Principles of Obesity Therapy

  • Rexford S. Ahima


Obesity is highly prevalent in developed countries and increasing worldwide. This trend has dire consequences for public health because obesity increases the risk of diabetes, hypertension, atherosclerotic cardiovascular disease, sleep apnea, cancer, and other diseases. Obesity is also a major cause of disability and may shorten lifespan. This chapter will outline strategies for successful weight reduction, including behavior modification, diet, physical activity, pharmacotherapy, and bariatric surgery.


Bariatric Surgery Vertical Band Gastroplasty Gastric Bypass Surgery Diabetes Prevention Program Acanthosis Nigricans 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Ogden, C. L., Carroll, M. D., Curtin, L. R., McDowell, M. A., Tabak, C. J., & Flegal, K. M. (2006). Prevalence of overweight and obesity in the United States, 1999–2004. JAMA, 295(13), 1549–1555.PubMedCrossRefGoogle Scholar
  2. 2.
    Freedman, D. M., Ron, E., Ballard-Barbash, R., Doody, M. M., & Linet, M. S. (2006) Body mass index and all-cause mortality in a nationwide US cohort. International Journal of Obesity, 30(5), 822–829.PubMedCrossRefGoogle Scholar
  3. 3.
    McTigue, K., Larson, J. C., Valoski, A., et al. (2006). Mortality and cardiac and vascular outcomes in extremely obese women. JAMA, 296(1), 79–86.PubMedCrossRefGoogle Scholar
  4. 4.
    Knowler, W. C., Barrett-Connor, E., Fowler, S. E., et al. (2002). Reduction in the incidence of type 2 diabetes with lifestyle intervention or metformin. The New England Journal of Medicine, 346(6), 393–403.PubMedCrossRefGoogle Scholar
  5. 5.
    Tuomilehto, J., Lindstrom, J., Eriksson, J. G., et al. (2001). Prevention of type 2 diabetes mellitus by changes in lifestyle among subjects with impaired glucose tolerance. The New England Journal of Medicine, 344(18), 1343–1350.PubMedCrossRefGoogle Scholar
  6. 6.
    Sjostrom, C. D., Lissner, L., & Sjostrom, L. (1997). Relationships between changes in body composition and changes in cardiovascular risk factors: The SOS Intervention Study. Swedish Obese Subjects. Obesity Research, 5(6), 519–530.PubMedGoogle Scholar
  7. 7.
    Moore, L. L., Visioni, A. J., Qureshi, M. M., Bradlee, M. L., Ellison, R. C., & D’Agostino, R. (2005). Weight loss in overweight adults and the long-term risk of hypertension: The Framingham study. Archives of Internal Medicine, 165(11), 1298–1303.PubMedCrossRefGoogle Scholar
  8. 8.
    Stevens, V. J., Obarzanek, E., Cook, N. R., et al. (2001). Long-term weight loss and changes in blood pressure, results of the Trials of Hypertension Prevention, phase II. Annals of Internal Medicine, 134(1), 1–11.PubMedGoogle Scholar
  9. 9.
    Farooqi, I. S., & O’Rahilly, S. (2007). Genetic factors in human obesity. Obesity Reviews, 8(suppl 1), 37–40.PubMedCrossRefGoogle Scholar
  10. 10.
    Greenfield, J. R., Miller, J. W., Keogh, J. M., et al. (2009). Modulation of blood pressure by central melanocortinergic pathways. The New England Journal of Medicine, 360(1), 44–52.PubMedCrossRefGoogle Scholar
  11. 11.
    Lawlor, D. A., Smith, G. D., O’Callaghan, M., et al. (2007). Epidemiologic evidence for the fetal overnutrition hypothesis: Findings from the mater-university study of pregnancy and its outcomes. American Journal of Epidemiology, 165(4), 418–424.PubMedCrossRefGoogle Scholar
  12. 12.
    Reilly, J. J., Armstrong, J., Dorosty, A. R., et al. (2005). Early life risk factors for obesity in childhood: Cohort study. BMJ, 330(7504), 1357.PubMedCrossRefGoogle Scholar
  13. 13.
    Toschke, A. M., Montgomery, S. M., Pfeiffer, U., & von Kries, R. (2003). Early intrauterine exposure to tobacco-inhaled products and obesity. American Journal of Epidemiology, 158(11), 1068–1074.PubMedCrossRefGoogle Scholar
  14. 14.
