Advertisement

Insulin Resistance in the Metabolic Syndrome

  • Sudha B. Biddinger
  • Brice Emanuelli
Chapter

Abstract

In 1988, Gerald Reaven coined the term “Syndrome X” to describe a complex of metabolic abnormalities, including glucose intolerance, hypertriglyceridemia and reduced levels of HDL-cholesterol, present in individuals at increased risk for cardiovascular disease [1]. Since then, attempts to quantify cardiovascular disease risk have led to the development of clinical criteria for the diagnosis of this syndrome, now known as the “metabolic syndrome” or “insulin resistance syndrome”. Although these criteria continue to evolve, those put forth by the National Cholesterol Education Program (NCEP), World Health Organization (WHO), European Group for the Study of Insulin Resistance (EGIR), International Diabetes Federation (IDF) and American Association of Clinical Endocrinologists (AACE), all include hyperglycemia, hypertriglyceridemia, low HDL-cholesterol and hypertension (reviewed in [2)] (Table 1). It is clear now that the metabolic syndrome is associated with many diseases in addition to cardiovascular disease. These include cholesterol gallstones, non-alcoholic fatty liver disease, which ranges from benign steatosis to non-alcholic steatohepatitis (NASH), polycystic ovary disease (PCOS) and neurodegenerative disease.

Keywords

Insulin Resistance Metabolic Syndrome Insulin Receptor Insulin Signaling Unfold Protein Response 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgements

This work was funded in part by National Institutes of Health grants DK063696 and DK083697 (SBB). Because of space limitations, we were unable to include all of the references we would have liked. We apologize to our many colleagues whose work is not directly cited.

References

  1.  1.
    Reaven, G. M. (1988). Banting lecture 1988. Role of insulin resistance in human disease. Diabetes, 37(12), 1595–1607.CrossRefPubMedGoogle Scholar
  2.  2.
    Cornier, M. A., Dabelea, D., Hernandez, T. L., et al. (2008). The metabolic syndrome. Endocrine Reviews, 29(7), 777–822.CrossRefPubMedGoogle Scholar
  3.  3.
    Ford, E. S., Giles, W. H., & Mokdad, A. H. (2004). Increasing prevalence of the metabolic syndrome among U.S. adults. Diabetes Care, 27(10), 2444–2449.CrossRefPubMedGoogle Scholar
  4.  4.
    Kahn, R., Buse, J., Ferrannini, E., & Stern, M. (2005). The metabolic syndrome: time for a critical appraisal: joint statement from the American Diabetes Association and the European Association for the Study of Diabetes. Diabetes Care, 28(9), 2289–2304.CrossRefPubMedGoogle Scholar
  5.  5.
    Reaven, G. (2004). The metabolic syndrome or the insulin resistance syndrome? Different names, different concepts, and different goals. Endocrinology and Metabolism Clinics of North America, 33(2), 283–303.CrossRefPubMedGoogle Scholar
  6.  6.
    Yamaguchi, Y., Flier, J. S., Benecke, H., Ransil, B. J., & Moller, D. E. (1993). Ligand-binding properties of the two isoforms of the human insulin receptor. Endocrinology, 132(3), 1132–1138.CrossRefPubMedGoogle Scholar
  7.  7.
    Leibiger, B., Leibiger, I. B., Moede, T., et al. (2001). Selective insulin signaling through A and B insulin receptors regulates transcription of insulin and glucokinase genes in pancreatic beta cells. Molecular cell, 7(3), 559–570.CrossRefPubMedGoogle Scholar
  8.  8.
    Taniguchi, C. M., Emanuelli, B., & Kahn, C. R. (2006). Critical nodes in signalling pathways: insights into insulin action. Nature Reviews. Molecular Cell Biology, 7(2), 85–96.CrossRefPubMedGoogle Scholar
  9.  9.
    Fasshauer, M., Klein, J., Ueki, K., et al. (2000). Essential role of insulin receptor substrate-2 in insulin stimulation of Glut4 translocation and glucose uptake in brown adipocytes. The Journal of Biological Chemistry, 275(33), 25494–25501.CrossRefPubMedGoogle Scholar
  10. 10.
    Wu, J., Tseng, Y. D., Xu, C. F., Neubert, T. A., White, M. F., & Hubbard, S. R. (2008). Structural and biochemical characterization of the KRLB region in insulin receptor substrate-2. Nature Structural & Molecular Biology, 15(3), 251–258.CrossRefGoogle Scholar
  11. 11.
