Skip to main content

Sleep, Circadian Rhythms and Metabolism

  • Chapter
  • First Online:
Metabolic Basis of Obesity

Abstract

Obesity and cardiometabolic disease are closely linked disorders that have recently accelerated throughout the industrialized world, coincident with more sedentary lifestyle and poor nutrition; however a complete understanding of the environmental precipitants underlying metabolic disease remains obscure. Mounting evidence from epidemiological studies has pointed towards a novel yet less appreciated factor that correlates with the recent expansion of these epidemics, namely, the introduction of artificial light and work at night-time, in addition to the rise in sleep curtailment. At the physiological level, it has been well-documented that many processes, including glucose and lipid metabolism, body temperature, and corticosterone production vary in a circadian fashion; moreover, there is an established temporal variation to health catastrophes such as myocardial infarction, cerebrovascular accident, and hypertensive crises. Over the past decade, major advances have emerged in our understanding of the underlying molecular mechanisms linking circadian rhythms, sleep, and metabolism, primarily through studies in experimental genetic models that became available following the landmark discovery of the first mammalian circadian clock gene Clock in 1997 [1, 2].

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

eBook
USD 16.99
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 119.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. King, D. P., Zhao, Y., Sangoram, A. M., Wilsbacher, L. D., Tanka, M., Antoch, M. P., et al. (1997). Positional cloning of the mouse circadian clock gene. Cell, 89(4), 641–653.

    Article  PubMed  CAS  Google Scholar 

  2. Vitaterna, M. H., King, D. P., Chang, A. M., Kornhauser, J. M., Lowrey, P. L., McDonald, J. D., et al. (1994 ).Mutagenesis and mapping of a mouse gene, clock, essential for circadian behavior. Science, 264(5159), 719–725.

    Article  PubMed  CAS  Google Scholar 

  3. Green, C. B., Takahashi, J. S., & Bass, J. (2008). The meter of metabolism. Cell, 134(5), 728–742.

    Article  PubMed  CAS  Google Scholar 

  4. Takahashi, J. S., Hong, H. K., Ko, C. H., & McDearmon, E. L. (2008). The genetics of mammalian circadian order and disorder: implications for physiology and disease. Nature Review Genetics, 9(10), 764–775.

    Article  CAS  Google Scholar 

  5. Martinek, S., Inonog, S., Manoukian, A. S., & Young, M. W. (2001). A role for the segment polarity gene shaggy/GSK-3 in the Drosophila circadian clock. Cell, 105(6), 769–779.

    Article  PubMed  CAS  Google Scholar 

  6. Spengler, M. L., Kuropatwinski, K. K., Schumer, M., & Antoch, M. P. (2009). A serine cluster mediates BMAL1-dependent CLOCK phosphorylation and degradation. Cell Cycle, 8(24), 4138–4146.

    PubMed  CAS  Google Scholar 

  7. Yoshitane, H., Takao, T., Satomi, Y., Du, N. H., Okano, T., & Fukada, Y. (2009). Roles of CLOCK phosphorylation in suppression of E-box-dependent transcription. Molecular and Cellular Biology, 29(13), 3675–3686.

    Article  PubMed  CAS  Google Scholar 

  8. Kornmann, B., Schaad, O., Bujard, H., Takahashi, J. S., & Schibler, U. (2007). System-driven and oscillator-dependent circadian transcription in mice with a conditionally active liver clock. PLoS Biology, 5(2), e34.

    Article  PubMed  CAS  Google Scholar 

  9. Wang, J., Yin, L., & Lazar, M. A. (2006). The orphan nuclear receptor Rev-erb alpha regulates circadian expression of plasminogen activator inhibitor type 1. The Journal of Biological Chemistry, 281(45), 33842–33848.

    Article  PubMed  CAS  Google Scholar 

  10. Raghuram, S., Stayrook, K. R., Huang, P., et al. (2007). Identification of heme as the ligand for the orphan nuclear receptors REV-ERBalpha and REV-ERBbeta. Nature Structural & Molecualr Biology, 14(12), 1207–1213.

    Article  CAS  Google Scholar 

  11. Yin, L., Wu, N., Curtin, J. C., et al. (2007). Rev-erbalpha, a heme sensor that coordinates metabolic and circadian pathways. Science, 318(5857), 1786–1789.

    Article  PubMed  CAS  Google Scholar 

  12. Wang, Y., Kumar, N., Solt, L. A., et al. (2010). Modulation of retinoic acid receptor-related orphan receptor alpha and gamma activity by 7-oxygenated sterol ligands. The Journal of Biological Chemistry, 285(7), 5013–5025.

    Article  PubMed  CAS  Google Scholar 

  13. Fontaine, C., & Staels, B. (2007). The orphan nuclear receptor Rev-erbalpha: A transcriptional link between circadian rhythmicity and cardiometabolic disease. Current Opinion in Lipidology, 18(2), 141–146.

    Article  PubMed  CAS  Google Scholar 

  14. Bensinger, S. J., & Tontonoz, P. (2008). Integration of metabolism and inflammation by lipid-activated nuclear receptors. Nature, 454(7203), 470–477.

    Article  PubMed  CAS  Google Scholar 

  15. Nakahata, Y., Sahar, S., Astarita, G., Kaluzova, M., & Sassone-Corsi, P. (2009). Circadian control of the NAD+ salvage pathway by CLOCK-SIRT1. Science, 324(5927), 654–657.