    Latner, J. D., & Clyne, C. (2008). The diagnostic validity of the criteria for binge eating disorder. The International Journal of Eating Disorders, 41(1), 1–14.PubMedCrossRefGoogle Scholar
  15. 15.
    Stunkard, A. J., Allison, K. C., Geliebter, A., Lundgren, J. D., Gluck, M. E., & O’Reardon, J. P. (2009). Development of criteria for a diagnosis: Lessons from the night eating syndrome. Comprehensive Psychiatry, 50(5), 391–399.PubMedCrossRefGoogle Scholar
  16. 16.
    Gable, S., Chang, Y., & Krull, J. L. (2007). Television watching and frequency of family meals are predictive of overweight onset and persistence in a national sample of school-aged children. Journal of the American Dietetic Association, 107(1), 53–61.PubMedCrossRefGoogle Scholar
  17. 17.
    Whitlock, E. P., Williams, S. B., Gold, R., Smith, P. R., & Shipman, S. A. (2005). Screening and interventions for childhood overweight: A summary of evidence for the US Preventive Services Task Force. Pediatrics, 116(1), e125–e144.PubMedCrossRefGoogle Scholar
  18. 18.
    Williamson, D. F., Madans, J., Anda, R. F., Kleinman, J. C., Kahn, H. S., & Byers, T. (1993). Recreational physical activity and ten-year weight change in a US national cohort. International Journal of Obesity and Related Metabolic Disorders, 17(5), 279–286.PubMedGoogle Scholar
  19. 19.
    Gallagher, D., Heymsfield, S. B., Heo, M., Jebb, S. A., Murgatroyd, P. R., & Sakamoto, Y. (2000). Healthy percentage body fat ranges: An approach for developing guidelines based on body mass index. The American Journal of Clinical Nutrition, 72(3), 694–701.PubMedGoogle Scholar
  20. 20.
    Price, G. M., Uauy, R., Breeze, E., Bulpitt, C. J., & Fletcher, A. E. (2006). Weight, shape, and mortality risk in older persons: Elevated waist-hip ratio, not high body mass index, is associated with a greater risk of death. The American Journal of Clinical Nutrition, 84(2), 449–460.PubMedGoogle Scholar
  21. 21.
    Grundy, S. M., Cleeman, J. I., Daniels, S. R., et al. (2005). Diagnosis and management of the metabolic syndrome: An American Heart Association/National Heart, Lung, and Blood Institute Scientific Statement. Circulation, 112(17), 2735–2752.PubMedCrossRefGoogle Scholar
  22. 22.
    Laaban, J. P., Daenen, S., Leger, D., et al. (2009). Prevalence and predictive factors of sleep apnoea syndrome in type 2 diabetic patients. Diabetes & Metabolism, 35(5), 372–377.CrossRefGoogle Scholar
  23. 23.
    Executive Summary of The Third Report of The National Cholesterol Education Program (NCEP) Expert Panel on Detection. (2001). Evaluation, and treatment of high blood cholesterol in adults (adult treatment panel III). JAMA, 285(19), 2486–2497.Google Scholar
  24. 24.
    Wadden, T. A., Womble, L. G., Sarwer, D. B., Berkowitz, R. I., Clark, V. L., & Foster, G. D. (2003). Great expectations: “I’m losing 25% of my weight no matter what you say”. Journal of Consulting and Clinical Psychology, 71(6), 1084–1089.PubMedCrossRefGoogle Scholar
  25. 25.
    Rosenbaum, M., Murphy, E. M., Heymsfield, S. B., Matthews, D. E., & Leibel, R. L. (2002). Low dose leptin administration reverses effects of sustained weight-reduction on energy expenditure and circulating concentrations of thyroid hormones. The Journal of Clinical Endocrinology and Metabolism, 87(5), 2391–2394.PubMedCrossRefGoogle Scholar
  26. 26.
    Klem, M. L., Wing, R. R., McGuire, M. T., Seagle, H. M., & Hill, J. O. (1997). A descriptive study of individuals successful at long-term maintenance of substantial weight loss. The American Journal of Clinical Nutrition, 66(2), 239–246.PubMedGoogle Scholar
  27. 27.
    Wadden, T. A., Butryn, M. L., & Byrne, K. J. (2004). Efficacy of lifestyle modification for long-term weight control. Obesity Research, 12(suppl), 151S–162S.PubMedCrossRefGoogle Scholar
  28. 28.