    Hirashima, Y., Tsuruzoe, K., Kodama, S., et al. (2003). Insulin down-regulates insulin receptor substrate-2 expression through the phosphatidylinositol 3-kinase/Akt pathway. The Journal of Endocrinology, 179(2), 253–266.CrossRefPubMedGoogle Scholar
  12. 12.
    Kubota, N., Kubota, T., Itoh, S., et al. (2008). Dynamic functional relay between insulin receptor substrate 1 and 2 in hepatic insulin signaling during fasting and feeding. Cell Metabolism, 8(1), 49–64.CrossRefPubMedGoogle Scholar
  13. 13.
    Oriente, F., Andreozzi, F., Romano, C., et al. (2005). Protein kinase C-alpha regulates insulin action and degradation by interacting with insulin receptor substrate-1 and 14-3-3 epsilon. The Journal of Biological Chemistry, 280(49), 40642–40649.CrossRefPubMedGoogle Scholar
  14. 14.
    Luan, B., Zhao, J., Wu, H., et al. (2009). Deficiency of a beta-arrestin-2 signal complex contributes to insulin resistance. Nature, 457(7233), 1146–1149.CrossRefPubMedGoogle Scholar
  15. 15.
    Bard-Chapeau, E. A., Hevener, A. L., Long, S., Zhang, E. E., Olefsky, J. M., & Feng, G. S. (2005). Deletion of Gab1 in the liver leads to enhanced glucose tolerance and improved hepatic insulin action. Nature Medicine, 11(5), 567–571.CrossRefPubMedGoogle Scholar
  16. 16.
    Biddinger, S. B., & Kahn, C. R. (2006). From mice to men: insights into the insulin resistance syndromes. Annual Review of Physiology, 68, 123–158.CrossRefPubMedGoogle Scholar
  17. 17.
    Brachmann, S. M., Ueki, K., Engelman, J. A., Kahn, R. C., & Cantley, L. C. (2005). Phosphoinositide 3-kinase catalytic subunit deletion and regulatory subunit deletion have opposite effects on insulin sensitivity in mice. Molecular and Cellular Biology, 25(5), 1596–1607.CrossRefPubMedGoogle Scholar
  18. 18.
    Terauchi, Y., Tsuji, Y., Satoh, S., et al. (1999). Increased insulin sensitivity and hypoglycaemia in mice lacking the p85 alpha subunit of phosphoinositide 3-kinase. Nature Genetics, 21(2), 230–235.CrossRefPubMedGoogle Scholar
  19. 19.
    Cheatham, B., Vlahos, C. J., Cheatham, L., Wang, L., Blenis, J., & Kahn, C. R. (1994). Phosphatidylinositol 3-kinase activation is required for insulin stimulation of pp70 S6 kinase, DNA synthesis, and glucose transporter translocation. Molecular and Cellular Biology, 14(7), 4902–4911.PubMedGoogle Scholar
  20. 20.
    Shepherd, P. R., Withers, D. J., & Siddle, K. (1998). Phosphoinositide 3-kinase: the key switch mechanism in insulin signalling. The Biochemical Journal, 333, (Pt 3):471–490.PubMedGoogle Scholar
  21. 21.
    Bishop, A. L., & Hall, A. (2000). Rho gtpases and their effector proteins. The Biochemical Journal, 348, Pt 2:241–255.CrossRefPubMedGoogle Scholar
  22. 22.
    Hotamisligil, G. S. (2006). Inflammation and metabolic disorders. Nature, 444(7121), 860–867.CrossRefPubMedGoogle Scholar
  23. 23.
    Vanhaesebroeck, B., & Alessi, D. R. (2000). The PI3K-PDK1 connection: more than just a road to PKB. The Biochemical Journal, 346, Pt 3:561–576.CrossRefPubMedGoogle Scholar
  24. 24.
    Sarbassov, D. D., Guertin, D. A., Ali, S. M., & Sabatini, D. M. (2005). Phosphorylation and regulation of Akt/PKB by the rictor-mtor complex. Science, 307(5712), 1098–1101.CrossRefPubMedGoogle Scholar
  25. 25.
    Bandyopadhyay, G., Standaert, M. L., Zhao, L., et al. (1997). Activation of protein kinase C (alpha, beta, and zeta) by insulin in 3T3/L1 cells. Transfection studies suggest a role for PKC-zeta in glucose transport. The Journal of Biological Chemistry, 272(4), 2551–2558.CrossRefPubMedGoogle Scholar
  26. 26.