    Article  PubMed  CAS  Google Scholar 

  16. Ramsey, K. M., Yoshino, J., Brace, C. S., et al. (2009). Circadian clock feedback cycle through NAMPT-mediated NAD+ biosynthesis. Science, 324(5927), 651–654.

    Article  PubMed  CAS  Google Scholar 

  17. Lamia, K. A., Sachdeva, U. M., DiTacchio, L., et al. (2009). AMPK regulates the circadian clock by cryptochrome phosphorylation and degradation. Science, 326(5951), 437–440.

    Article  PubMed  CAS  Google Scholar 

  18. Canto, C., Gerhart-Hines, Z., Feige, J. N., et al. (2009). AMPK regulates energy expenditure by modulating NAD(+) metabolism and SIRT1 activity. Nature, 458, 1056.

    Article  PubMed  CAS  Google Scholar 

  19. Bunger, M. K., Wilsbacher, L. D., Moran, S. M., et al. (2000). Mop3 is an essential component of the master circadian pacemaker in mammals. Cell, 103(7), 1009–1017.

    Article  PubMed  CAS  Google Scholar 

  20. DeBruyne, J. P., Weaver, D. R., & Reppert, S. M. (2007). CLOCK and NPAS2 have overlapping roles in the suprachiasmatic circadian clock. Nature Neuroscience, 10(5), 543–545.

    Article  PubMed  CAS  Google Scholar 

  21. DeBruyne, J. P., Weaver, D. R., & Reppert, S. M. (2007). Peripheral circadian oscillators require CLOCK. Current Biology, 17(14), R538–R539.

    Article  PubMed  CAS  Google Scholar 

  22. Bae, K., Jin, X., Maywood, E. S., Hastings, M. H., Reppert, S. M., & Weaver, D. R. (2001). Differential functions of mPer1, mPer2, and mPer3 in the SCN circadian clock. Neuron, 30(2), 525–536.

    Article  PubMed  CAS  Google Scholar 

  23. Cermakian, N., Monaco, L., Pando, M. P., Dierich, A., & Sassone-Corsi, P. (2001). Altered behavioral rhythms and clock gene expression in mice with a targeted mutation in the Period1 gene. The Embo Journal, 20(15), 3967–3974.

    Article  PubMed  CAS  Google Scholar 

  24. van der Horst, G. T., Muijtjens, M., Kobayashi, K., et al. (1999). Mammalian Cry1 and Cry2 are essential for maintenance of circadian rhythms. Nature, 398(6728), 627–630.

    Article  PubMed  CAS  Google Scholar 

  25. Vitaterna, M. H., Selby, C. P., Todo, T., et al. (1999). Differential regulation of mammalian period genes and circadian rhythmicity by cryptochromes 1 and 2. Proceedings of the National Academy of Sciences of the United States of America, 96(21), 12114–12119.

    Article  PubMed  CAS  Google Scholar 

  26. Zheng, B., Albrecht, U., Kaasik, K., et al. (2001). Nonredundant roles of the mPer1 and mPer2 genes in the mammalian circadian clock. Cell, 105(5), 683–694.

    Article  PubMed  CAS  Google Scholar 

  27. Godinho, S. I., Maywood, E. S., Shaw, L., et al. (2007). The after-hours mutant reveals a role for Fbxl3 in determining mammalian circadian period. Science, 316(5826), 897–900.

    Article  PubMed  CAS  Google Scholar 

  28. Siepka, S. M., Yoo, S. H., Park, J., et al. (2007). Circadian mutant overtime reveals F-box protein FBXL3 regulation of cryptochrome and period gene expression. Cell, 129(5), 1011–1023.

    Article  PubMed  CAS  Google Scholar 

  29. Liu, C., Li, S., Liu, T., Borjigin, J., & Lin, J. D. (2007). Transcriptional coactivator PGC-1alpha integrates the mammalian clock and energy metabolism. Nature, 447(7143), 477–481.

    Article  PubMed  CAS  Google Scholar 

  30. Yamazaki, S., Numano, R., Abe, M., et al. (2000). Resetting central and peripheral circadian oscillators in transgenic rats. Science, 288(5466), 682–685.

    Article  PubMed  CAS  Google Scholar 

  31. Yoo, S. H., Yamazaki, S., Lowrey, P. L., et al. (2004). PERIOD2:LUCIFERASE real-time reporting of circadian dynamics reveals persistent circadian oscillations in mouse peripheral tissues. Proceedings of the National Academy of Sciences of the United States of America, 101(15), 5339–5346.

    Article  PubMed  CAS  Google Scholar 

  32. Maury, E., Ramsey, K. M., & Bass, J. (2010). Circadian rhythms and metabolic syndrome: From experimental genetics to human disease. Circulation Research , 106(3), 447–462.

    Article  PubMed  CAS  Google Scholar 

  33. McIntosh, B. E., Hogenesch, J. B., & Bradfield, C. A. (2010). Mammalian Per-Arnt-Sim proteins in environmental adaptation. Annual Review of Physiology, 72, 625–645.