    Orchard, T. J., Temprosa, M., Goldberg, R., et al. (2005). The effect of metformin and intensive lifestyle intervention on the metabolic syndrome: The Diabetes Prevention Program randomized trial. Annals of Internal Medicine, 142(8), 611–619.PubMedGoogle Scholar
  29. 29.
    Fuller, P. R., Perri, M. G., Leermakers, E. A., & Guyer, L. K. (1998). Effects of a personalized system of skill acquisition and an educational program in the treatment of obesity. Addictive Behaviors, 23(1), 97–100.PubMedCrossRefGoogle Scholar
  30. 30.
    Harvey-Berino, J. (1998). Changing health behavior via telecommunications technology: Using interactive television to treat obesity. Behavior Therapy, 29(3), 505–519.CrossRefGoogle Scholar
  31. 31.
    Wadden, T. A., Van Itallie, T. B., & Blackburn, G. L. (1990). Responsible and irresponsible use of very-low-calorie diets in the treatment of obesity. JAMA, 263(1), 83–85.PubMedCrossRefGoogle Scholar
  32. 32.
    Tsai, A. G., & Wadden, T. A. (2006). The evolution of very-low-calorie diets: An update and meta-analysis. Obesity (Silver Spring), 14(8), 1283–1293.CrossRefGoogle Scholar
  33. 33.
    Tsai, A. G., & Wadden, T. A. (2005). Systematic review: An evaluation of major commercial weight loss programs in the United States. Annals of Internal Medicine, 142(1), 56–66.PubMedGoogle Scholar
  34. 34.
    Rolls, B. J., & Bell, E. A. (2000). Dietary approaches to the treatment of obesity. The Medical Clinics of North America, 84(2), 401–418, vi.PubMedCrossRefGoogle Scholar
  35. 35.
    Lichtman, S. W., Pisarska, K., Berman, E. R., et al. (1992). Discrepancy between ­self-reported and actual caloric intake and exercise in obese subjects. The New England Journal of Medicine, 327(27), 1893–1898.PubMedCrossRefGoogle Scholar
  36. 36.
    Heymsfield, S. B., van Mierlo, C. A., van der Knaap, H. C., Heo, M., & Frier, H. I. (2003). Weight management using a meal replacement strategy: Meta and pooling analysis from six studies. International Journal of Obesity and Related Metabolic Disorders, 27(5), 537–549.PubMedCrossRefGoogle Scholar
  37. 37.
    Li, Z., Hong, K., Saltsman, P., et al. (2005). Long-term efficacy of soy-based meal replacements vs an individualized diet plan in obese type II DM patients: Relative effects on weight loss, metabolic parameters, and C-reactive protein. European Journal of Clinical Nutrition, 59(3), 411–418.PubMedCrossRefGoogle Scholar
  38. 38.
    Hannum, S. M., Carson, L., Evans, E. M., et al. (2004). Use of portion-controlled entrees enhances weight loss in women. Obesity Research, 12(3), 538–546.PubMedCrossRefGoogle Scholar
  39. 39.
    Hannum, S. M., Carson, L. A., Evans, E. M., et al. (2006). Use of packaged entrees as part of a weight-loss diet in overweight men: An 8-week randomized clinical trial. Diabetes, Obesity & Metabolism, 8(2), 146–155.CrossRefGoogle Scholar
  40. 40.
    Metz, J. A., Stern, J. S., Kris-Etherton, P., et al. (2000). A randomized trial of improved weight loss with a prepared meal plan in overweight and obese patients: Impact on cardiovascular risk reduction. Archives of Internal Medicine, 160(14), 2150–2158.PubMedCrossRefGoogle Scholar
  41. 41.
    Wing, R. R., Jeffery, R. W., Burton, L. R., Thorson, C., Nissinoff, K. S., & Baxter, J. E. (1996). Food provision vs structured meal plans in the behavioral treatment of obesity. International Journal of Obesity and Related Metabolic Disorders, 20(1), 56–62.PubMedGoogle Scholar
  42. 42.
    Makris, A. P., & Foster, G. D. (2005). Dietary approaches to the treatment of obesity. The Psychiatric Clinics of North America, 28(1), 117–139, viii–ix.PubMedCrossRefGoogle Scholar
  43. 43.
    Foster, G. D., Wyatt, H. R., Hill, J. O., et al. (2003). A randomized trial of a low-carbohydrate diet for obesity. The New England Journal of Medicine, 348(21), 2082–2090.PubMedCrossRefGoogle Scholar
  44. 44.