    Tremblay, F., Lavigne, C., Jacques, H., & Marette, A. (2001). Defective insulin-induced GLUT4 translocation in skeletal muscle of high fat-fed rats is associated with alterations in both Akt/protein kinase B and atypical protein kinase C (zeta/lambda) activities. Diabetes, 50(8), 1901–1910.CrossRefPubMedGoogle Scholar
  27. 27.
    Kotani, K., Ogawa, W., Matsumoto, M., et al. (1998). Requirement of atypical protein kinase clambda for insulin stimulation of glucose uptake but not for Akt activation in 3T3-L1 adipocytes. Molecular and Cellular Biology, 18(12), 6971–6982.PubMedGoogle Scholar
  28. 28.
    Inoki, K., Li, Y., Zhu, T., Wu, J., Guan, K. L. (2002). TSC2 is phosphorylated and inhibited by Akt and suppresses mtor signalling. Nature Cell Biology, 4(9), 648–657.CrossRefPubMedGoogle Scholar
  29. 29.
    Inoki, K., Li, Y., Xu, T., & Guan, K. L. (2003). Rheb gtpase is a direct target of TSC2 GAP activity and regulates mtor signaling. Genes & Development, 17(15), 1829–1834.CrossRefGoogle Scholar
  30. 30.
    Cross, D. A., Alessi, D. R., Cohen, P., Andjelkovich, M., & Hemmings, B. A. (1995). Inhibition of glycogen synthase kinase-3 by insulin mediated by protein kinase B. Nature, 378(6559), 785–789.CrossRefPubMedGoogle Scholar
  31. 31.
    McManus, E. J., Sakamoto, K., Armit, L. J., et al. (2005). Role that phosphorylation of GSK3 plays in insulin and Wnt signalling defined by knockin analysis. The EMBO journal, 24(8), 1571–1583.CrossRefPubMedGoogle Scholar
  32. 32.
    Patel, S., Doble, B. W., MacAulay, K., Sinclair, E. M., Drucker, D. J., & Woodgett, J. R. (2008). Tissue-specific role of glycogen synthase kinase 3beta in glucose homeostasis and insulin action. Molecular and Cellular Biology, 28(20), 6314–6328.CrossRefPubMedGoogle Scholar
  33. 33.
    MacAulay, K., Doble, B. W., Patel, S., et al. (2007). Glycogen synthase kinase 3alpha-specific regulation of murine hepatic glycogen metabolism. Cell Metabolism, 6(4), 329–337.CrossRefPubMedGoogle Scholar
  34. 34.
    Ishikura, S., Bilan, P. J., & Klip, A. (2007). Rabs 8A and 14 are targets of the insulin-regulated Rab-GAP AS160 regulating GLUT4 traffic in muscle cells. Biochemical and Biophysical Research Communications, 353(4), 1074–1079.CrossRefPubMedGoogle Scholar
  35. 35.
    Accili, D., & Arden, K. C. (2004). Foxos at the crossroads of cellular metabolism, differentiation, and transformation. Cell, 117(4), 421–426.CrossRefPubMedGoogle Scholar
  36. 36.
    Puigserver, P., Rhee, J., Donovan, J., et al. (2003). Insulin-regulated hepatic gluconeogenesis through FOXO1-PGC-1alpha interaction. Nature, 423(6939), 550–555.CrossRefPubMedGoogle Scholar
  37. 37.
    Foufelle, F., & Ferre, P. (2002). New perspectives in the regulation of hepatic glycolytic and lipogenic genes by insulin and glucose: a role for the transcription factor sterol regulatory element binding protein-1c. The Biochemical Journal, 366(Pt 2), 377–391.CrossRefPubMedGoogle Scholar
  38. 38.
    Kodama, S., Koike, C., Negishi, M., & Yamamoto, Y. (2004). Nuclear receptors CAR and PXR cross talk with FOXO1 to regulate genes that encode drug-metabolizing and gluconeogenic enzymes. Molecular and cellular biology, 24(18), 7931–7940.CrossRefPubMedGoogle Scholar
  39. 39.
    Zhang, W., Patil, S., Chauhan, B., et al. (2006). Foxo1 regulates multiple metabolic pathways in the liver: effects on gluconeogenic, glycolytic, and lipogenic gene expression. The Journal of biological chemistry, 281(15), 10105–10117.CrossRefPubMedGoogle Scholar
  40. 40.
