Viral TNF Inhibitors as Potential Therapeutics

  • Masmudur M. Rahman
  • Alexandra R. Lucas
  • Grant McFadden
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 666)


The immune system functions by maintaining a delicate balance between the activities of pro-inflammatory and anti-inflammatory pathways. Unbalanced activation of these pathways often leads to the development of serious inflammatory diseases. TNF (Tumor Necrosis Factor) is a key pro-inflammatory cytokine, which can cause several inflammatory diseases when inappropriately up-regulated. Inhibition of TNF activities by using modulatory recombinant proteins has become a successful therapeutic approach to control TNF activity levels but these anti-TNF reagents also have risks and certain limitations. Biological molecules with a different mode of action in regulating TNF biology might provide a clinically useful alternative to the current therapeutics or in some cases might be efficacious in combination with existing anti-TNF therapies. TNF is also a powerful host defense cytokine commonly induced in the host response against various invading pathogens. Many viral pathogens can block TNF function by encoding modulators of TNF, its receptors or downstream signaling pathways. Here, we review the known virus-encoded TNF inhibitors and evaluate their potential as alternative future anti-TNF therapies.


Tumor Necrosis Factor Tumor Necrosis Factor Receptor Trail Receptor Tumor Necrosis Factor Antagonist Myxoma Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Finlay BB, McFadden G. Anti-immunology: evasion of the host immune system by bacterial and viral pathogens. Cell 2006; 124(4):767–782.CrossRefPubMedGoogle Scholar
  2. 2.
    Roy CR, Mocarski ES. Pathogen subversion of cell-intrinsic innate immunity. Nat Immunol 2007; 8(11):1179–1187.CrossRefPubMedGoogle Scholar
  3. 3.
    Unterholzner L, Bowie AG. The interplay between viruses and innate immune signaling: Recent insights and therapeutic opportunities. Biochem Pharmacol 2008; 75(3):589–602.CrossRefPubMedGoogle Scholar
  4. 4.
    Lucas A, McFadden G. Secreted immunomodulatory viral proteins as novel biotherapeutics. J Immunol 2004; 173(8):4765–4774.PubMedGoogle Scholar
  5. 5.
    Fallon PG, Alcami A. Pathogen-derived immunomodulatory molecules: future immunotherapeutics? Trends Immunol 2006; 27(10):470–476.CrossRefPubMedGoogle Scholar
  6. 6.
    Rahman MM, McFadden G. Modulation of tumor necrosis factor by microbial pathogens. PLoS Pathog 2006; 2(2):c4.CrossRefGoogle Scholar
  7. 7.
    Aggarwal BB. Signalling pathways of the TNF superfamily: a double-edged sword. Nat Rev Immunol 2003; 3(9):745–756.CrossRefPubMedGoogle Scholar
  8. 8.
    Hehlgans T, Pfeffer K. The intriguing biology of the tumour necrosis factor/tumour necrosis factor receptor superfamily: players, rules and the games. Immunology 2005; 115(1):1–20.CrossRefPubMedGoogle Scholar
  9. 9.
    Takada H, Chen NJ, Mirtsos C et al. Role of SODD in regulation of tumor necrosis factor responses. Mol Cell Biol 2003; 23(11):4026–4033.CrossRefPubMedGoogle Scholar
  10. 10.
    Chan FK, Chun HJ, Zheng L et al. A domain in TNF receptors that mediates ligand-independent receptor assembly and signaling. Science 2000; 288(5475):2351–2354.CrossRefPubMedGoogle Scholar
  11. 11.
    Clancy L, Mruk K, Archer K et al. Preligand assembly domain-mediated ligand-independent association between TRAIL receptor 4 (TR4) and TR2 regulates TRAIL-induced apoptosis. Proc Natl Acad Sci USA 2005; 102(50):18099–18104.CrossRefPubMedGoogle Scholar
  12. 12.
    Sedger LM, Osvath SR, Xu XM et al. Poxvirus tumor necrosis factor receptor (TNFR)-like T2 proteins contain a conserved preligand assembly domain that inhibits cellular TNFR1-induced cell death. J Virol 2006; 80(18):9300–9309.CrossRefPubMedGoogle Scholar
  13. 13.