    Article  PubMed  CAS  Google Scholar 

  34. Xu, K., Zheng, X., & Sehgal, A. (2008). Regulation of feeding and metabolism by neuronal and peripheral clocks in Drosophila. Cell Metabolism, 8(4), 289–300.

    Article  PubMed  CAS  Google Scholar 

  35. Lamia, K. A., Storch, K. F., & Weitz, C. J. (2008). Physiological significance of a peripheral tissue circadian clock. Proceedings of the National Academy of Sciences of the United States of America, 105(39), 15172–15177.

    Article  PubMed  Google Scholar 

  36. Gangwisch, J. E., Malaspina, D., Boden-Albala, B., & Heymsfield, S. B. (2005). Inadequate sleep as a risk factor for obesity: analyses of the NHANES I. Sleep, 28(10), 1289–1296.

    PubMed  Google Scholar 

  37. Kawakami, N., Takatsuka, N., & Shimizu, H. (2004). Sleep disturbance and onset of type 2 diabetes. Diabetes Care, 27(1), 282–283.

    Article  PubMed  CAS  Google Scholar 

  38. Knutson, K. L., Spiegel, K., Penev, P., & Van Cauter, E. (2007). The metabolic consequences of sleep deprivation. Sleep Medicine Reviews, 11(3), 163–178.

    Article  PubMed  Google Scholar 

  39. Knutson, K. L., & Van Cauter, E. (2008). Associations between sleep loss and increased risk of obesity and diabetes. Annals of the New York Academy of Sciences, 1129, 287–304.

    Article  PubMed  Google Scholar 

  40. Spiegel, K., Tasali, E., Leproult, R., & Van Cauter, E. (2009). Effects of poor and short sleep on glucose metabolism and obesity risk. Nature Reviews. Endocrinology, 5(5), 253–261.

    Article  PubMed  CAS  Google Scholar 

  41. Yaggi, H. K., Araujo, A. B., & McKinlay, J. B. (2006). Sleep duration as a risk factor for the development of type 2 diabetes. Diabetes Care, 29(3), 657–661.

    Article  PubMed  Google Scholar 

  42. Watanabe, M., Kikuchi, H., Tanaka, K., & Takahashi, M. (2010). Association of short sleep duration with weight gain and obesity at 1-year follow-up: A large-scale prospective study. Sleep , 33(2), 161–167.

    PubMed  Google Scholar 

  43. Danielsen, Y. S., Pallesen, S., Stormark, K. M., Nordhus, I. H., & Bjorvatn, B. (2010). The relationship between school day sleep duration and body mass index in Norwegian children (aged 10–12). International Journal of Pediatric Obesity, 5(3), 214–220.

    Article  PubMed  Google Scholar 

  44. Lumeng, J. C., Somashekar, D., Appugliese, D., Kaciroti, N., Corwyn, R. F., & Bradley, R. H. (2007). Shorter sleep duration is associated with increased risk for being overweight at ages 9 to 12 years. Pediatrics, 120(5), 1020–1029.

    Article  PubMed  Google Scholar 

  45. de Sousa, A. G., Cercato, C., Mancini, M. C., & Halpern, A. (2008). Obesity and obstructive sleep apnea-hypopnea syndrome. Obesity Reviews, 9(4), 340–354.

    Article  PubMed  CAS  Google Scholar 

  46. Burioka, N., Koyanagi, S., Endo, M., et al. (2008). Clock gene dysfunction in patients with obstructive sleep apnoea syndrome. The European Respiratory Journal, 32(1), 105–112.

    Article  PubMed  CAS  Google Scholar 

  47. Kok, S. W., Meinders, A. E., Overeem, S., et al. (2002). Reduction of plasma leptin levels and loss of its circadian rhythmicity in hypocretin (orexin)-deficient narcoleptic humans. The Journal of Clinical Endocrinology and Metabolism, 87(2), 805–809.

    Article  PubMed  CAS  Google Scholar 

  48. Laposky, A. D., Bass, J., Kohsaka, A., & Turek, F. W. (2008). Sleep and circadian rhythms: Key components in the regulation of energy metabolism. FEBS Letters, 582(1), 142–151.

    Article  PubMed  CAS  Google Scholar 

  49. Knutsson, A. (2003). Health disorders of shift workers. Occupational Medicine (London), 53(2), 103–108.

    Article  Google Scholar 

  50. Ribeiro, D. C., Hampton, S. M., Morgan, L., Deacon, S., & Arendt, J. (1998). Altered postprandial hormone and metabolic responses in a simulated shift work environment. Journal of Endocrinology, 158(3), 305–310.

    Article  PubMed  CAS  Google Scholar 

  51. Janszky, I., & Ljung, R. (2008). Shifts to and from daylight saving time and incidence of myocardial infarction. The New England Journal of Medicine, 359(18), 1966–1968.

    Article  PubMed  CAS  Google Scholar 

  52. Scheer, F. A., Hilton, M. F., Mantzoros, C. S., & Shea, S. A. (2009). Adverse metabolic and cardiovascular consequences of circadian misalignment. Proceedings of the National Academy of Sciences of the United States of America, 106(11), 4453–4458.

    Article  PubMed  Google Scholar 

  53. Ekmekcioglu, C., & Touitou, Y. (2010). Chronobiological aspects of food intake and metabolism and their relevance on energy balance and weight regulation. Obesity Reviews Epub ahead of print.