    Samuel, V. T., Choi, C. S., Phillips, T. G., et al. (2006). Targeting foxo1 in mice using antisense oligonucleotide improves hepatic and peripheral insulin action. Diabetes, 55(7), 2042–2050.CrossRefPubMedGoogle Scholar
  41. 41.
    Kamagate, A., Qu, S., Perdomo, G., et al. (2008). Foxo1 mediates insulin-dependent regulation of hepatic VLDL production in mice. The Journal of Clinical Investigation, 118(6), 2347–2364.PubMedGoogle Scholar
  42. 42.
    Altomonte, J., Cong, L., Harbaran, S., et al. (2004). Foxo1 mediates insulin action on apoc-III and triglyceride metabolism. The Journal of Clinical Investigation, 114(10), 1493–1503.PubMedGoogle Scholar
  43. 43.
    Biddinger, S. B., Haas, J. T., Yu, B. B., et al. (2008). Hepatic insulin resistance directly promotes formation of cholesterol gallstones. Nature Medicine, 14(7), 778–782.CrossRefPubMedGoogle Scholar
  44. 44.
    Graf, G. A., Yu, L., Li, W. P., et al. (2003). ABCG5 and ABCG8 are obligate heterodimers for protein trafficking and biliary cholesterol excretion. The Journal of Biological Chemistry, 278(48), 48275–48282.CrossRefPubMedGoogle Scholar
  45. 45.
    Li, T., Kong, X., Owsley, E., Ellis, E., Strom, S., & Chiang, J. Y. (2006). Insulin regulation of cholesterol 7alpha-hydroxylase expression in human hepatocytes: roles of forkhead box O1 and sterol regulatory element-binding protein 1c. The Journal of Biological Chemistry, 281(39), 28745–28754.CrossRefPubMedGoogle Scholar
  46. 46.
    Gross, D. N., van den Heuvel, A. P., & Birnbaum, M. J. (2008). The role of foxo in the regulation of metabolism. Oncogene, 27(16), 2320–2336.CrossRefPubMedGoogle Scholar
  47. 47.
    Wolfrum, C., Asilmaz, E., Luca, E., Friedman, J. M., & Stoffel, M. (2004). Foxa2 regulates lipid metabolism and ketogenesis in the liver during fasting and in diabetes. Nature, 432(7020), 1027–1032.CrossRefPubMedGoogle Scholar
  48. 48.
    Zhang, L., Rubins, N. E., Ahima, R. S., Greenbaum, L. E., & Kaestner, K. H. (2005). Foxa2 integrates the transcriptional response of the hepatocyte to fasting. Cell Metabolism, 2(2), 141–148.CrossRefPubMedGoogle Scholar
  49. 49.
    Bochkis, I. M., Rubins, N. E., White, P., Furth, E. E., Friedman, J. R., & Kaestner, K. H. (2008). Hepatocyte-specific ablation of Foxa2 alters bile acid homeostasis and results in endoplasmic reticulum stress. Nature Medicine, 14(8), 828–836.CrossRefPubMedGoogle Scholar
  50. 50.
    Horton, J. D., Goldstein, J. L., Brown, M. S. (2002). Srebps: activators of the complete program of cholesterol and fatty acid synthesis in the liver. The Journal of Clinical Investigation, 109(9), 1125–1131.PubMedGoogle Scholar
  51. 51.
    Shimano, H., Horton, J. D., Shimomura, I., Hammer, R. E., Brown, M. S., & Goldstein, J. L. (1997). Isoform 1c of sterol regulatory element binding protein is less active than isoform 1a in livers of transgenic mice and in cultured cells. The Journal of Clinical Investigation, 99(5), 846–854.CrossRefPubMedGoogle Scholar
  52. 52.
    Ide, T., Shimano, H., Yahagi, N., et al. (2004). Srebps suppress IRS-2-mediated insulin signalling in the liver. Nature Cell Biology, 6(4), 351–357.CrossRefPubMedGoogle Scholar
  53. 53.
    Yamamoto, T., Shimano, H., Nakagawa, Y., et al. (2004). SREBP-1 interacts with hepatocyte nuclear factor-4 alpha and interferes with PGC-1 recruitment to suppress hepatic gluconeogenic genes. The Journal of Biological Chemistry, 279(13), 12027–12035.CrossRefPubMedGoogle Scholar
  54. 54.
    Shimomura, I., Bashmakov, Y., & Horton, J. D. (1999). Increased levels of nuclear SREBP-1c associated with fatty livers in two mouse models of diabetes mellitus. The Journal of Biological Chemistry, 274(42), 30028–30032.CrossRefPubMedGoogle Scholar
  55. 55.