    Siebert S, Fielding CA, Williams BD et al. Mutation of the extracellular domain of tumour necrosis factor receptor 1 causes reduced NF-kappaB activation due to decreased surface expression. FEBS Lett 2005; 579(23):5193–5198.CrossRefPubMedGoogle Scholar
  14. 14.
    Siegel RM, Frederiksen JK, Zacharias DA et al. Fas preassociation required for apoptosis signaling and dominant inhibition by pathogenic mutations. Science 2000; 288(5475):2354–2357.CrossRefPubMedGoogle Scholar
  15. 15.
    Chan FK. Three is better than one: preligand receptor assembly in the regulation of TNF receptor signaling. Cytokine 2007; 37(2):101–107.CrossRefPubMedGoogle Scholar
  16. 16.
    Deng GM, Zheng L, Chan FK et al. Amelioration of inflammatory arthritis by targeting the preligand assembly domain of tumor necrosis factor receptors. Nat Med 2005; 11(10):1066–1072.CrossRefPubMedGoogle Scholar
  17. 17.
    Choy EH, Panayi GS. Cytokine pathways and joint inflammation in rheumatoid arthritis. N Engl J Med 2001; 344(12):907–916.CrossRefPubMedGoogle Scholar
  18. 18.
    Theodossiadis PG, Markomichelakis NN, Sfikakis PP. Tumor necrosis factor antagonists: preliminary evidence for an emerging approach in the treatment of ocular inflammation. Retina 2007; 27(4):399–413.CrossRefPubMedGoogle Scholar
  19. 19.
    Tak PP, Taylor PC, Breedveld FC et al. Decrease in cellularity and expression of adhesion molecules by anti-tumor necrosis factor alpha monoclonal antibody treatment in patients with rheumatoid arthritis. Arthritis Rheum 1996; 39(7):1077–1081.CrossRefPubMedGoogle Scholar
  20. 20.
    Goldring SR, Gravallese EM. Pathogenesis of bone lesions in rheumatoid arthritis. Curr Rheumatol Rep 2002; 4(3):226–231.CrossRefPubMedGoogle Scholar
  21. 21.
    Hotamisligil GS, Shargill NS, Spiegelman BM. Adipose expression of tumor necrosis factor-alpha: direct role in obesity-linked insulin resistance. Science 1993; 259(5091):87–91.CrossRefPubMedGoogle Scholar
  22. 22.
    Mohler KM, Torrance DS, Smith CA et al. Soluble tumor necrosis factor (TNF) receptors are effective therapeutic agents in lethal endotoxemia and function simultaneously as both TNF carriers and TNF antagonists. J Immunol 1993; 151(3): 1548–1561.PubMedGoogle Scholar
  23. 23.
    Harriman G, Harper LK, Schaible TF. Summary of clinical trials in rheumatoid arthritis using infliximab, an anti-TNFalpha treatment. Ann Rheum Dis 1999; 58(Suppl 1):161–64.Google Scholar
  24. 24.
    Wong M, Ziring D, Korin Y et al. TNF α blockade in human diseases: Mechanisms and future directions. Clin Immunol 2007; 126(2): 121–136.CrossRefPubMedGoogle Scholar
  25. 25.
    Palladino MA, Bahjat FR, Theodorakis EA et al. Anti-TNF-α therapies: the next generation. Nat Rev Drug Discov 2003; 2(9):736–746.CrossRefPubMedGoogle Scholar
  26. 26.
    Slifman NR, Gershon SK, Lee JH et al. Listeria monocytogenes infection as a complication of treatment with tumor necrosis factor alpha-neutralizing agents. Arthritis Rheum 2003; 48(2):319–324.CrossRefPubMedGoogle Scholar
  27. 27.
    De Rosa FG, Shaz D, Campagna AC et al. Invasive pulmonary aspergillosis soon after therapy with infliximab, a tumor necrosis factor-alpha-neutralizing antibody: a possible healthcare-associated case? Infect Control Hosp Epidemiol 2003; 24(7):477–482.CrossRefPubMedGoogle Scholar
  28. 28.
    Tai TL, O’Rourke KP, McWeeney M et al. Pneumocystis carinii pneumonia following a second infusion of infliximab. Rheumatology (Oxford) 2002; 41(8):951–952.Google Scholar
  29. 29.