    Google Scholar 

  54. Farshchi, H. R., Taylor, M. A., & Macdonald, I. A. (2005). Deleterious effects of omitting breakfast on insulin sensitivity and fasting lipid profiles in healthy lean women. The American Journal of Clinical Nutrition, 81(2), 388–396.

    PubMed  CAS  Google Scholar 

  55. Ekmekcioglu C, Touitou Y. Chronobiological aspects of food in take and metabolism and their relevance on energy balance and weight regulation. Obes Rev

    Google Scholar 

  56. Kohsaka, A., Laposky, A. D., & Ramsey, K. M., et al. (2007). High-fat diet disrupts behavioral and molecular circadian rhythms in mice. Cell Metabolism, 6(5), 414–421.

    Article  PubMed  CAS  Google Scholar 

  57. Arble, D. M., Bass, J., Laposky, A. D., Vitaterna, M. H., & Turek, F. W. (2009). Circadian timing of food intake contributes to weight gain. Obesity (Silver Spring), 17(11), 2100–2102.

    Article  Google Scholar 

  58. Uebele, V. N., Gotter, A. L., & Nuss, C. E., et al. (2009). Antagonism of T-type calcium channels inhibits high-fat diet-induced weight gain in mice. The Journal of Clinical Investigation, 119(6), 1659–1667.

    Article  PubMed  CAS  Google Scholar 

  59. Carpen, J. D., von Schantz, M., Smits, M., Skene, D. J., & Archer, S. N. (2006). A silent polymorphism in the PER1 gene associates with extreme diurnal preference in humans. Journal of Human Genetics, 51(12), 1122–1125.

    Article  PubMed  CAS  Google Scholar 

  60. Ptacek, L. J., Jones, C. R., & Fu, Y. H. (2007). Novel insights from genetic and molecular characterization of the human clock. Cold Spring Harbor Symposia on Quantitative Biology, 72, 273–277.

    Article  PubMed  CAS  Google Scholar 

  61. Takano, A., Uchiyama, M., Kajimura, N., et al. (2004). A missense variation in human casein kinase I epsilon gene that induces functional alteration and shows an inverse association with circadian rhythm sleep disorders. Neuropsychopharmacology, 29(10), 1901–1909.

    Article  PubMed  CAS  Google Scholar 

  62. Xu, Y., Padiath, Q. S., Shapiro, R. E., et al. (2005). Functional consequences of a CKIdelta mutation causing familial advanced sleep phase syndrome. Nature, 434(7033), 640–644.

    Article  PubMed  CAS  Google Scholar 

  63. Toh, K. L., Jones, C. R., He, Y., et al. (2001). An hPer2 phosphorylation site mutation in familial advanced sleep phase syndrome. Science, 291(5506), 1040–1043.

    Article  PubMed  CAS  Google Scholar 

  64. Antoch, M. P., Song, E. J., Chang, A. M., et al. (1997). Functional identification of the mouse circadian Clock gene by transgenic BAC rescue. Cell, 89(4), 655–667.

    Article  PubMed  CAS  Google Scholar 

  65. Naylor, E., Bergmann, B. M., Krauski, K., et al. (2000). The circadian Clock mutation alters sleep homeostasis in the mouse. Journal of Neuroscience, 20(21), 8138–8143.

    PubMed  CAS  Google Scholar 

  66. Okamura, H., Miyake, S., Sumi, Y., et al. (1999). Photic induction of mPer1 and mPer2 in cry-deficient mice lacking a biological clock. Science, 286(5449), 2531–2534.

    Article  PubMed  CAS  Google Scholar 

  67. Wisor, J. P., O’Hara, B. F., Terao, A., et al. (2002). A role for cryptochromes in sleep regulation. BMC Neuroscience, 3, 20.

    Article  PubMed  Google Scholar 

  68. Laposky, A., Easton, A., Dugovic, C., Walisser, J., Bradfield, C., & Turek, F. (2005). Deletion of the mammalian circadian clock gene BMAL1/Mop3 alters baseline sleep architecture and the response to sleep deprivation. Sleep, 28(4), 395–409.

    PubMed  Google Scholar 

  69. Saper, C. B., Scammell, T. E., & Lu, J. (2005). Hypothalamic regulation of sleep and circadian rhythms. Nature, 437(7063), 1257–1263.

    Article  PubMed  CAS  Google Scholar 

  70. Wulff, K., Porcheret, K., Cussans, E., & Foster, R. G. (2009). Sleep and circadian rhythm disturbances: Multiple genes and multiple phenotypes. Current Opinion in Genetics & Development, 19(3), 237–246.

    Article  CAS  Google Scholar 

  71. Bouatia-Naji, N., Bonnefond, A., Cavalcanti-Proenca, C., et al. (2009). A variant near MTNR1B is associated with increased fasting plasma glucose levels and type 2 diabetes risk. Nature Genetics, 41(1), 89–94.

    Article  PubMed  CAS  Google Scholar 

  72. Dupuis, J., Langenberg, C., Prokopenko, I., et al. (2010). New genetic loci implicated in fasting glucose homeostasis and their impact on type 2 diabetes risk. Nature Genetics, 42(2), 105–116.

