Advertisement

Helminth-Derived Immunomodulatory Molecules

  • Poom Adisakwattana
  • Sean P. Saunders
  • Hendrik J. Nel
  • Padraic G. Fallon
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 666)

Abstract

Infection of man with parasitic helminths leads to potent activation and modulation of the host immune response. This modulation of immunity by helminth infections may have bystander effects in altering, either suppressing or exacerbating, unrelated inflammatory processes. Various ongoing clinical trials are testing the therapeutic application of helminth infection of patients with inflammatory diseases, including inflammatory bowel disease and allergic disorders. Rather than the use of live helminth infection, with the potential for side effects, an alternative approach is to identify the immune modulatory molecules (IM) produced by helminths that can alter immune functions. In this review, we will focus on characterized helminth-derived IMs that may have potential to be developed as novel therapeutics for inflammatory diseases.

Keywords

Migration Inhibitory Factor Helminth Infection Schistosoma Mansoni Translationally Control Tumor Protein Helminth Parasite 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Fallon PG, Mangan NE. Suppression of TH2-type allergic reactions by helminth infection. Nat Rev Immunol 2007; 7:220–230.CrossRefPubMedGoogle Scholar
  2. 2.
    Yazdanbakhsh M, Kremsner PG, van Ree R. Allergy, parasites and the hygiene hypothesis. Science 2002; 296:490–494.CrossRefPubMedGoogle Scholar
  3. 3.
    Maizels RM, Yazdanbakhsh M. Immune regulation by helminth parasites: cellular and molecular mechanisms. Nat Rev Immunol 2003; 3:733–744.CrossRefPubMedGoogle Scholar
  4. 4.
    Harnett W, Goodridge HS, Harnett MM. Subversion of immune cell signal transduction pathways by the secreted filarial nematode product, ES-62. Parasitology 2005; 130(Suppl):S63–68.CrossRefGoogle Scholar
  5. 5.
    Fallon PG, Alcami A. Pathogen-derived immunomodulatory molecules: future immunotherapeutics? Trends Immunol 2006; 27:470–476.CrossRefPubMedGoogle Scholar
  6. 6.
    Dunne DW, Cooke A. A worms eye view of the immune system: consequences for evolution of human autoimmune disease. Nat Rev Immunol 2005; 5:420–426.CrossRefPubMedGoogle Scholar
  7. 7.
    van den Biggelaar AHJ, van Ree R, Rodrigues LC et al. Decreased atopy in children infected with Schistosoma haematobium: a role for parasite-induced interleukin-10. The Lancet 2000; 356:1723–1727.CrossRefGoogle Scholar
  8. 8.
    Araujo MI, Lopes AA, Medeiros M et al. Inverse association between skin response to aeroallergens and Schistosoma mansoni infection. Int Arch Allergy Immunol 2000; 123:145–148.CrossRefPubMedGoogle Scholar
  9. 9.
    Flohr C, Tuyen LN, Lewis S et al. Poor sanitation and helminth infection protect against skin sensitization in Vietnamese children: A cross-sectional study. J Allergy Clin Immunol 2006; 118:1305–1311.CrossRefPubMedGoogle Scholar
  10. 10.
    Jorge Correale MF. Association between parasite infection and immune responses in multiple sclerosis. Annals of Neurology 2007; 61:97–108.CrossRefPubMedGoogle Scholar
  11. 11.
    Jorge Correale MFGR. Helminth infections associated with multiple sclerosis induce regulatory B-cells. Annals of Neurology 2008; 64:187–199.CrossRefPubMedGoogle Scholar
  12. 12.
    Resende Co T, HCS Toossi Z et al. Intestinal helminth co-infection has a negative impact on both anti-Mycobacterium tuberculosis immunity and clinical response to tuberculosis therapy. Clin Exp Immunol 2007; 147:45–52.Google Scholar
  13. 13.
    Summers RW, Elliott DE, Urban JF et al. Trichuris suis therapy in Crohn’s disease. Gut 2005; 54:87–90.CrossRefPubMedGoogle Scholar
  14. 14.
    Summers RW, Elliott DE, Urban JJF et al. Trichuris suis therapy for active ulcerative colitis: A randomized controlled trial. Gastroenterology 2005; 128:825–832.CrossRefPubMedGoogle Scholar
  15. 15.
    Croese J, O’Neil J, Masson J et al. A proof of concept study establishing Necator americanus in Crohns patients and reservoir donors. Gut 2006; 55:136–137.CrossRefPubMedGoogle Scholar
  16. 16.
    Falcone FH, DI Pritchard. Parasite role reversal: worms on trial. Trends Parasitol 2005; 21:157–160.CrossRefPubMedGoogle Scholar
  17. 17.
    Leonardi-Bee J, Pritchard D, Britton J. The parasites in asthma collaboration. Asthma and current intestinal parasite infection: systematic review and meta-analysis. Am J Respir Crit Care Med 2006; 174:514–523.CrossRefPubMedGoogle Scholar
  18. 18.
    Smith P, Mangan NE, Walsh CM et al. Infection with a helminth parasite prevents experimental colitis via a macrophage-mediated mechanism. J Immunol 2007; 178:4557–4566.PubMedGoogle Scholar
  19. 19.
    Hunter MM, Wang A, McKay DM. Helminth infection enhances disease in a murine TH2 model of colitis. Gastroenterology 2007; 132:1320–1330.CrossRefPubMedGoogle Scholar
  20. 20.
    Mangan NE, van Rooijen N, McKenzie AN et al. Helminth-modified pulmonary immune response protects mice from allergen-induced airway hyperresponsiveness. J Immunol 2006; 176:138–147.PubMedGoogle Scholar
  21. 21.
    Kradin RL, Badizadegan K, Auluck P et al. Iatrogenic Trichuris suis infection in a patient with Crohn disease. Arch Pathol Lab Med 2006; 130:718–720.PubMedGoogle Scholar
  22. 22.
    Summers RW, Elliott DE, Qadir K et al. Trichuris suis seems to be safe and possibly effective in the treatment of inflammatory bowel disease. Am J Gastroenterol 2003; 98:2034–2041.CrossRefPubMedGoogle Scholar
  23. 23.
    Mortimer K, Brown A, Feary J et al. Dose-ranging study for trials of therapeutic infection with Necator Americanus in humans. Am J Trop Med Hyg 2006;75:914–920.PubMedGoogle Scholar
  24. 24.
    Doetze A, Satoguina J, Burchard G et al. Antigen-specific cellular hyporesponsiveness in a chronic human helminth infection is mediated by Th3/Trl-type cytokines IL-10 and transforming growth factor-β but not by a Thl to Th2 shift Int Immunol 2000; 12:623–630.Google Scholar
  25. 25.
    Schnoeller C, Rausch S, Pillai S et al. A helminth immunomodulator reduces allergie and inflammatory responses by induction of IL-10-producing macrophages. J Immunol 2008; 180:4265–4272.PubMedGoogle Scholar
  26. 26.
    Mclnnes IB, Leung BP, Harnett M et al. A Novel therapeutic approach targeting articular inflammation using the filarial nematode-derived phosphorylcholine-containing glycoprotein ES-62. J Immunol 2003; 171:2127–2133.Google Scholar
  27. 27.
    Melendez AJ, Harnett MM, Pushparaj PN et al. Inhibition of FcɛRI-mediated mast cell responses by ES-62, a product of parasitic filarial nematodes. Nat Med 2007; 13:1375–1381.CrossRefPubMedGoogle Scholar
  28. 28.
    Okano M, Satoskar AR, Nishizaki K et al. Lacto-N-fucopentaose III Found on Schitosoma mansoni egg antigens functions as adjuvant for proteins by inducing Th2-type response. J Immunol 2001; 167:442–450.PubMedGoogle Scholar
  29. 29.
    Thomas PG, Carter MR, Dadara AA et al. A Helminth glycan induces APC maturation via alternative NF-κB activation independent of IκBα: degradation. J Immunol 2005; 175:2082–2090.PubMedGoogle Scholar
  30. 30.
    van der Kleij D, Latz E, Brouwers JFHM et al. A Novel Host-Parasite Lipid Cross-talk. Schistosomal lyso-phosphatidylserine activates Toll-like receptor 2 and affects immune polarization. J Biol Chem 2002; 277:48122–48129.CrossRefPubMedGoogle Scholar
  31. 31.
    Jenkins SJ, Hewitson JP, Jenkins GR. Modulation of the hosts immune response by schistosome larvae. Parasite Immunol 2005; 27:385–393.CrossRefPubMedGoogle Scholar
  32. 32.
    Smith P, Fallon RE, Mangan NE et al. Schistosoma mansoni secretes a chemokine binding protein with antiinflammatory activity. J Exp Med 2005; 202:1319–1325.CrossRefPubMedGoogle Scholar
  33. 33.
    Donnelly S, O’Neill SM, Sekiya M. Thioredoxin peroxidase secreted by Fasciola hepatica induces the alternative activation of macrophages. Infect Immun 2005; 73:166–173.CrossRefPubMedGoogle Scholar
  34. 34.
    Donnelly S, Stack CM, O’Neill SM et al. Helminth 2-Cys peroxiredoxin drives Th2 responses through a mechanism involving alternatively activated macrophages. FASEB J 2008; 22:4022–4032.CrossRefPubMedGoogle Scholar
  35. 35.
    Grencis RK, Entwistle GM. Production of an interferon-gamma homologue by an intestinal nematode: functionally significant or interesting artefact? Parasitology 1997; 115(Suppl):S101–106.CrossRefGoogle Scholar
  36. 36.
    Gnanasekar M, Velusamy R, He Y-X. Cloning and characterization of a high mobility group box 1 (HMGB1) homologue protein from Schistosoma mansoni. Mol Biochem Parasitol 2006; 145:137–146.CrossRefPubMedGoogle Scholar
  37. 37.
    Zang X, Taylor P, Wang JM et al. Homologues of human macrophage migration inhibitory factor from a parasitic nematode. Gene cloning, protein activity and crystal structure. J Biol Chem 2002; 277:44261–44267.CrossRefPubMedGoogle Scholar
  38. 38.
    Gnanasekar M, K Ramaswamy. Translationally controlled tumor protein of Brugia malayi functions as an antioxidant protein. Parasitol Res 2007; 101:1533–1540.CrossRefPubMedGoogle Scholar
  39. 39.
    Gomez-Escobar N, Lewis E, Maizels RM. A Novel member of the transforming growth factor-β (TGF-β) superfamily from the filarial nematodes Brugia malayi and B. pahangi. Exp Parasitol 1998; 88:200–209.CrossRefPubMedGoogle Scholar
  40. 40.
    Harnett W, IB Mclnnes, MM Harnett. ES-62, a filarial nematode-derived immunomodulator with anti-inflammatory potential. Immunol Lett 2004; 94:27–33.CrossRefPubMedGoogle Scholar
  41. 41.
    Houston KM, Wilson EH, Eyres L et al. Presence of phosphorylcholine on a filarial nematode protein influences immunoglobulin G subclass response to the molecule by an interleukin-10-dependent mechanism. Infect Immun 2000; 68:5466–5468.CrossRefPubMedGoogle Scholar
  42. 42.
    Goodridge HS, McGuiness S, Houston KM et al. Phosphorylcholine mimics the effects of ES-62 on macrophages and dendritic cells. Parasite Immunol 2007; 29:127–137.CrossRefPubMedGoogle Scholar
  43. 43.
    Goodridge HS, Marshall FA, Else KJ et al. Immunomodulation via novel use of TLR4 by the filarial nematode Phosphorylcholine-Containing secreted product, ES-62. J Immunol 2005; 174:284–293.PubMedGoogle Scholar
  44. 44.
    Mountford AP, Trottein F. Schistosomes in the skin: a balance between immune priming and regulation. Trends Parasitol 2004; 20:221–226.CrossRefPubMedGoogle Scholar
  45. 45.
    Ramaswamy K, He YX, Salafsky B. ICAM-1 and iNOS expression increased in the skin of mice after vaccination with gamma-irradiated cercariae of Schistosoma mansoni. Exp Parasitol 1997; 86:118–132.CrossRefPubMedGoogle Scholar
  46. 46.
    Trottein F, Descamps L, Nutten S et al. Schistosoma mansoni activates host microvascular endothelial cells to acquire an anti-inflammatory phenotype. Infect Immun 1999; 67:3403–3409.PubMedGoogle Scholar
  47. 47.
    Valle C, Festucci A, Calogero A et al. Stage-specific expression of a Schistosoma mansoni polypeptide similar to the vertebrate regulatory protein Stathmin. J Biol Chem 1999; 274:33869–33874.CrossRefPubMedGoogle Scholar
  48. 48.
    Rao KV, He YX, Ramaswamy K. Suppression of cutaneous inflammation by intradermal gene delivery. Gene Ther 2002; 9:38–45.CrossRefPubMedGoogle Scholar
  49. 49.
    Holmfeldt P, Brännström K, Sellin ME et al. The Schistosoma mansoni protein Sml6/SmSLP/SmSPO-l is a membrane-binding protein that lacks the proposed microtubule-regulatory activity. Mol Biochem Parasitol 2007; 156:225–234.CrossRefPubMedGoogle Scholar
  50. 50.
    Alcami A. Viral mimicry of cytokines, chemokines and their receptors. Nat Rev Immunol 2003; 3:36–50.CrossRefPubMedGoogle Scholar
  51. 51.
    Schramm G, Falcone FH, Gronow A et al. Molecular Characterization of an Interleukin-4-inducing factor from Schistosoma mansoni eggs. J Biol Chem 2003; 278:18384–18392.CrossRefPubMedGoogle Scholar
  52. 52.
    Kim K, Kim IH, Lee KY et al. The isolation and purification of a specific “protector” protein which inhibits enzyme inactivation by a thiol/Fe(III)/O2 mixed-function oxidation system. J Biol Chem 1988; 263:4704–4711.PubMedGoogle Scholar
  53. 53.
    Chandrashekar R, Curtis KC, Lu W et al. Molecular cloning of an enzymatically active thioredoxin peroxidase from Onchocerca volvulus. Mol Biochem Parasitol 1998; 93:309–312.CrossRefPubMedGoogle Scholar
  54. 54.
    Kwatia MA, Botkin DJ, Williams DL. Molecular and enzymatic characterization of Schistosoma mansoni thioredoxin peroxidase. J Parasitol 2000; 86:908–915.PubMedGoogle Scholar
  55. 55.
    Margutti P, Ortona E, Delunardo F et al. Thioredoxin peroxidase from Echinococcus granulosus: a candidate to extend the antigenic panel for the immunodiagnosis of human cystic echinococcosis. Diagn Microbiol Infect Dis 2008; 60:279–285.CrossRefPubMedGoogle Scholar
  56. 56.
    Dzik JM. Molecules released by helminth parasites involved in host colonization. Acta Biochim Pol 2006; 53:33–64.PubMedGoogle Scholar
  57. 57.
    Henkle-Dührsen K, Kampkötter A. Antioxidant enzyme families in parasitic nematodes. Mol Biochem Parasitol 2001; 114:129–142.CrossRefPubMedGoogle Scholar
  58. 58.
    Hartmann S, Lucius R. Modulation of host immune responses by nematode cystatins. Int J Parasitol 2003; 33:1291–1302.CrossRefPubMedGoogle Scholar
  59. 59.
    Lustigman S, Brotman B, Huima T et al. Molecular cloning and characterization of onchocystatin, a cysteine proteinase inhibitor of Onchocerca volvulus. J Biol Chem 1992;267:17339–17346.PubMedGoogle Scholar
  60. 60.
    Schonemeyer A, Lucius R, Sonnenburg B et al. Modulation of human T-cell responses and macrophage functions by Onchocystatin, a secreted protein of the filarial nematode Onchocerca volvulus. J Immunol 2001; 167:3207–3215.PubMedGoogle Scholar
  61. 61.
    Murray J, Manoury B, Balk A et al. Bm-CPI-2, a cystatin from Brugia malayi nematode parasites, differs from Caenorhabditis elegans cystatins in a specific site mediating inhibition of the antigen-processing enzyme AEP. Mol Biochem Parasitol 2005; 139:197–203.CrossRefPubMedGoogle Scholar
  62. 62.
    Morales FC, Furtado DR, Rumjanek FD. The N-terminus moiety of the cystatin SmCys from Schis-tosoma mansoni regulates its inhibitory activity in vitro and in vivo. Mol Biochem Parasitol 2004; 134:65–73.CrossRefPubMedGoogle Scholar
  63. 63.
    van der Kleij D, Yazdanbakhsh M. Control of inflammatory diseases by pathogens: lipids and the immune system. Eur J Immunol 2003; 33:2953–2963.CrossRefPubMedGoogle Scholar
  64. 64.
    Thomas PG, Harn DA. Immune biasing by helminth glycans. Cellular Microbiology 2004; 6:13–22.CrossRefPubMedGoogle Scholar
  65. 65.
    Capron A, Riveau G, Capron M. Schistosomes: the road from host-parasite interactions to vaccines in clinical trials. Trends Parasitol 2005; 21:143–149.CrossRefPubMedGoogle Scholar
  66. 66.
    Velupillai P, Harn DA. Oligosaccharide-specific induction of interleukin 10 production by B220+ cells from schistosome-infected mice: a mechanism for regulation of CD4+ T-cell subsets. Proc Natl Acad Sci USA 1994; 91:18–22.CrossRefPubMedGoogle Scholar
  67. 67.
    Velupillai P, Secor WE, Horauf Harn AM. B-l cell (CD5+B220+) outgrowth in murine schistosomiasis is genetically restricted and is largely due to activation by polylactosamine sugars. J Immunol 1997; 158:338–344.PubMedGoogle Scholar
  68. 68.
    Terrazas LI, Walsh KL, Piskorska D et al. The schistosome oligosaccharide lacto-N-neotetraose expands Grl+ cells that secrete anti-inflammatory cytokines and inhibit proliferation of naive CD4+ cells: A potential mechanism for immune polarization in helminth infections. J Immunol 2001; 167:5294–5303.PubMedGoogle Scholar
  69. 69.
    Atochina O, Daly-Engel T, Piskorska D et al. A Schistosome-expressed immunomodulatory glycoconjugate expands peritoneal Grl+ macrophages that suppress naive CD4+ T cell proliferation via an IFN-γ and nitric oxide-dependent mechanism. J Immunol 2001; 167:4293–4302.PubMedGoogle Scholar
  70. 70.
    Atochina O, Da’dara AA, Walker M. The immunomodulatory glycan LNFPIII initiates alternative activation of murine macrophages in vivo. Immunology 2008; 125:111–121.CrossRefPubMedGoogle Scholar
  71. 71.
    Thomas PG, Carter MR, Atochina O et al. Maturation of dendritic cell 2 phenotype by a helminth glycan uses a Toll-Like Receptor 4-dependent mechanism. J Immunol 2003; 171:5837–5841.PubMedGoogle Scholar
  72. 72.
    van der Kleij D, van Remoortere A, Schuitemaker JHN et al. Triggering of innate immune responses by schistosome egg glycolipids and their carbohydrate epitope GalNAcβl–4(Fucα1–2Fucα1–3)GlcNAc. J Infect Dis 2002; 185:531–539.CrossRefPubMedGoogle Scholar
  73. 73.
    Vermeire JJ, Cho Y, Lolis E et al. Orthologs of macrophage migration inhibitory factor from parasitic nematodes. Trends Parasitol 2008; 24:355–363.CrossRefPubMedGoogle Scholar
  74. 74.
    Senter PD, Al-Abed Y, Metz CN et al. Inhibition of macrophage migration inhibitory factor (MIF) tautomerase and biological activities by acetaminophen metabolites. Proc Natl Acad Sci USA 2002; 99:144–149.CrossRefPubMedGoogle Scholar
  75. 75.
    Rodriguez-Sosa M, Rosas LE, David JR et al. Macrophage migration inhibitory factor plays a critical role in mediating protection against the helminth parasite Taenia crassiceps. Infect Immun 2003; 71:1247–1254.CrossRefPubMedGoogle Scholar
  76. 76.
    Cho Y, Jones BF, Vermeire JJ et al. Structural and functional characterization of a secreted hookworm macrophage migration inhibitory factor (MIF) that interacts with the human MIF receptor CD74. J Biol Chem 2007; 282:23447–23456.CrossRefPubMedGoogle Scholar
  77. 77.
    Beall MJ, McGonigle S, Pearce EJ. Functional conservation of Schistosoma mansoni Smads in TGF-β signaling. Mol Biochem Parasitol 2000; 111:131–142.CrossRefPubMedGoogle Scholar
  78. 78.
    Beall MJ, Pearce EJ. Human transforming growth factor-beta activates a receptor serine/threonine kinase from the intravascular parasite Schistosoma mansoni. J Biol Chem 2001; 276:31613–31619.CrossRefPubMedGoogle Scholar
  79. 79.
    Osman A, Niles EG, LoVerde PT Identification and characterization of a Smad2 homologue from Schistosoma mansoni, a transforming growth factor-beta signal transducer. J Biol Chem 2001; 276:10072–10082.CrossRefPubMedGoogle Scholar
  80. 80.
    Osman A, Niles EG, LoVerde PT. Expression of functional Schistosoma mansoni Smad4: role in Erk-mediated transforming growth factor beta (TGF-beta) down-regulation. J Biol Chem 2004; 279:6474–6486.CrossRefPubMedGoogle Scholar
  81. 81.
    Osman A, Niles EG, Verjovski-Almeida S et al. Schistosoma mansoni TGF-beta receptor II: role in host ligand-induced regulation of a schistosome target gene. PLoS Pathog 2006; 2:e54.CrossRefPubMedGoogle Scholar
  82. 82.
    Zavala-Góngora R, Kroner A, Wittek B et al. Identification and characterisation of two distinct Smad proteins from the fox-tapeworm Echinococcus multilocularis. Int J Parasitol 2003; 33:1665–1677.CrossRefPubMedGoogle Scholar
  83. 83.
    Bommer UA, Thiele BJ. The translationally controlled tumour protein (TCTP). Int J Biochem Cell Biol 2004; 36:379–385.CrossRefPubMedGoogle Scholar
  84. 84.
    Gnanasekar M, Rao KVN, Chen L et al. Molecular characterization of a calcium binding translationally controlled tumor protein homologue from the filarial parasites Brugia malayi and Wuchereria bancrofti. Mol Biochem Parasitol 2002; 121:107–118.CrossRefPubMedGoogle Scholar
  85. 85.
    Bianchi ME, Manfredi AA. High-mobility group box 1 (HMGB1) protein at the crossroads between innate and adaptive immunity. Immunol Rev 2007; 220:35–46.CrossRefPubMedGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2009

Authors and Affiliations

  • Poom Adisakwattana
    • 1
  • Sean P. Saunders
    • 1
  • Hendrik J. Nel
    • 1
  • Padraic G. Fallon
    • 1
  1. 1.Inflammation and Immunity Group, Institute of Molecular MedicineTrinity College DublinDublin 8Ireland

Personalised recommendations