    Lee JH, Slifman NR, Gershon SK et al. Life-threatening histoplasmosis complicating immunotherapy with tumor necrosis factor alpha antagonists infliximab and etanercept. Arthritis Rheum 2002; 46(10):2565–2570.CrossRefPubMedGoogle Scholar
  30. 30.
    Gomez-Reino JJ, Carmona L, Angel Descalzo M. Risk of tuberculosis in patients treated with tumor necrosis factor antagonists due to incomplete prevention of reactivation of latent infection. Arthritis Rheum 2007; 57(5):756–761.CrossRefPubMedGoogle Scholar
  31. 31.
    Ellerin T, Rubin RH, Weinblatt ME. Infections and anti-tumor necrosis factor alpha therapy. Arthritis Rheum 2003; 48(11):3013–3022.CrossRefPubMedGoogle Scholar
  32. 32.
    Charles PJ, Smeenk RJ, De Jong J et al. Assessment of antibodies to double-stranded DNA induced in rheumatoid arthritis patients following treatment with infliximab, a monoclonal antibody to tumor necrosis factor alpha: findings in open-label and randomized placebo-controlled trials. Arthritis Rheum 2000; 43(11):2383–2390.CrossRefPubMedGoogle Scholar
  33. 33.
    Hyrich KL, Silman AJ, Watson KD et al. Anti-tumour necrosis factor alpha therapy in rheumatoid arthritis: an update on safety. Ann Rheum Dis 2004; 63(12):1538–1543.CrossRefPubMedGoogle Scholar
  34. 34.
    Gilaberte Y, Coscojuela C, Vazquez C et al. Perforating folliculitis associated with tumour necrosis factor-alpha inhibitors administered for rheumatoid arthritis. Br J Dermatol 2007; 156(2):368–371.CrossRefPubMedGoogle Scholar
  35. 35.
    Morgan MB, Truitt CA, Taira J et al. Fibronectin and the extracellular matrix in the perforating disorders of the skin. Am J Dermatopathol 1998; 20(2):147–154.CrossRefPubMedGoogle Scholar
  36. 36.
    Benedict CA. Viruses and the TNF-related cytokines, an evolving battle. Cytokine Growth Factor Rev 2003; 14(3–4):349–357.CrossRefPubMedGoogle Scholar
  37. 37.
    Benedict CA, Banks TA, Ware CF. Death and survival: viral regulation of TNF signaling pathways. Curr Opin Immunol 2003; 15(1):59–65.CrossRefPubMedGoogle Scholar
  38. 38.
    Brunetti CR, Paulose-Murphy M, Singh R et al. A secreted high-affinity inhibitor of human TNF from Tanapox virus. Proc Natl Acad Sci USA 2003; 100(8):4831–4836.CrossRefPubMedGoogle Scholar
  39. 39.
    Rahman MM, Barrett JW, Brouckaert P et al. Variation in ligand binding specificities of a novel class of poxvirus-encoded tumor necrosis factor-binding protein. J Biol Chem 2006; 281 (32):22517–22526.CrossRefPubMedGoogle Scholar
  40. 40.
    Cunnion KM. Tumor necrosis factor receptors encoded by poxviruses. Mol Genet Metab 1999; 67(4):278–282.CrossRefPubMedGoogle Scholar
  41. 41.
    Xu X, Nash P, McFadden G. Myxoma virus expresses a TNF receptor homolog with two distinct functions. Virus Genes 2000; 21(1–2):97–109.CrossRefPubMedGoogle Scholar
  42. 42.
    Hu FQ, Smith CA, Pickup DJ. Cowpox virus contains two copies of an early gene encoding a soluble secreted form of the Type II TNF receptor. Virology 1994; 204(1):343–356.CrossRefPubMedGoogle Scholar
  43. 43.
    Smith CA, Hu FQ, Smith TD et al. Cowpox virus genome encodes a second soluble homologue of cellular TNF receptors, distinct from CrmB, that binds TNF but not LT alpha. Virology 1996; 223(1):132–147.CrossRefPubMedGoogle Scholar
  44. 44.