    Article  PubMed  CAS  Google Scholar 

  73. Turek, F. W., Joshu, C., Kohsaka, A., et al. (2005). Obesity and metabolic syndrome in circadian Clock mutant mice. Science, 308(5724), 1043–1045.

    Article  PubMed  CAS  Google Scholar 

  74. Rudic, R. D., McNamara, P., Curtis, A. M., et al. (2004). BMAL1 and CLOCK, two essential components of the circadian clock, are involved in glucose homeostasis. PLoS Biology, 2(11), e377.

    Article  PubMed  CAS  Google Scholar 

  75. Shimba, S., Ishii, N., Ohta, Y., et al. (2005). Brain and muscle Arnt-like protein-1 (BMAL1), a component of the molecular clock, regulates adipogenesis. Proceedings of the National Academy of Sciences of the United States of America, 102(34), 12071–12076.

    Article  PubMed  CAS  Google Scholar 

  76. Yang, S., Liu, A., Weidenhammer, A., et al. (2009). The role of mPer2 clock gene in glucocorticoid and feeding rhythms. Endocrinology, 150(5), 2153–2160.

    Article  PubMed  CAS  Google Scholar 

  77. Green, C. B., Douris, N., Kojima, S., et al. (2007). Loss of Nocturnin, a circadian deadenylase, confers resistance to hepatic steatosis and diet-induced obesity. Proceedings of the National Academy of Sciences of the United States of America, 104(23), 9888–9893.

    Article  PubMed  CAS  Google Scholar 

  78. Ralph, M. R., Foster, R. G., Davis, F. C., & Menaker, M. (1990). Transplanted suprachiasmatic nucleus determines circadian period. Science, 247(4945), 975–978.

    Article  PubMed  CAS  Google Scholar 

  79. Andretic, R., Franken, P., & Tafti, M. (2008). Genetics of sleep. Annual Review of Genetics, 42, 361–388.

    Article  PubMed  CAS  Google Scholar 

  80. Easton, A., Meerlo, P., Bergmann, B., & Turek, F. W. (2004). The suprachiasmatic nucleus regulates sleep timing and amount in mice. Sleep, 27(7), 1307–1318.

    PubMed  Google Scholar 

  81. Schmidt, C., Collette, F., Leclercq, Y., et al. (2009). Homeostatic sleep pressure and responses to sustained attention in the suprachiasmatic area. Science, 324(5926), 516–519.

    Article  PubMed  CAS  Google Scholar 

  82. Ramsey, K. M., Marcheva, B., Kohsaka, A., & Bass, J. (2007). The clockwork of metabolism. Annual Review of Nutrition, 27, 219–240.

    Article  PubMed  CAS  Google Scholar 

  83. Vanitallie, T. B. (2006). Sleep and energy balance: Interactive homeostatic systems. Metabolism, 55(10 Suppl. 2), S30–S35.

    Article  PubMed  CAS  Google Scholar 

  84. Farooqi, I. S., Bullmore, E., Keogh, J., Gillard, J., O’Rahilly, S., & Fletcher, P. C. (2007). Leptin regulates striatal regions and human eating behavior. Science, 317(5843), 1355.

    Article  PubMed  CAS  Google Scholar 

  85. Fulton, S., Pissios, P., Manchon, R. P., et al. (2006). Leptin regulation of the mesoaccumbens dopamine pathway. Neuron, 51(6), 811–822.

    Article  PubMed  CAS  Google Scholar 

  86. Fuller, P. M., Lu, J., & Saper, C. B. (2008). Differential rescue of light- and food-entrainable circadian rhythms. Science, 320(5879), 1074–1077.

    Article  PubMed  CAS  Google Scholar 

  87. Gooley, J. J., Schomer, A., & Saper, C. B. (2006). The dorsomedial hypothalamic nucleus is critical for the expression of food-entrainable circadian rhythms. Nature Neuroscience, 9(3), 398–407.

    Article  PubMed  CAS  Google Scholar 

  88. Mieda, M., Williams, S. C., Richardson, J. A., Tanaka, K., & Yanagisawa, M. (2006). The dorsomedial hypothalamic nucleus as a putative food-entrainable circadian pacemaker. Proceedings of the National Academy of Sciences of the United States of America, 103(32), 12150–12155.

    Article  PubMed  CAS  Google Scholar 

  89. Storch, K. F., & Weitz, C. J. (2009). Daily rhythms of food-anticipatory behavioral activity do not require the known circadian clock. Proceedings of the National Academy of Sciences of the United States of America, 106(16), 6808–6813.

    Article  PubMed  Google Scholar 

  90. Sutton, G. M., Perez-Tilve, D., Nogueiras, R., et al. (2008). The melanocortin-3 receptor is required for entrainment to meal intake. Journal of Neuroscience, 28(48), 12946–12955.

    Article  PubMed  CAS  Google Scholar 

  91. Challet, E. (2010). Interactions between light, mealtime and calorie restriction to control daily timing in mammals. Journal of Comparative Physiology B, Biochemical, Systemic, and Environmental Physiology, 180(5), 631–644.

    Article  PubMed  Google Scholar 

  92. Heller, H. C., & Ruby, N. F. (2004). Sleep and circadian rhythms in mammalian torpor. Annual Review of Physiology, 66, 275–289.