    Horton, J. D., Bashmakov, Y., Shimomura, I., & Shimano, H. (1998). Regulation of sterol regulatory element binding proteins in livers of fasted and refed mice. Proceedings of the National Academy of Sciences of the United States of America, 95(11), 5987–5992.CrossRefPubMedGoogle Scholar
  56. 56.
    Liang, G., Yang, J., Horton, J. D., Hammer, R. E., Goldstein, J. L., & Brown, M. S. (2002). Diminished hepatic response to fasting/refeeding and liver X receptor agonists in mice with selective deficiency of sterol regulatory element-binding protein-1c. The Journal of Biological Chemistry, 277(11), 9520–9528.CrossRefPubMedGoogle Scholar
  57. 57.
    Repa, J. J., Liang, G., Ou, J., et al. (2000). Regulation of mouse sterol regulatory element-binding protein-1c gene (SREBP-1c) by oxysterol receptors, lxralpha and lxrbeta. Genes & Development, 14(22), 2819–2830.CrossRefGoogle Scholar
  58. 58.
    Tobin, K. A., Ulven, S. M., Schuster, G. U., et al. (2002). Liver X receptors as insulin-mediating factors in fatty acid and cholesterol biosynthesis. The Journal of Biological Chemistry, 277(12), 10691–10697.CrossRefPubMedGoogle Scholar
  59. 59.
    Yabe, D., Komuro, R., Liang, G., Goldstein, J. L., & Brown, M. S. (2003). Liver-specific mrna for Insig-2 down-regulated by insulin: implications for fatty acid synthesis. Proceedings of the National Academy of Sciences of the United States of America, 100(6), 3155–3160.CrossRefPubMedGoogle Scholar
  60. 60.
    Kakuma, T., Lee, Y., Higa, M., et al. (2000). Leptin, troglitazone, and the expression of sterol regulatory element binding proteins in liver and pancreatic islets. Proceedings of the National Academy of Sciences of the United States of America, 97(15), 8536–8541.CrossRefPubMedGoogle Scholar
  61. 61.
    Michael, M. D., Kulkarni, R. N., Postic, C., et al. (2000). Loss of insulin signaling in hepatocytes leads to severe insulin resistance and progressive hepatic dysfunction. Molecular Cell, 6(1), 87–97.CrossRefPubMedGoogle Scholar
  62. 62.
    Biddinger, S. B., Hernandez-Ono, A., Rask-Madsen, C., et al. (2008). Hepatic insulin resistance is sufficient to produce dyslipidemia and susceptibility to atherosclerosis. Cell Metabolism, 7(2), 125–134.CrossRefPubMedGoogle Scholar
  63. 63.
    Sparks, J. D., & Sparks, C. E. (1994). Insulin regulation of triacylglycerol-rich lipoprotein synthesis and secretion. Biochimica et Biophysica Acta, 1215(1–2), 9–32.PubMedGoogle Scholar
  64. 64.
    Shaffer, E. A., & Small, D. M. (1977). Biliary lipid secretion in cholesterol gallstone disease. The effect of cholecystectomy and obesity. The Journal of Clinical Investigation, 59(5), 828–840.CrossRefPubMedGoogle Scholar
  65. 65.
    Dong, X. C., Copps, K. D., Guo, S., et al. (2008). Inactivation of hepatic Foxo1 by insulin signaling is required for adaptive nutrient homeostasis and endocrine growth regulation. Cell Metabolism, 8(1), 65–76.CrossRefPubMedGoogle Scholar
  66. 66.
    Taniguchi, C. M., Kondo, T., Sajan, M., et al. (2006). Divergent regulation of hepatic glucose and lipid metabolism by phosphoinositide 3-kinase via Akt and pkclambda/zeta. Cell Metabolism, 3(5), 343–353.CrossRefPubMedGoogle Scholar
  67. 67.
    Miyake, K., Ogawa, W., Matsumoto, M., Nakamura, T., Sakaue, H., & Kasuga, M. (2002). Hyperinsulinemia, glucose intolerance, and dyslipidemia induced by acute inhibition of phosphoinositide 3-kinase signaling in the liver. The Journal of Clinical Investigation, 110(10), 1483–1491.PubMedGoogle Scholar
  68. 68.
    Matsumoto, M., Ogawa, W., Akimoto, K., et al. (2003). Pkclambda in liver mediates insulin-induced SREBP-1c expression and determines both hepatic lipid content and overall insulin sensitivity. The Journal of Clinical Investigation, 112(6), 935–944.PubMedGoogle Scholar
  69. 69.