    Loparev VN, Parsons JM, Knight JC et al. A third distinct tumor necrosis factor receptor of orthopox-viruses. Proc Natl Acad Sci USA 1998; 95(7):3786–3791.CrossRefPubMedGoogle Scholar
  45. 45.
    Saraiva M, Alcami A. CrmE, a novel soluble tumor necrosis factor receptor encoded by poxviruses. J Virol 2001; 75(1):226–233.CrossRefPubMedGoogle Scholar
  46. 46.
    Panus JF, Smith CA, Ray CA et al. Cowpox virus encodes a fifth member of the tumor necrosis factor receptor family: a soluble, secreted CD30 homologue. Proc Natl Acad Sci USA 2002; 99(12):8348–8353.CrossRefPubMedGoogle Scholar
  47. 47.
    Alejo A, Ruiz-Arguello MB, Ho Y et al. A chemokine-binding domain in the tumor necrosis factor receptor from variola (smallpox) virus. Proc Natl Acad Sci USA 2006; 103(15):5995–6000.CrossRefPubMedGoogle Scholar
  48. 48.
    Gileva IP, Nepomnyashchikh TS, Antonets DV et al. Properties of the recombinant TNF-binding proteins from variola, monkeypox and cowpox viruses are different. Biochim Biophys Acta 2006; 1764(11):1710–1718.PubMedGoogle Scholar
  49. 49.
    Smith VP, Alcami A. Expression of secreted cytokine and chemokine inhibitors by ectromelia virus. J Virol 2000; 74(18):8460–8471.CrossRefPubMedGoogle Scholar
  50. 50.
    Alcami A, Khanna A, Paul NL et al. Vaccinia virus strains Lister, USSR and Evans express soluble and cell-surface tumour necrosis factor receptors. J Gen Virol 1999; 80(Pt 4):949–959.PubMedGoogle Scholar
  51. 51.
    Reading PC, Khanna A, Smith GL. Vaccinia virus CrmE encodes a soluble and cell surface tumor necrosis factor receptor that contributes to virus virulence. Virology 2002; 292(2):285–298.CrossRefPubMedGoogle Scholar
  52. 52.
    Graham SC, Bahar MW, Abrescia NG et al. Structure of CrmE, a virus-encoded tumour necrosis factor receptor. J Mol Biol 2007; 372(3):660–671.CrossRefPubMedGoogle Scholar
  53. 53.
    Schreiber M, McFadden G. The myxoma virus TNF-receptor homologue (T2) inhibits tumor necrosis factor-alpha in a species-specific fashion. Virology 1994; 204(2):692–705.CrossRefPubMedGoogle Scholar
  54. 54.
    Macen JL, Graham KA, Lee SF et al. Expression of the myxoma virus tumor necrosis factor receptor homologue and M11L genes is required to prevent virus-induced apoptosis in infected rabbit T-lymphocytes. Virology 1996; 218(1):232–237.CrossRefPubMedGoogle Scholar
  55. 55.
    Schreiber M, Sedger L, McFadden G. Distinct domains of M-T2, the myxoma virus tumor necrosis factor (TNF) receptor homolog, mediate extracellular TNF binding and intracellular apoptosis inhibition. J Virol 1997; 71(3):2171–2181.PubMedGoogle Scholar
  56. 56.
    Fessier SP, Chin YR, Horwitz MS. Inhibition of tumor necrosis factor (TNF) signal transduction by the adenovirus group C RID complex involves downregulation of surface levels of TNF receptor 1. J Virol 2004; 78(23):13113–13121.CrossRefGoogle Scholar
  57. 57.
    Chin YR, Horwitz MS. Mechanism for removal of tumor necrosis factor receptor 1 from the cell surface by the adenovirus RIDalpha/beta complex. J Virol 2005; 79(21): 13606–13617.CrossRefPubMedGoogle Scholar
  58. 58.
    Shisler J, Yang C, Walter B et al. The adenovirus E3-10.4K/14.5K complex mediates loss of cell surface Fas (CD95) and resistance to Fas-induced apoptosis. J Virol 1997; 71(11):8299–8306.PubMedGoogle Scholar
  59. 59.
    Benedict CA, Norris PS, Prigozy TI et al. Three adenovirus E3 proteins cooperate to evade apoptosis by tumor necrosis factor-related apoptosis-inducing ligand receptor-1 and-2. J Biol Chem 2001; 276(5):3270–3278.CrossRefPubMedGoogle Scholar
  60. 60.