    Article  PubMed  CAS  Google Scholar 

  93. Cirelli, C. (2006). Cellular consequences of sleep deprivation in the brain. Sleep Medicine Reviews, 10(5), 307–321.

    Article  PubMed  Google Scholar 

  94. Cirelli, C. (2009). The genetic and molecular regulation of sleep: From fruit flies to humans. Nature Reviews. Neuroscience, 10(8), 549–560.

    Article  PubMed  CAS  Google Scholar 

  95. Lakin-Thomas, P. L., & Brody, S. (1985). Circadian rhythms in Neurospora crassa: interactions between clock mutations. Genetics, 109(1), 49–66.

    PubMed  CAS  Google Scholar 

  96. Lam, T. K., Schwartz, G. J., & Rossetti, L. (2005). Hypothalamic sensing of fatty acids. Nature Neuroscience, 8(5), 579–584.

    Article  PubMed  CAS  Google Scholar 

  97. Sandoval, D., Cota, D., & Seeley, R. J. (2008). The integrative role of CNS fuel-sensing mechanisms in energy balance and glucose regulation. Annual Review of Physiology, 70, 513–535.

    Article  PubMed  CAS  Google Scholar 

  98. Chakravarthy, M. V., Zhu, Y., Lopez, M., et al. (2007). Brain fatty acid synthase activates PPARalpha to maintain energy homeostasis. The Journal of Clinical Investigation, 117(9), 2539–2552.

    Article  PubMed  CAS  Google Scholar 

  99. Basterfield, L., Lumley, L. K., & Mathers, J. C. (2009). Wheel running in female C57BL/6J mice: impact of oestrus and dietary fat and effects on sleep and body mass. International Journal of Obesity (London), 33(2), 212–218.

    Article  CAS  Google Scholar 

  100. Wang, J., & Lazar, M. A. (2008). Bifunctional role of Rev-erbalpha in adipocyte differentiation. Molecular and Cellular Biology, 28(7), 2213–2220.

    Article  PubMed  CAS  Google Scholar 

  101. Anan, F., Masaki, T., Fukunaga, N., et al. (2007). Pioglitazone shift circadian rhythm of blood pressure from non-dipper to dipper type in type 2 diabetes mellitus. European Journal of Clinical Investigation, 37(9), 709–714.

    Article  PubMed  CAS  Google Scholar 

  102. Diabetes Atherosclerosis Intervention Study Investigators. (2001). Effect of fenofibrate on progression of coronary-artery disease in type 2 diabetes: The Diabetes Atherosclerosis Intervention Study, a randomised study. Lancet, 357(9260), 905–910.

    Google Scholar 

  103. Chew, G. T., Watts, G. F., Davis, T. M., et al. (2008). Hemodynamic effects of fenofibrate and coenzyme Q10 in type 2 diabetic subjects with left ventricular diastolic dysfunction. Diabetes Care, 31(8), 1502–1509.

    Article  PubMed  CAS  Google Scholar 

  104. Keech, A., Simes, R. J., Barter, P., et al. (2005). Effects of long-term fenofibrate therapy on cardiovascular events in 9795 people with type 2 diabetes mellitus (the FIELD study): Randomised controlled trial. Lancet, 366(9500), 1849–1861.

    Article  PubMed  CAS  Google Scholar 

  105. Cretenet, G., Le Clech, M., & Gachon, F. (2010). Circadian clock-coordinated 12 Hr period rhythmic activation of the IRE1alpha pathway controls lipid metabolism in mouse liver. Cell Metabolism , 11(1), 47–57.

    Article  PubMed  CAS  Google Scholar 

  106. Bjedov, I., Toivonen, J. M., Kerr, F., et al. (2010). Mechanisms of life span extension by rapamycin in the fruit fly Drosophila melanogaster. Cell Metabolism , 11(1), 35–46.

    Article  PubMed  CAS  Google Scholar 

  107. Grandison, R. C., Piper, M. D., & Partridge, L. (2009). Amino-acid imbalance explains extension of lifespan by dietary restriction in Drosophila. Nature, 462(7276), 1061–1064.

    Article  PubMed  CAS  Google Scholar 

  108. Froy, O., Chapnik, N., & Miskin, R. (2008). Relationship between calorie restriction and the biological clock: Lessons from long-lived transgenic mice. Rejuvenation Research, 11(2), 467–471.

    Article  PubMed  Google Scholar 

  109. Minami, Y., Kasukawa, T., Kakazu, Y., et al. (2009). Measurement of internal body time by blood metabolomics. Proceedings of the National Academy of Sciences of the United States of America, 106(24), 9890–9895.

    Article  PubMed  Google Scholar 

  110. Sandoval, D. A., Obici, S., & Seeley, R. J. (2009). Targeting the CNS to treat type 2 diabetes. Nature Reviews. Drug Discovery, 8(5), 386–398.

    Article  PubMed  CAS  Google Scholar 

  111. Cao, R., Lee, B., Cho, H. Y., Saklayen, S., & Obrietan, K. (2008). Photic regulation of the mTOR signaling pathway in the suprachiasmatic circadian clock. Molecular and Cellular Neurosciences, 38(3), 312–324.

    Article  PubMed  CAS  Google Scholar 

  112. Scharf, M. T., Naidoo, N., Zimmerman, J. E., & Pack, A. I. (2008). The energy hypothesis of sleep revisited. Progress in Neurobiology, 86(3), 264–280.

