetes, 51(11), 3176–3188.PubMedCrossRefGoogle Scholar
  102. 102.
    Uysal, K. T., Wiesbrock, S. M., Marino, M. W., & Hotamisligil, G. S. (1997). Protection from obesity-induced insulin resistance in mice lacking TNF-alpha function. Nature, 389(6651), 610–614.PubMedCrossRefGoogle Scholar
  103. 103.
    Yuan, M., Konstantopoulos, N., Lee, J., et al. (2001). Reversal of obesity- and diet-induced insulin resistance with salicylates or targeted disruption of Ikkbeta. Science, 293(5535), 1673–1677.PubMedCrossRefGoogle Scholar
  104. 104.
    Hirosumi, J., Tuncman, G., Chang, L., et al. (2002). A central role for JNK in obesity and insulin resistance. Nature, 420(6913), 333–336.PubMedCrossRefGoogle Scholar
  105. 105.
    Senn, J. J., Klover, P. J., Nowak, I. A., & Mooney, R. A. (2002). Interleukin-6 induces cellular insulin resistance in hepatocytes. Diabetes, 51(12), 3391–3399.PubMedCrossRefGoogle Scholar
  106. 106.
    Senn, J. J., Klover, P. J., Nowak, I. A., et al. (2003). Suppressor of cytokine signaling-3 (SOCS-3), a potential mediator of interleukin-6-dependent insulin resistance in hepatocytes. Journal of Biological Chemistry, 278(16), 13740–13746.PubMedCrossRefGoogle Scholar
  107. 107.
    Wallenius, V., Wallenius, K., Ahren, B., et al. (2002). Interleukin-6-deficient mice develop mature-onset obesity. Nature Medicine, 8(1), 75–79.PubMedCrossRefGoogle Scholar
  108. 108.
    Yang, Q., Graham, T. E., Mody, N., et al. (2005). Serum retinol binding protein 4 contributes to insulin resistance in obesity and type 2 diabetes. Nature, 436(7049), 356–362.PubMedCrossRefGoogle Scholar
  109. 109.
    Graham, T. E., Yang, Q., Bluher, M., et al. (2006). Retinol-binding protein 4 and insulin resistance in lean, obese, and diabetic subjects. New England Journal of Medicine, 354(24), 2552–2563.PubMedCrossRefGoogle Scholar
  110. 110.
    Janke, J., Engeli, S., Boschmann, M., et al. (2006). Retinol-binding protein 4 in human obesity. Diabetes, 55(10), 2805–2810.PubMedCrossRefGoogle Scholar
  111. 111.
    Graham, T. E., Wason, C. J., Bluher, M., & Kahn, B. B. (2007). Shortcomings in methodology complicate measurements of serum retinol binding protein (RBP4) in insulin-resistant human subjects. Diabetologia, 50(4), 814–823.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Division of Endocrinology, Diabetes and Metabolism, and the Institute for Diabetes, Obesity and MetabolismUniversity of Pennsylvania School of MedicinePhiladelphiaUSA

Personalised recommendations