    Tollefson AE, Toth K, Doronin K et al. Inhibition of TRAIL-induced apoptosis and forced internalization of TRAIL receptor 1 by adenovirus proteins. J Virol 2001; 75(19):8875–8887.CrossRefPubMedGoogle Scholar
  61. 61.
    Tollefson AE, Stewart AR, Yei SP et al. The 10,400-and 14,500-dalton proteins encoded by region E3 of adenovirus form a complex and function together to down-regulate the epidermal growth factor receptor. J Virol 1991; 65(6):3095–3105.PubMedGoogle Scholar
  62. 62.
    Delgado-Lopez F, Horwitz MS. Adenovirus RIDalphabeta complex inhibits lipopolysaccharide signaling without altering TLR4 cell surface expression. J Virol 2006; 80(13):6378–6386.CrossRefPubMedGoogle Scholar
  63. 63.
    Efrat S, Fejer G, Brownlee M et al. Prolonged survival of pancreatic islet allografts mediated by adenovirus immunoregulatory transgenes. Proc Natl Acad Sci USA 1995; 92(15):6947–6951.CrossRefPubMedGoogle Scholar
  64. 64.
    Efrat S, Serreze D, Svetlanov A et al. Adenovirus early region 3(E3) immunomodulatory genes decrease the incidence of autoimmune diabetes in NOD mice. Diabetes 2001; 50(5):980–984.CrossRefPubMedGoogle Scholar
  65. 65.
    Pierce MA, Chapman HD, Post CM et al. Adenovirus early region 3 antiapoptotic 10.4K, 14.5K and 14.7K genes decrease the incidence of autoimmune diabetes in NOD mice. Diabetes 2003; 52(5):1119–1127.CrossRefPubMedGoogle Scholar
  66. 66.
    Filippova M, Song H, Connolly JL et al. The human papillomavirus 16 E6 protein binds to tumor necrosis factor (TNF) Rl and protects cells from TNF-induced apoptosis. J Biol Chem 2002; 277(24):21730–21739.CrossRefPubMedGoogle Scholar
  67. 67.
    Yuan H, Fu F, Zhuo J et al. Human papillomavirus Type 16 E6 and E7 oncoproteins upregulate C-IAP2 gene expression and confer resistance to apoptosis. Oncogene 2005; 24(32):5069–5078.CrossRefPubMedGoogle Scholar
  68. 68.
    Baillie J, Sahlender DA, Sinclair JH. Human cytomegalovirus infection inhibits tumor necrosis factor alpha (TNF-α) signaling by targeting the 55-kilodalton TNF-α receptor. J Virol 2003; 77(12):7007–7016.CrossRefPubMedGoogle Scholar
  69. 69.
    Popkin DL, Virgin HWt. Murine cytomegalovirus infection inhibits tumor necrosis factor alpha responses in primary macrophages. J Virol 2003; 77(18):10125–10130.CrossRefPubMedGoogle Scholar
  70. 70.
    Doedens JR, Giddings TH Jr, Kirkegaard K. Inhibition of endoplasmic reticulum-to-Golgi traffic by poliovirus protein 3A: genetic and ultrastructural analysis. J Virol 1997; 71 (12):9054–9064.PubMedGoogle Scholar
  71. 71.
    Neznanov N, Kondratova A, Chumakov KM et al. Poliovirus protein 3A inhibits tumor necrosis factor (TNF)-induced apoptosis by eliminating the TNF receptor from the cell surface. J Virol 2001; 75(21):10409–10420.CrossRefPubMedGoogle Scholar
  72. 72.
    Ghosh AK, Majumder M, Steele R et al. Hepatitis C virus NS5A protein protects against TNF-α mediated apoptotic cell death. Virus Res 2000; 67(2):173–178.CrossRefPubMedGoogle Scholar
  73. 73.
    Park KJ, Choi SH, Choi DH et al. 1 Hepatitis C virus NS5A protein modulates c-Jun N-terminal kinase through interaction with tumor necrosis factor receptor-associated factor 2. J Biol Chem 2003; 278(33):30711–30718.CrossRefPubMedGoogle Scholar
  74. 74.
    Majumder M, Ghosh AK, Steele R et al. Hepatitis C virus NS5A protein impairs TNF-mediated hepatic apoptosis, but not by an anti-FAS antibody, in transgenic mice. Virology 2002; 294(1):94–105.CrossRefPubMedGoogle Scholar
  75. 75.
    Chung YL, Sheu ML, Yen SH. Hepatitis C virus NS5A as a potential viral Bcl-2 homologue interacts with Bax and inhibits apoptosis in hepatocellular carcinoma. Int J Cancer 2003; 107(1):65–73.CrossRefPubMedGoogle Scholar
  76. 76.
    Behrens SE, Tomei L, De Francesco R. Identification and properties of the RNA-dependent RNA polymerase of hepatitis C virus. EMBO J 1996; 15(1):12–22.PubMedGoogle Scholar
  77. 77.
    Karin M, Lin A. NF-kappaB at the crossroads of life and death. Nat Immunol 2002; 3(3):221–227.CrossRefPubMedGoogle Scholar
  78. 78.
    DiPerna G, Stack J, Bowie AG et al. Poxvirus protein NIL targets the I-kappaB kinase complex, inhibits signaling to NF-kappaB by the tumor necrosis factor superfamily of receptors and inhibits NF-kappaB and IRF3 signaling by toll-like receptors. J Biol Chem 2004; 279(35):36570–36578.CrossRefPubMedGoogle Scholar
  79. 79.
    Aoyagi M, Zhai D, Jin C et al. Vaccinia virus NIL protein resembles a B-cell lymphoma-2 (Bcl-2) family protein. Protein Sci 2007; 16(1): 118–124.CrossRefPubMedGoogle Scholar
  80. 80.
    Cooray S, Bahar MW, Abrescia NG et al. Functional and structural studies of the vaccinia virus virulence factor Nl reveal a Bcl-2-like anti-apoptotic protein. J Gen Virol 2007; 88(Pt 6):1656–1666.CrossRefPubMedGoogle Scholar
  81. 81.
    Zhang Z, Abrahams MR, Hunt LA et al. The vaccinia virus NIL protein influences cytokine secretion in vitro after infection. Ann N Y Acad Sci 2005; 1056:69–86.CrossRefPubMedGoogle Scholar
  82. 82.
    Shisler JL, Jin XL. The vaccinia virus K1L gene product inhibits host NF-kappaB activation by preventing I kappa B alpha degradation. J Virol 2004; 78(7):3553–3560.CrossRefPubMedGoogle Scholar
  83. 83.
    Bradley RR, Terajima M. Vaccinia virus K1L protein mediates host-range function in RK-13 cells via ankyrin repeat and may interact with a cellular GTPase-activating protein. Virus Res 2005; 114(1–2):104–112.CrossRefGoogle Scholar
  84. 84.
    Tait SW, Reid EB, Greaves DR et al. Mechanism of inactivation of NF-kappa B by a viral homologue of I kappa B alpha. Signal-induced release of i kappa b alpha results in binding of the viral homologue to NF-kappa B. J Biol Chem 2000; 275(44):34656–34664.CrossRefPubMedGoogle Scholar
  85. 85.
    Granja AG, Nogal ML, Hurtado C et al. The viral protein A238L inhibits TNF-a expression through a CBP/p300 transcriptional coactivators pathway. J Immunol 2006; 176(1):451–462.PubMedGoogle Scholar
  86. 86.
    Choi SH, Park KJ, Ahn BY et al. Hepatitis C virus nonstructural 5B protein regulates tumor necrosis factor alpha signaling through effects on cellular I kappa B kinase. Mol Cell Biol 2006; 26(8):3048–3059.CrossRefPubMedGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2009

Authors and Affiliations

  • Masmudur M. Rahman
    • 1
  • Alexandra R. Lucas
    • 1
    • 2
    • 3
  • Grant McFadden
    • 1
    • 2
    • 3
  1. 1.Department of Molecular Genetics and Microbiology, College of MedicineUniversity of FloridaGainesvilleUSA
  2. 2.Department of MedicineUniversity of FloridaGainesvilleUSA
  3. 3.Robarts Research InstituteUniversity of Western OntarioLondonCanada

Personalised recommendations