    Nordmann, A. J., Nordmann, A., Briel, M., et al. (2006). Effects of low-carbohydrate vs low-fat diets on weight loss and cardiovascular risk factors: A meta-analysis of randomized controlled trials. Archives of Internal Medicine, 166(3), 285–293.PubMedCrossRefGoogle Scholar
  45. 45.
    Samaha, F. F., Iqbal, N., Seshadri, P., et al. (2003). A low-carbohydrate as compared with a low-fat diet in severe obesity. The New England Journal of Medicine, 348(21), 2074–2081.PubMedCrossRefGoogle Scholar
  46. 46.
    Stern, L., Iqbal, N., Seshadri, P., et al. (2004). The effects of low-carbohydrate versus conventional weight loss diets in severely obese adults: One-year follow-up of a randomized trial. Annals of Internal Medicine, 140(10), 778–785.PubMedGoogle Scholar
  47. 47.
    Dumesnil, J. G., Turgeon, J., & Tremblay, A., et al. (2001). Effect of a low-glycaemic index–low-fat–high protein diet on the atherogenic metabolic risk profile of abdominally obese men. The British Journal of Nutrition, 86(5), 557–568.PubMedCrossRefGoogle Scholar
  48. 48.
    Ludwig, D. S., Majzoub, J. A., Al-Zahrani, A., Dallal, G. E., Blanco, I., & Roberts, S. B. (1999). High glycemic index foods, overeating, and obesity. Pediatrics, 103(3), E26.PubMedCrossRefGoogle Scholar
  49. 49.
    McMillan-Price, J., Petocz, P., Atkinson, F., et al. (2006). Comparison of 4 diets of varying glycemic load on weight loss and cardiovascular risk reduction in overweight and obese young adults: A randomized controlled trial. Archives of Internal Medicine, 166(14), 1466–1475.PubMedCrossRefGoogle Scholar
  50. 50.
    Raatz, S. K., Torkelson, C. J., Redmon, J. B., et al. (2005). Reduced glycemic index and glycemic load diets do not increase the effects of energy restriction on weight loss and insulin sensitivity in obese men and women. The Journal of Nutrition, 135(10), 2387–2391.PubMedGoogle Scholar
  51. 51.
    Sloth, B., Krog-Mikkelsen, I., Flint, A., et al. (2004). No difference in body weight decrease between a low-glycemic-index and a high-glycemic-index diet but reduced LDL cholesterol after 10-wk ad libitum intake of the low-glycemic-index diet. The American Journal of Clinical Nutrition, 80(2), 337–347.PubMedGoogle Scholar
  52. 52.
    Brand-Miller, J., Hayne, S., Petocz, P., & Colagiuri, S. (2003). Low-glycemic index diets in the management of diabetes: A meta-analysis of randomized controlled trials. Diabetes Care, 26(8), 2261–2267.PubMedCrossRefGoogle Scholar
  53. 53.
    Hu, F. B., Willett, W. C., Li, T., Stampfer, M. J., Colditz, G. A., Manson, J. E. (2004). Adiposity as compared with physical activity in predicting mortality among women. The New England Journal of Medicine, 351(26), 2694–2703.PubMedCrossRefGoogle Scholar
  54. 54.
    Lee, C. D., Blair, S. N., & Jackson, A. S. (1999). Cardiorespiratory fitness, body composition, and all-cause and cardiovascular disease mortality in men. The American Journal of Clinical Nutrition, 69(3), 373–380.PubMedGoogle Scholar
  55. 55.
    Stevens, J., Cai, J., Evenson, K. R., & Thomas, R. (2002). Fitness and fatness as predictors of mortality from all causes and from cardiovascular disease in men and women in the lipid research clinics study. American Journal of Epidemiology, 156(9), 832–841.PubMedCrossRefGoogle Scholar
  56. 56.
    Jakicic, J. M., Winters, C., Lang, W., & Wing, R. R. (1999). Effects of intermittent exercise and use of home exercise equipment on adherence, weight loss, and fitness in overweight women: A randomized trial. JAMA, 282(16), 1554–1560.PubMedCrossRefGoogle Scholar
  57. 57.
    Slentz, C. A., Duscha, B. D., Johnson, J. L., et al. (2004). Effects of the amount of exercise on body weight, body composition, and measures of central obesity: STRRIDE–a randomized controlled study. Archives of Internal Medicine, 164(1), 31–39.PubMedCrossRefGoogle Scholar
  58. 58.