    Tilg, H., & Moschen, A. R. (2008). Inflammatory mechanisms in the regulation of insulin resistance. Molecular Medicine (Cambridge, Mass. ), 14(3–4), 222–231.Google Scholar
  70. 70.
    Howard, J. K., Cave, B. J., Oksanen, L. J., Tzameli, I., Bjorbaek, C., & Flier, J. S. (2004). Enhanced leptin sensitivity and attenuation of diet-induced obesity in mice with haploinsufficiency of Socs3. Nature Medicine, 10(7), 734–738.CrossRefPubMedGoogle Scholar
  71. 71.
    Nielsen, J. H., Galsgaard, E. D., Moldrup, A., et al. (2001). Regulation of beta-cell mass by hormones and growth factors. Diabetes, 50, Suppl 1:S25–29.CrossRefPubMedGoogle Scholar
  72. 72.
    Verstrepen, L., Bekaert, T., Chau, T. L., Tavernier, J., Chariot, A., & Beyaert, R. (2008). TLR-4, IL-1R and TNF-R signaling to NF-kappab: variations on a common theme. Cellular and Molecular Life Sciences: CMLS, 65(19), 2964–2978.CrossRefPubMedGoogle Scholar
  73. 73.
    Shoelson, S. E., Lee, J., & Yuan, M. (2003). Inflammation and the IKK beta/I kappa B/NF-kappa B axis in obesity- and diet-induced insulin resistance. International Journal of Obesity and Related Metabolic Disorders: Journal of the International Association for the Study of Obesity, 27, Suppl 3:S49–52.CrossRefGoogle Scholar
  74. 74.
    Holland, W. L., Knotts, T. A., Chavez, J. A., Wang, L. P., Hoehn, K. L., & Summers, S. A. (2007). Lipid mediators of insulin resistance. Nutrition reviews, 65(6 Pt 2), S39–46.CrossRefPubMedGoogle Scholar
  75. 75.
    Gao, Z., Zhang, X., Zuberi, A., et al. (2004). Inhibition of insulin sensitivity by free fatty acids requires activation of multiple serine kinases in 3T3-L1 adipocytes. Molecular Endocrinology (Baltimore, Md. ), 18(8), 2024–2034.CrossRefGoogle Scholar
  76. 76.
    Savage, D. B., Petersen, K. F., & Shulman, G. I. (2007). Disordered lipid metabolism and the pathogenesis of insulin resistance. Physiological Reviews, 87(2), 507–520.CrossRefPubMedGoogle Scholar
  77. 77.
    Malhotra, J. D., & Kaufman, R. J. (2007). The endoplasmic reticulum and the unfolded protein response. Seminars in Cell & Developmental Biology, 18(6), 716–731.CrossRefGoogle Scholar
  78. 78.
    Buse, M. G. (2006). Hexosamines, insulin resistance, and the complications of diabetes: current status. American Journal of Physiology. Endocrinology and Metabolism, 290(1), E1-E8.CrossRefPubMedGoogle Scholar
  79. 79.
    Srinivasan, V., Tatu, U., Mohan, V., & Balasubramanyam, M. (2009). Molecular convergence of hexosamine biosynthetic pathway and ER stress leading to insulin resistance in L6 skeletal muscle cells. Molecular and Cellular Biochemistry, 328(1–2), 217–224.CrossRefPubMedGoogle Scholar
  80. 80.
    Miele, C., Riboulet, A., Maitan, M. A., et al. (2003). Human glycated albumin affects glucose metabolism in L6 skeletal muscle cells by impairing insulin-induced insulin receptor substrate (IRS) signaling through a protein kinase C alpha-mediated mechanism. The Journal of Biological Chemistry, 278(48), 47376–47387.CrossRefPubMedGoogle Scholar
  81. 81.
    Frojdo, S., Vidal, H., & Pirola, L. (2009). Alterations of insulin signaling in type 2 diabetes: a review of the current evidence from humans. Biochimica et Biophysica Acta, 1792(2), 83–92.PubMedGoogle Scholar
  82. 82.
    Semple, R. K., Sleigh, A., Murgatroyd, P. R., et al. (2009). Postreceptor insulin resistance contributes to human dyslipidemia and hepatic steatosis. The Journal of Clinical Investigation, 119(2), 315–322.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Division of EndocrinologyChildren’s Hospital BostonBostonUSA

Personalised recommendations