    Article  PubMed  Google Scholar 

  113. Um, J. H., Yang, S., Yamazaki, S., et al. (2007). Activation of 5′-AMP-activated kinase with diabetes drug metformin induces casein kinase Iepsilon (CKIepsilon)-dependent degradation of clock protein mPer2. The Journal of Biological Chemistry, 282(29), 20794–20798.

    Article  PubMed  CAS  Google Scholar 

  114. Ronnett, G. V., & Aja, S. (2008). AMP-activated protein kinase in the brain. International Journal of Obesity (London), 32(Suppl. 4), S42–S48.

    Article  CAS  Google Scholar 

  115. Chikahisa, S., Fujiki, N., Kitaoka, K., Shimizu, N., & Sei, H. (2009). Central AMPK contributes to sleep homeostasis in mice. Neuropharmacology, 57(4), 369–374.

    Article  PubMed  CAS  Google Scholar 

  116. Zhang, J., Kaasik, K., Blackburn, M. R., & Lee, C. C. (2006). Constant darkness is a circadian metabolic signal in mammals. Nature, 439(7074), 340–343.

    Article  PubMed  CAS  Google Scholar 

  117. O’Neill, J. S., Maywood, E. S., Chesham, J. E., Takahashi, J. S., & Hastings, M. H. (2008). cAMP-dependent signaling as a core component of the mammalian circadian pacemaker. Science, 320(5878), 949–953.

    Article  PubMed  CAS  Google Scholar 

  118. Eckel-Mahan, K. L., Phan, T., Han, S., et al. (2008). Circadian oscillation of hippocampal MAPK activity and cAmp: implications for memory persistence. Nature Neuroscience, 11(9), 1074–1082.

    Article  PubMed  CAS  Google Scholar 

  119. Vecsey, C. G., Baillie, G. S., Jaganath, D., et al. (2009). Sleep deprivation impairs cAMP signalling in the hippocampus. Nature, 461(7267), 1122–1125.

    Article  PubMed  CAS  Google Scholar 

  120. Crocker, A., Shahidullah, M., Levitan, I. B., & Sehgal, A. (2010). Identification of a neural circuit that underlies the effects of octopamine on sleep:wake behavior. Neuron , 65(5), 670–681.

    Article  PubMed  CAS  Google Scholar 

  121. Fulco, M., Cen, Y., Zhao, P., et al. (2008). Glucose restriction inhibits skeletal myoblast differentiation by activating SIRT1 through AMPK-mediated regulation of Nampt. Developmental Cell, 14(5), 661–673.

    Article  PubMed  CAS  Google Scholar 

  122. Hallschmid, M., Randeva, H., Tan, B. K., Kern, W., & Lehnert, H. (2009). Relationship between cerebrospinal fluid visfatin (PBEF/Nampt) levels and adiposity in humans. Diabetes, 58(3), 637–640.

    Article  PubMed  CAS  Google Scholar 

  123. Konner, A. C., Klockener, T., & Bruning, J. C. (2009). Control of energy homeostasis by insulin and leptin: Targeting the arcuate nucleus and beyond. Physiology & Behavior, 97(5), 632–638.

    Article  CAS  Google Scholar 

  124. Zhang, E. E., Liu, A. C., Hirota, T., et al. (2009). A genome-wide RNAi screen for modifiers of the circadian clock in human cells. Cell, 139(1), 199–210.

    Article  PubMed  CAS  Google Scholar 

  125. Ahima, R. S., & Lazar, M. A. (2008). Adipokines and the peripheral and neural control of energy balance. Molecular Endocrinology, 22(5), 1023–1031.

    Article  PubMed  CAS  Google Scholar 

  126. Bjorbaek, C., Elmquist, J. K., Frantz, J. D., Shoelson, S. E., & Flier, J. S. (1998). Identification of SOCS-3 as a potential mediator of central leptin resistance. Molecular Cell, 1(4), 619–625.

    Article  PubMed  CAS  Google Scholar 

  127. Mori, H., Hanada, R., Hanada, T., et al. (2004). Socs3 deficiency in the brain elevates leptin sensitivity and confers resistance to diet-induced obesity. Nature Medicine, 10(7), 739–743.

    Article  PubMed  CAS  Google Scholar 

  128. Ozcan, L., Ergin, A. S., Lu, A., et al. (2009). Endoplasmic reticulum stress plays a central role in development of leptin resistance. Cell Metabolism, 9(1), 35–51.

    Article  PubMed  CAS  Google Scholar 

  129. Kubota, N., Yano, W., Kubota, T., et al. (2007). Adiponectin stimulates AMP-activated protein kinase in the hypothalamus and increases food intake. Cell Metabolism , 6(1), 55–68.

    Article  PubMed  CAS  Google Scholar 

  130. Minokoshi, Y., Alquier, T., Furukawa, N., et al. (2004). AMP-kinase regulates food intake by responding to hormonal and nutrient signals in the hypothalamus. Nature, 428(6982), 569–574.

    Article  PubMed  CAS  Google Scholar 

  131. Laposky, A. D., Shelton, J., Bass, J., Dugovic, C., Perrino, N., & Turek, F. W. (2006). Altered sleep regulation in leptin deficient mice. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 290, R894–R903.