    Wing, R. R., & Hill, J. O. (2001). Successful weight loss maintenance. Annual Review of Nutrition, 21, 323–341.PubMedCrossRefGoogle Scholar
  59. 59.
    Andersen, R. E., Wadden, T. A., Bartlett, S. J., Zemel, B., Verde, T. J., & Franckowiak, S. C. (1999). Effects of lifestyle activity vs structured aerobic exercise in obese women: A randomized trial. JAMA, 281(4), 335–340.PubMedCrossRefGoogle Scholar
  60. 60.
    King, A. C., Haskell, W. L., Young, D. R., Oka, R. K., & Stefanick, M. L. (1995). Long-term effects of varying intensities and formats of physical activity on participation rates, fitness, and lipoproteins in men and women aged 50 to 65 years. Circulation, 91(10), 2596–2604.PubMedGoogle Scholar
  61. 61.
    Wadden, T. A., Foster, G. D., Letizia, K. A., & Mullen, J. L. (1990). Long-term effects of dieting on resting metabolic rate in obese outpatients. JAMA, 264(6), 707–711.PubMedCrossRefGoogle Scholar
  62. 62.
    James, W. P., Astrup, A., Finer, N., et al. (2000). Effect of sibutramine on weight maintenance after weight loss: A randomised trial. STORM Study Group. Sibutramine Trial of Obesity Reduction and Maintenance. Lancet, 356(9248), 2119–2125.PubMedCrossRefGoogle Scholar
  63. 63.
    McMahon, F. G., Fujioka, K., Singh, B. N., et al. (2000). Efficacy and safety of sibutramine in obese white and African American patients with hypertension: A 1-year, double-blind, placebo-controlled, multicenter trial. Archives of Internal Medicine, 160(14), 2185–2191.PubMedCrossRefGoogle Scholar
  64. 64.
    Finer, N., Bloom, S. R., Frost, G. S., Banks, L. M., & Griffiths, J. (2000). Sibutramine is effective for weight loss and diabetic control in obesity with type 2 diabetes: A randomised, double-blind, placebo-controlled study. Diabetes, Obesity & Metabolism, 2(2), 105–112.CrossRefGoogle Scholar
  65. 65.
    Fujioka, K., Seaton, T. B., Rowe, E., et al. (2000). Weight loss with sibutramine improves glycaemic control and other metabolic parameters in obese patients with type 2 diabetes mellitus. Diabetes, Obesity & Metabolism, 2(3), 175–187.CrossRefGoogle Scholar
  66. 66.
    Berkowitz, R. I., Fujioka, K., Daniels, S. R., et al. (2006). Effects of sibutramine treatment in obese adolescents: A randomized trial. Annals of Internal Medicine, 145(2), 81–90.PubMedGoogle Scholar
  67. 67.
    Berkowitz, R. I., Wadden, T. A., Tershakovec, A. M., & Cronquist, J. L. (2003). Behavior therapy and sibutramine for the treatment of adolescent obesity: A randomized controlled trial. JAMA, 289(14), 1805–1812.PubMedCrossRefGoogle Scholar
  68. 68.
    Godoy-Matos, A., Carraro, L., Vieira, A., et al. (2005). Treatment of obese adolescents with sibutramine: A randomized, double-blind, controlled study. The Journal of Clinical Endocrinology and Metabolism, 90(3), 1460–1465.PubMedCrossRefGoogle Scholar
  69. 69.
    Munro, J. F., MacCuish, A. C., Wilson, E. M., & Duncan, L. J. (1968). Comparison of continuous and intermittent anorectic therapy in obesity. British Medical Journal, 1(5588), 352–354.PubMedCrossRefGoogle Scholar
  70. 70.
    Sjostrom, L., Rissanen, A., Andersen, T., et al. (1998). Randomised placebo-controlled trial of orlistat for weight loss and prevention of weight regain in obese patients. European Multicentre Orlistat Study Group. Lancet, 352(9123), 167–172.PubMedCrossRefGoogle Scholar
  71. 71.
    Davidson, M. H., Hauptman, J., DiGirolamo, M., et al. (1999). Weight control and risk factor reduction in obese subjects treated for 2 years with orlistat: A randomized controlled trial. JAMA, 281(3), 235–242.PubMedCrossRefGoogle Scholar
  72. 72.
    Hauptman, J. (2000). Orlistat: Selective inhibition of caloric absorption can affect long-term body weight. Endocrine, 13(2), 201–206.PubMedCrossRefGoogle Scholar
  73. 73.
    Torgerson, J. S., Hauptman, J., Boldrin, M. N., & Sjostrom, L. (2004). XENical in the prevention of diabetes in obese subjects (XENDOS) study: A randomized study of orlistat as an adjunct to lifestyle changes for the prevention of type 2 diabetes in obese patients. Diabetes Care, 27(1), 155–161.PubMedCrossRefGoogle Scholar
  74. 74.
    Chanoine, J. P., Hampl, S., Jensen, C., Boldrin, M., & Hauptman, J. (2005). Effect of orlistat on weight and body composition in obese adolescents: A randomized controlled trial. JAMA, 293(23), 2873–2883.PubMedCrossRefGoogle Scholar
  75. 75.
    Hill, J. O., Hauptman, J., Anderson, J. W., et al. (1999). Orlistat, a lipase inhibitor, for weight maintenance after conventional dieting: A 1-y study. The American Journal of Clinical Nutrition, 69(6), 1108–1116.PubMedGoogle Scholar
  76. 76.
    Despres, J. P., Golay, A., & Sjostrom, L. (2005). Effects of rimonabant on metabolic risk factors in overweight patients with dyslipidemia. The New England Journal of Medicine, 353(20), 2121–2134.PubMedCrossRefGoogle Scholar
  77. 77.
    Le Foll, B., Gorelick, D. A., & Goldberg, S. R. (2009). The future of endocannabinoid-oriented clinical research after CB1 antagonists. Psychopharmacology, 205(1), 171–174.PubMedCrossRefGoogle Scholar
  78. 78.
    Goldstein, D. J., Rampey, A. H., Jr., Roback, P. J., et al. (1995). Efficacy and safety of long-term fluoxetine treatment of obesity–maximizing success. Obesity Research, 3(suppl 4), 481S–490S.PubMedGoogle Scholar
  79. 79.
    Gadde, K. M., Parker, C. B., Maner, L. G., et al. (2001). Bupropion for weight loss: An investigation of efficacy and tolerability in overweight and obese women. Obesity Research, 9(9), 544–551.PubMedCrossRefGoogle Scholar
  80. 80.
    Jain, A. K., Kaplan, R. A., Gadde, K. M., et al. (2002). Bupropion SR vs. placebo for weight loss in obese patients with depressive symptoms. Obesity Research, 10(10), 1049–1056.PubMedCrossRefGoogle Scholar
  81. 81.
    Anderson, J. W., Greenway, F. L., Fujioka, K., Gadde, K. M., McKenney, J., & O’Neil, P. M. (2002). Bupropion SR enhances weight loss: A 48-week double-blind, placebo- controlled trial. Obesity Research, 10(7), 633–641.PubMedCrossRefGoogle Scholar
  82. 82.
    Wilding, J., Van Gaal, L., Rissanen, A., Vercruysse, F., & Fitchet, M. (2004). A randomized double-blind placebo-controlled study of the long-term efficacy and safety of topiramate in the treatment of obese subjects. International Journal of Obesity and Related Metabolic Disorders, 28(11), 1399–1410.PubMedCrossRefGoogle Scholar
  83. 83.
    Gadde, K. M., Franciscy, D. M., Wagner, H. R., II, & Krishnan, K. R. (2003). Zonisamide for weight loss in obese adults: A randomized controlled trial. JAMA, 289(14), 1820–1825.PubMedCrossRefGoogle Scholar
  84. 84.
    Fontbonne, A., Charles, M. A., Juhan-Vague, I., et al. (1996). The effect of metformin on the metabolic abnormalities associated with upper-body fat distribution. BIGPRO Study Group. Diabetes Care, 19(9), 920–926.PubMedCrossRefGoogle Scholar
  85. 85.
    Riddle, M. C., & Drucker, D. J. (2006). Emerging therapies mimicking the effects of amylin and glucagon-like peptide 1. Diabetes Care, 29(2), 435–449.PubMedCrossRefGoogle Scholar
  86. 86.
    Ratner, R. E., Dickey, R., Fineman, M., et al. (2004). Amylin replacement with pramlintide as an adjunct to insulin therapy improves long-term glycaemic and weight control in Type 1 diabetes mellitus: A 1-year, randomized controlled trial. Diabetic Medicine, 21(11), 1204–1212.PubMedCrossRefGoogle Scholar
  87. 87.
    Roth, J. D., Roland, B. L., Cole, R. L., et al. (2008). Leptin responsiveness restored by amylin agonism in diet-induced obesity: Evidence from nonclinical and clinical studies. Proceedings of the National Academy of Sciences of the United States of America, 105(20), 7257–7262.PubMedCrossRefGoogle Scholar
  88. 88.
    DeFronzo, R. A., Ratner, R. E., Han, J., Kim, D. D., Fineman, M. S., & Baron, A. D. (2005). Effects of exenatide (exendin-4) on glycemic control and weight over 30 weeks in metformin-treated patients with type 2 diabetes. Diabetes Care, 28(5), 1092–1100.PubMedCrossRefGoogle Scholar
  89. 89.
    Edwards, C. M., Stanley, S. A., Davis, R., et al. (2001). Exendin-4 reduces fasting and postprandial glucose and decreases energy intake in healthy volunteers. American Journal of Physiology. Endocrinology and Metabolism, 281(1), E155–E161.PubMedGoogle Scholar
  90. 90.
    Heine, R. J., Van Gaal, L. F., Johns, D., Mihm, M. J., Widel, M. H., & Brodows, R. G. (2005). Exenatide versus insulin glargine in patients with suboptimally controlled type 2 diabetes: A randomized trial. Annals of Internal Medicine, 143(8), 559–569.PubMedGoogle Scholar
  91. 91.
    Vilsboll, T., Zdravkovic, M., Le-Thi, T., et al. (2007). Liraglutide, a long-acting human glucagon-like peptide-1 analog, given as monotherapy significantly improves glycemic control and lowers body weight without risk of hypoglycemia in patients with type 2 diabetes. Diabetes Care, 30(6), 1608–1610.PubMedCrossRefGoogle Scholar
  92. 92.
    Weintraub, M., Sundaresan, P. R., Schuster, B., et al. (1992). Long-term weight control study. II (weeks 34 to 104). An open-label study of continuous fenfluramine plus phentermine versus targeted intermittent medication as adjuncts to behavior modification, caloric restriction, and exercise. Clinical Pharmacology and Therapeutics, 51(5), 595–601.PubMedCrossRefGoogle Scholar
  93. 93.
    Connolly, H. M., Crary, J. L., McGoon, M. D., et al. (1997). Valvular heart disease associated with fenfluramine-phentermine. The New England Journal of Medicine, 337(9), 581–588.PubMedCrossRefGoogle Scholar
  94. 94.
    Palmieri, V., Arnett, D. K., Roman, M. J., et al. (2002). Appetite suppressants and valvular heart disease in a population-based sample: The HyperGEN study. The American Journal of Medicine, 112(9), 710–715.PubMedCrossRefGoogle Scholar
  95. 95.
    Elder, K. A., & Wolfe, B. M. (2007). Bariatric surgery: A review of procedures and outcomes. Gastroenterology, 132(6), 2253–2271.PubMedCrossRefGoogle Scholar
  96. 96.
    Buchwald, H., Avidor, Y., Braunwald, E., et al. (2004). Bariatric surgery: A systematic review and meta-analysis. JAMA, 292(14), 1724–1737.PubMedCrossRefGoogle Scholar
  97. 97.
    Dixon, J. B., & O’Brien, P. E. (2002). Health outcomes of severely obese type 2 diabetic subjects 1 year after laparoscopic adjustable gastric banding. Diabetes Care, 25(2), 358–363.PubMedCrossRefGoogle Scholar
  98. 98.
    Sjostrom, L., Lindroos, A. K., Peltonen, M., et al. (2004). Lifestyle, diabetes, and cardiovascular risk factors 10 years after bariatric surgery. The New England Journal of Medicine, 351(26), 2683–2693.PubMedCrossRefGoogle Scholar
  99. 99.
    Sjostrom, L., Narbro, K., Sjostrom, C. D., et al. (2007). Effects of bariatric surgery on mortality in Swedish Obese Subjects. The New England Journal of Medicine, 357(8), 741–752.PubMedCrossRefGoogle Scholar
  100. 100.
    Adams, T. D., Gress, R. E., Smith, S. C., et al. (2007). Long-term mortality after gastric bypass surgery. The New England Journal of Medicine, 357(8), 753–761.PubMedCrossRefGoogle Scholar
  101. 101.
    Buchwald, H., Estok, R., Fahrbach, K., Banel, D., & Sledge, I. (2007). Trends in mortality in bariatric surgery: A systematic review and meta-analysis. Surgery, 142(4), 621–632; discussion 632–635.PubMedCrossRefGoogle Scholar
  102. 102.
    Pories, W. J., Swanson, M. S., MacDonald, K. G., et al. (1995). Who would have thought it? An operation proves to be the most effective therapy for adult-onset diabetes mellitus. Annals of Surgery, 222(3), 339–350; discussion 350–352.PubMedCrossRefGoogle Scholar
  103. 103.
    Schauer, P. R., Burguera, B., Ikramuddin, S., et al. (2003). Effect of laparoscopic Roux-en Y gastric bypass on type 2 diabetes mellitus. Annals of Surgery, 238(4), 467–484; discussion 484–485.PubMedGoogle Scholar
  104. 104.
    Scopinaro, N., Marinari, G. M., Camerini, G. B., Papadia, F. S., & Adami, G. F. (2005). Specific effects of biliopancreatic diversion on the major components of metabolic syndrome: A long-term follow-up study. Diabetes Care, 28(10), 2406–2411.PubMedCrossRefGoogle Scholar
  105. 105.
    Vidal, J., Ibarzabal, A., Romero, F., et al. (2008). Type 2 diabetes mellitus and the metabolic syndrome following sleeve gastrectomy in severely obese subjects. Obesity Surgery, 18(9), 1077–1082.PubMedCrossRefGoogle Scholar
  106. 106.
    Thaler, J. P., & Cummings, D. E. (2009). Minireview: Hormonal and metabolic mechanisms of diabetes remission after gastrointestinal surgery. Endocrinology, 150(6), 2518–2525.PubMedCrossRefGoogle Scholar
  107. 107.
    Flum, D. R., Belle, S. H., King, W. C., et al. (2009). Perioperative safety in the longitudinal assessment of bariatric surgery. The New England Journal of Medicine, 361(5), 445–454.PubMedCrossRefGoogle Scholar
  108. 108.
    Zhao, Y., & Encinosa, W. (2007). Bariatric surgery utilization and outcomes in 1998 and 2004, Statistical brief #23.
  109. 109.
    Encinosa, W. E., Bernard, D. M., Du, D., & Steiner, C. A. (2009). Recent improvements in bariatric surgery outcomes. Medical Care, 47(5), 531–535.PubMedCrossRefGoogle Scholar
  110. 110.
    Nguyen, N. T., Hinojosa, M., Fayad, C., Varela, E., & Wilson, S. E. (2007). Use and outcomes of laparoscopic versus open gastric bypass at academic medical centers. Journal of the American College of Surgeons, 205(2), 248–255.PubMedCrossRefGoogle Scholar
  111. 111.
    Tack, J., Arts, J., Caenepeel, P., De Wulf, D., & Bisschops, R. (2009). Pathophysiology, diagnosis and management of postoperative dumping syndrome. Nature Reviews. Gastroenterology & Hepatology, 6(10), 583–590.CrossRefGoogle Scholar
  112. 112.
    Goldfine, A. B., Mun, E. C., Devine, E., et al. (2007). Patients with neuroglycopenia after gastric bypass surgery have exaggerated incretin and insulin secretory responses to a mixed meal. The Journal of Clinical Endocrinology and Metabolism, 92(12), 4678–4685.PubMedCrossRefGoogle Scholar
  113. 113.
    Service, G. J., Thompson, G. B., Service, F. J., Andrews, J. C., Collazo-Clavell, M. L., & Lloyd, R. V. (2005). Hyperinsulinemic hypoglycemia with nesidioblastosis after gastric-bypass surgery. The New England Journal of Medicine, 353(3), 249–254.PubMedCrossRefGoogle Scholar
  114. 114.
    Brolin, R. E., Gorman, R. C., Milgrim, L. M., & Kenler, H. A. (1991). Multivitamin prophylaxis in prevention of post-gastric bypass vitamin and mineral deficiencies. International Journal of Obesity, 15(10), 661–667.PubMedGoogle Scholar
  115. 115.
    Halverson, J. D. (1986). Micronutrient deficiencies after gastric bypass for morbid obesity. The American Surgeon, 52(11), 594–598.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Division of Endocrinology, Diabetes and Metabolism, and the Institute for Diabetes, Obesity and MetabolismUniversity of Pennsylvania School of MedicinePhiladelphiaUSA

Personalised recommendations