    PubMed  CAS  Google Scholar 

  132. Laposky, A. D., Bradley, M. A., Williams, D. L., Bass, J., & Turek, F. W. (2008). Sleep-wake regulation is altered in leptin-resistant (db/db) genetically obese and diabetic mice. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, 295(6), R2059–R2066.

    PubMed  CAS  Google Scholar 

  133. Kleinridders, A., Schenten, D., Konner, A. C., et al. (2009). MyD88 signaling in the CNS is required for development of fatty acid-induced leptin resistance and diet-induced obesity. Cell Metabolism, 10(4), 249–259.

    Article  PubMed  CAS  Google Scholar 

  134. Zhang, X., Zhang, G., Zhang, H., Karin, M., Bai, H., & Cai, D. (2008). Hypothalamic IKKbeta/NF-kappaB and ER stress link overnutrition to energy imbalance and obesity. Cell, 135(1), 61–73.

    Article  PubMed  CAS  Google Scholar 

  135. Hanada, R., Leibbrandt, A., Hanada, T., et al. (2009). Central control of fever and female body temperature by RANKL/RANK. Nature, 462(7272), 505–509.

    Article  PubMed  CAS  Google Scholar 

  136. Hotamisligil, G. S. (2010). Endoplasmic reticulum stress and the inflammatory basis of metabolic disease. Cell , 140(6), 900–917.

    Article  PubMed  CAS  Google Scholar 

  137. Shaw, P. J., Cirelli, C., Greenspan, R. J., & Tononi, G. (2000). Correlates of sleep and waking in Drosophila melanogaster. Science, 287(5459), 1834–1837.

    Article  PubMed  CAS  Google Scholar 

  138. Schwartz, G. J., Fu, J., Astarita, G., et al. (2008). The lipid messenger OEA links dietary fat intake to satiety. Cell Metabolism, 8(4), 281–288.

    Article  PubMed  CAS  Google Scholar 

  139. Murillo-Rodriguez, E., Desarnaud, F., & Prospero-Garcia, O. (2006). Diurnal variation of arachidonoylethanolamine, palmitoylethanolamide and oleoylethanolamide in the brain of the rat. Life Sciences, 79(1), 30–37.

    Article  PubMed  CAS  Google Scholar 

  140. Gillum, M. P., Zhang, D., Zhang, X. M., et al. (2008). N-acylphosphatidylethanolamine, a gut-derived circulating factor induced by fat ingestion, inhibits food intake. Cell, 135(5), 813–824.

    Article  PubMed  CAS  Google Scholar 

  141. Cani, P. D., Amar, J., Iglesias, M. A., et al. (2007). Metabolic endotoxemia initiates obesity and insulin resistance. Diabetes, 56(7), 1761–1772.

    Article  PubMed  CAS  Google Scholar 

  142. Mingrone, G., Nolfe, G., Gissey, G. C., et al. (2009). Circadian rhythms of GIP and GLP1 in glucose-tolerant and in type 2 diabetic patients after biliopancreatic diversion. Diabetologia, 52(5), 873–881.

    Article  PubMed  CAS  Google Scholar 

  143. Cummings, D. E., Weigle, D. S., Frayo, R. S., et al. (2002). Plasma ghrelin levels after diet-induced weight loss or gastric bypass surgery. New England Journal of Medicine, 346(21), 1623–1630.

    Article  PubMed  Google Scholar 

  144. Yildiz, B. O., Suchard, M. A., Wong, M. L., McCann, S. M., & Licinio, J. (2004). Alterations in the dynamics of circulating ghrelin, adiponectin, and leptin in human obesity. Proceedings of the National Academy of Sciences of the United States of America, 101(28), 10434–10439.

    Article  PubMed  CAS  Google Scholar 

  145. Blum, I. D., Patterson, Z., Khazall, R., et al. (2009). Reduced anticipatory locomotor responses to scheduled meals in ghrelin receptor deficient mice. Neuroscience, 164(2), 351–359.

    Article  PubMed  CAS  Google Scholar 

  146. Weikel, J. C., Wichniak, A., Ising, M., et al. (2003). Ghrelin promotes slow-wave sleep in humans. American Journal of Physiology. Endocrinology and Metabolism, 284(2), E407–E415.

    PubMed  CAS  Google Scholar 

Download references

Acknowledgements

We thank members of the Bass, Takahashi, Turek, and Allada laboratories for helpful discussions, and especially M. Flourakis for his help with the figures. This work was supported by grants from Alfediam to E.M.; NIDDK (T32 DK007169) to K.M.R.; NIH (PO1 AG011412 and R01HL097817-01), ADA, Chicago Biomedical Consortium Searle Funds, and JDRF to J.B., and the University of Chicago DRTC (P60 DK020595).

Disclosures

J.B. is a member of the scientific advisory board of a cofounder of ReSet Therapeutics Inc. J.B. is also an advisor and receives support from Amylin Pharmaceuticals.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Joseph Bass .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Maury, E., Ramsey, K.M., Bass, J. (2011). Sleep, Circadian Rhythms and Metabolism. In: Ahima, R. (eds) Metabolic Basis of Obesity. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1607-5_13

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-1607-5_13

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-1606-8

  • Online ISBN: 978-1-4419-1607-5

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics