Modulation of Innate Immune Signalling Pathways by Viral Proteins

  • Orla Mulhern
  • Barry Harrington
  • Andrew G. Bowie
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 666)


In recent years an explosion of information on the various strategies viruses employ to penetrate and hijack the host cell has led to an increased understanding of both viruses themselves and the host immune response. Despite their simplicity viruses have evolved a number of strategies to not only evade the host immune response but also modulate immune signalling to favour their replication and survival within the cell. The innate immune response provides the host with an early reaction against viruses. This response relies heavily upon the recognition of pathogen-associated molecular patterns (PAMPs) by a number of host pattern recognition receptors (PRRs), leading to activation of innate signalling pathways and altered gene expression. In this chapter we outline the signalling pathways that respond to viral infection and the various methods that viruses utilize to evade detection and modulate the innate immune response to favour their survival.


Innate Immune Response West Nile Virus Japanese Encephalitis Virus Internal Ribosome Entry Site Vesicular Stomatitis Virus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Garcia MA, Meurs EF, Esteban M. The dsRNA protein kinase PKR: Virus and cell control. Biochimie 2007; 89(6–7):799–811.CrossRefPubMedGoogle Scholar
  2. 2.
    Metz DH, Esteban M. Interferon inhibits viral protein synthesis in L-cells infected with vaccinia virus. Nature 1972; 238(5364):385–388.CrossRefPubMedGoogle Scholar
  3. 3.
    Katze MG, DeCorato D, Safer B et al. Adenovirus VAI RNA complexes with the 68,000 Mr protein kinase to regulate its autophosphorylation and activity. EMBO J 1987; 6(3):689–697.PubMedGoogle Scholar
  4. 4.
    Maitra RK, McMillan NA, Desai S et al. HIV-1 TAR RNA has an intrinsic ability to activate interferon-inducible enzymes. Virology 1994; 204(2):823–827.CrossRefPubMedGoogle Scholar
  5. 5.
    Ito T, Yang M, May WS. RAX, a cellular activator for double-stranded RNA-dependent protein kinase during stress signaling. J Biol Chem 1999; 274(22): 15427–15432.CrossRefPubMedGoogle Scholar
  6. 6.
    Patel RC, Sen GC. PACT, a protein activator of the interferon-induced protein kinase, PKR. EMBO J 1998; 17(15):4379–4390.CrossRefPubMedGoogle Scholar
  7. 7.
    Nallagatla SR, Hwang J, Toroney R et al. 5′-triphosphate-dependent activation of PKR by RNAs with short stem-loops. Science 2007; 318(5855):1455–1458.CrossRefPubMedGoogle Scholar
  8. 8.
    Garcia MA, Gil J, Ventoso I et al. Impact of protein kinase PKR in cell biology: From antiviral to antiproliferative action. Microbiol Mol Biol Rev 2006; 70(4): 1032–1060.CrossRefPubMedGoogle Scholar
  9. 9.
    Williams BR. Signal integration via PKR. Sei STKE 2001; 2001(89):RE2.Google Scholar
  10. 10.
    Verma IM, Stevenson JK, Schwarz EM et al. Rel/NF-kappa B/I kappa B family: Intimate tales of association and dissociation. Genes Dev 1995; 9(22):2723–2735.CrossRefPubMedGoogle Scholar
  11. 11.
    Jiang Z, Zamanian-Daryoush M, Nie H et al. Poly(I-C)-induced Toll-like receptor 3 (TLR3)-mediated activation of NFkappa B and MAP kinase is through an interleukin-1 receptor-associated kinase (IRAK)-independent pathway employing the signaling components TLR3-TRAF6-TAK1-TAB2-PKR. J Biol Chem 2003; 278(19):16713–16719.CrossRefPubMedGoogle Scholar
  12. 12.
    Clemens MJ. PKR-A protein kinase regulated by double-stranded RNA. Int J Biochem Cell Biol 1997; 29(7):945–949.CrossRefPubMedGoogle Scholar
  13. 13.
    Beattie E, Paoletti E, Tartaglia J. Distinct patterns of IFN sensitivity observed in cells infected with vaccinia K3L-and E3L-mutant viruses. Virology 1995; 210(2):254–263.CrossRefPubMedGoogle Scholar
  14. 14.
    Langland JO, Pettiford S, Jiang B et al. Products of the porcine group C rotavirus NSP3 gene bind specifically to double-stranded RNA and inhibit activation of the interferon-induced protein kinase PKR. J Virol 1994; 68(6):3821–3829.PubMedGoogle Scholar
  15. 15.
    Shors T, Kibler KV, Perkins KB et al. Complementation of vaccinia virus deleted of the E3L gene by mutants of E3L. Virology 1997; 239(2):269–276.CrossRefPubMedGoogle Scholar
  16. 16.
    Langland JO, Cameron JM, Heck MC et al. Inhibition of PKR by RNA and DNA viruses. Virus Res 2006; 119(1): 100–110.CrossRefPubMedGoogle Scholar
  17. 17.
    Lu Y, Wambach M, Katze MG et al. Binding of the influenza virus NS1 protein to double-stranded RNA inhibits the activation of the protein kinase that phosphorylates the elF-2 translation initiation factor. Virology 1995; 214(l):222–228.CrossRefPubMedGoogle Scholar
  18. 18.
    Wang W, Riedel K, Lynch P et al. RNA binding by the novel helical domain of the influenza virus NS1 protein requires its dimer structure and a small number of specific basic amino acids. RNA 1999; 5(2): 195–205.CrossRefPubMedGoogle Scholar
  19. 19.
    Khoo D, Perez C, Mohr I. Characterization of RNA determinants recognized by the arginine-and proline-rich region of Us 11, a herpes simplex virus Type 1-encoded double-stranded RNA binding protein that prevents PKR activation. J Virol 2002; 76(23):11971–11981.CrossRefPubMedGoogle Scholar
  20. 20.
    Poppers J, Mulvey M, Perez C et al. Identification of a lytic-cycle Epstein-Barr virus gene product that can regulate PKR activation. J Virol 2003; 77(l):228–236.CrossRefPubMedGoogle Scholar
  21. 21.
    Vyas J, Elia A, Clemens MJ. Inhibition of the protein kinase PKR by the internal ribosome entry site of hepatitis C virus genomic RNA. RNA 2003; 9(7):858–870.CrossRefPubMedGoogle Scholar
  22. 22.
    Clarke PA, Schwemmle M, Schickinger J et al. Binding of Epstein-Barr virus small RNA EBER-1 to the double-stranded RNA-activated protein kinase DAI. Nucleic Acids Res 1991; 19(2):243–248.CrossRefPubMedGoogle Scholar
  23. 23.
    Sharp TV, Schwemmle M, Jeffrey I et al. Comparative analysis of the regulation of the interferon-inducible protein kinase PKR by Epstein-Barr virus RNAs EBER-1 and EBER-2 and adenovirus VAI RNA. Nucleic Acids Res 1993; 21(19):4483–4490.CrossRefPubMedGoogle Scholar
  24. 24.
    Clarke PA, Sharp NA, Clemens MJ. Translational control by the Epstein-Barr virus small RNA EBER-1. Reversal of the double-stranded RNA-induced inhibition of protein synthesis in reticulocyte lysates. EurJBiochem 1990; 193(3):635–641.Google Scholar
  25. 25.
    Gale MJ Jr, Korth MJ, Tang NM et al. Evidence that hepatitis C virus resistance to interferon is mediated through repression of the PKR protein kinase by the nonstructural 5A protein. Virology 1997; 230(2):217–227.CrossRefPubMedGoogle Scholar
  26. 26.
    Tan SL, Gale MJ Jr, Katze MG. Double-stranded RNA-independent dimerization of interferon-induced protein kinase PKR and inhibition of dimerization by the cellular P58IPK inhibitor. Mol Cell Biol 1998; 18(5):2431–2443.PubMedGoogle Scholar
  27. 27.
    Taylor DR, Shi ST, Romano PR et al. Inhibition of the interferon-inducible protein kinase PKR by HCVE2 protein. Science 1999; 285(5424): 107–110.CrossRefPubMedGoogle Scholar
  28. 28.
    Pavio N, Taylor DR, Lai MM. Detection of a novel unglycosylated form of hepatitis C virus E2 envelope protein that is located in the cytosol and interacts with PKR. J Virol 2002; 76(3): 1265–1272.PubMedGoogle Scholar
  29. 29.
    Lee TG, Tomita J, Hovanessian AG et al. Characterization and regulation of the 58,000-dalton cellular inhibitor of the interferon-induced, dsRNA-activated protein kinase. J Biol Chem 1992; 267(20): 14238–14243.PubMedGoogle Scholar
  30. 30.
    Romano PR, Zhang F, Tan SL et al. Inhibition of double-stranded RNA-dependent protein kinase PKR by vaccinia virus E3: role of complex formation and the E3 N-terminal domain. Mol Cell Biol 1998; 18(12):7304–7316.PubMedGoogle Scholar
  31. 31.
    Black TL, Barber GN, Katze MG. Degradation of the interferon-induced 68,000-M(r) protein kinase by poliovirus requires RNA. J Virol 1993; 67(2):791–800.PubMedGoogle Scholar
  32. 32.
    Chou J, Chen JJ, Gross M et al. Association of a M(r) 90,000 phosphoprotein with protein kinase PKR in cells exhibiting enhanced phosphorylation of translation initiation factor eIF-2 alpha and premature shutoff of protein synthesis after infection with gamma 134.5-mutants of herpes simplex virus 1. Proc Natl Acad Sei USA 1995; 92(23):10516–10520.CrossRefGoogle Scholar
  33. 33.
    Kazemi S, Papadopoulou S, Li S et al. Control of alpha subunit of eukaryotic translation initiation factor 2 (eIF2 a) phosphorylation by the human papillomavirus Type 18 E6 oncoprotein: implications for eIF2 alpha-dependent gene expression and cell death. Mol Cell Biol 2004; 24(8):3415–3429.CrossRefPubMedGoogle Scholar
  34. 34.
    Hashimoto C, Hudson KL, Anderson KV. The Toll gene of drosophila, required for dorsal-ventral embryonic polarity, appears to encode a transmembrane protein. Cell 1988; 52(2):269–279.CrossRefPubMedGoogle Scholar
  35. 35.
    Lemaitre B, Nicolas E, Michaut L et al. The dorsoventral regulatory gene cassette spatzle/Toll/cactus controls the potent antifungal response in drosophila adults. Cell 1996; 86(6):973–983.CrossRefPubMedGoogle Scholar
  36. 36.
    Zambon RA, Nandakumar M, Vakharia VN et al. The Toll pathway is important for an antiviral response in drosophila. Proc Natl Acad Sei USA 2005; 102(20):7257–7262.CrossRefGoogle Scholar
  37. 37.
    Yang LFR YL, Pavlovic J, Aguzzi A et al. Deficient signaling in mice devoid of double-stranded RNA-dependent protein kinase. EMBO J 1995; 14(24):6095–6106.PubMedGoogle Scholar
  38. 38.
    Zhou A, Paranjape JM, Der SD et al. Interferon action in triply deficient mice reveals the existence of alternative antiviral pathways. Virology 1999; 258(2):435–440.CrossRefPubMedGoogle Scholar
  39. 39.
    Lena Alexopoulou ACH, Ruslan Medzhitov, Richard Flavell A. Recognition of double-stranded RNA and activation of NF-B by Toll-like receptor 3. Nature 2001; 413:732–738.CrossRefGoogle Scholar
  40. 40.
    Schroder M, Bowie AG. TLR3 in antiviral immunity: Key player or bystander? Trends in Immunology 2005; 26(9):462–468.CrossRefPubMedGoogle Scholar
  41. 41.
    Matsumoto M, Funami K, Tanabe M et al. Subcellular localization of Toll-like receptor 3 in human dendritic cells. J Immunol 2003; 171(6):3154–3162.PubMedGoogle Scholar
  42. 42.
    Weber F, Wagner V, Rasmussen SB et al. Double-stranded RNA is produced by positive-strand RNA viruses and DNA viruses but not in detectable amounts by negative-strand RNA viruses. J Virol 2006; 80(10):5059–5064.CrossRefPubMedGoogle Scholar
  43. 43.
    Schulz O, Diebold SS, Chen M et al. Toll-like receptor 3 promotes cross-priming to virus-infected cells. Nature 2005; 433(7028):887–892.CrossRefPubMedGoogle Scholar
  44. 44.
    Hemmi H, Takeuchi O, Kawai T et al. A Toll-like receptor recognizes bacterial DNA. Nature 2000; 408(6813):740–745.CrossRefPubMedGoogle Scholar
  45. 45.
    Krug A, Luker GD, Barchet W et al. Herpes simplex virus Type 1 activates murine natural interfer-on-producing cells through toll-like receptor 9. Blood 2004; 103(4): 1433–1437.CrossRefPubMedGoogle Scholar
  46. 46.
    Lund J, Sato A, Akira S et al. Toll-like receptor 9-mediated recognition of Herpes simplex virus-2 by plasmacytoid dendritic cells. J Exp Med 2003; 198(3):513–520.CrossRefPubMedGoogle Scholar
  47. 47.
    Latz E, Schoenemeyer A, Visintin A et al. TLR9 signals after translocating from the ER to CpG DNA in the lysosome. Nat Immunol 2004; 5(2):190–198.CrossRefPubMedGoogle Scholar
  48. 48.
    Heil F, Hemmi H, Hochrein H et al. Species-specific recognition of single-stranded RNA via toll-like receptor 7 and 8. Science 2004; 303(5663):1526–1529.CrossRefPubMedGoogle Scholar
  49. 49.
    Lund JM, Alexopoulou L, Sato A et al. Recognition of single-stranded RNA viruses by Toll-like receptor 7. Proc Natl Acad Sei USA 2004; 101(15):5598–5603.CrossRefGoogle Scholar
  50. 50.
    Diebold SS, Massacrier C, Akira S et al. Nucleic acid agonists for Toll-like receptor 7 are defined by the presence of uridine ribonucleotides. Eur J Immunol 2006; 36(12):3256–3267.CrossRefPubMedGoogle Scholar
  51. 51.
    Kurt-Jones EA, Popova L, Kwinn L et al. Pattern recognition receptors TLR4 and CD 14 mediate response to respiratory syncytial virus. Nat Immunol 2000; 1(5):398–401.CrossRefPubMedGoogle Scholar
  52. 52.
    Ehl S, Bischoff R, Ostler T et al. The role of Toll-like receptor 4 versus interleukin-12 in immunity to respiratory syncytial virus. Eur J Immunol 2004; 34(4): 1146–1153.CrossRefPubMedGoogle Scholar
  53. 53.
    Kurt-Jones EA, Chan M, Zhou S et al. Herpes simplex virus 1 interaction with Toll-like receptor 2 contributes to lethal encephalitis. Proc Natl Acad Sei USA 2004; 101(5):1315–1320.CrossRefGoogle Scholar
  54. 54.
    Zhu J, Martinez J, Huang X et al. Innate immunity against vaccinia virus is mediated by TLR2 and requires TLR-independent production of IFN-beta. Blood 2007; 109(2):619–625.CrossRefPubMedGoogle Scholar
  55. 55.
    O’Neill LA, Bowie AG. The family of five: TIR-domain-containing adaptors in Toll-like receptor signalling. Nat Rev Immunol 2007; 7(5):353–364.CrossRefPubMedGoogle Scholar
  56. 56.
    Carty M, Goodbody R, Schroder M et al. The human adaptor SARM negatively regulates adaptor protein TRIF-dependent Toll-like receptor signaling. Nat Immunol 2006; 7(10):1074–1081.CrossRefPubMedGoogle Scholar
  57. 57.
    Keating SE, Maloney GM, Moran EM et al. IRAK-2 participates in multiple toll-like receptor signaling pathways to NFkappaB via activation of TRAF6 ubiquitination. J Biol Chem 2007; 282(46):33435–33443.CrossRefPubMedGoogle Scholar
  58. 58.
    Bowie A, Kiss-Toth E, Symons JA et al. 46R and A52R from vaccinia virus are antagonists of host IL-1 and toll-like receptor signaling. Proc Natl Acad Sei USA 2000; 97(18):10162–10167.CrossRefGoogle Scholar
  59. 59.
    Harte MT, Haga IR, Maloney G et al. The poxvirus protein A52R targets Toll-like receptor signaling complexes to suppress host defense. J Exp Med 2003; 197(3):343–351.CrossRefPubMedGoogle Scholar
  60. 60.
    Maloney G, Schroder M, Bowie AG. Vaccinia virus protein A52R activates p38 mitogen-activated protein kinase and potentiates lipopolysaccharide-induced interleukin-10. J Biol Chem 2005; 280(35):30838–30844.CrossRefPubMedGoogle Scholar
  61. 61.
    Meylan E, Burns K, Hofmann K et al. RIPl is an essential mediator of Toll-like receptor 3-induced NF-kappa B activation. Nat Immunol 2004; 5(5):503–507.CrossRefPubMedGoogle Scholar
  62. 62.
    Cusson-Hermance N, Khurana S, Lee TH et al. Ripl mediates the Trif-dependent toll-like receptor 3-and 4-induced NF-{kappa}B activation but does not contribute to interferon regulatory factor 3 activation. J Biol Chem 2005; 280(44):36560–36566.CrossRefPubMedGoogle Scholar
  63. 63.
    Kim TW, Staschke K, Bulek K et al. A critical role for IRAK4 kinase activity in Toll-like receptor-mediated innate immunity. J Exp Med 2007; 204(5):1025–1036.CrossRefPubMedGoogle Scholar
  64. 64.
    Uematsu S, Sato S, Yamamoto M et al. Interleukin-1 receptor-associated kinase-1 plays an essential role for Toll-like receptor (TLR)7-and TLR9-mediated interferon-{alpha} induction. J Exp Med 2005; 201(6):915–923.CrossRefPubMedGoogle Scholar
  65. 65.
    Hoshino K, Sugiyama T, Matsumoto M et al. IkappaB kinase-alpha is critical for interferon-alpha production induced by Toll-like receptors 7 and 9. Nature 2006; 440(7086):949–953.CrossRefPubMedGoogle Scholar
  66. 66.
    Stack J, Haga IR, Schroder M et al. Vaccinia virus protein A46R targets multiple Toll-like-interleukin-1 receptor adaptors and contributes to virulence. J Exp Med 2005; 201(6):1007–1018.CrossRefPubMedGoogle Scholar
  67. 67.
    Cirl C, Wieser A, Yadav M et al. Subversion of Toll-like receptor signaling by a unique family of bacterial Toll/interleukin-1 receptor domain-containing proteins. Nat Med 2008; 14(4):399–406.CrossRefPubMedGoogle Scholar
  68. 68.
    Li K, Foy E, Ferreon JC et al. Immune evasion by hepatitis C virus NS3/4A protease-mediated cleavage of the Toll-like receptor 3 adaptor protein TRIE Proc Natl Acad Sei USA 2005; 102(8):2992–2997.CrossRefGoogle Scholar
  69. 69.
    Wang T, Town T, Alexopoulou L et al. Toll-like receptor 3 mediates West Nile virus entry into the brain causing lethal encephalitis. Nat Med 2004; 10(12):1366–1373.CrossRefPubMedGoogle Scholar
  70. 70.
    Hutchens M, Luker KE, Sottile P et al. TLR3 increases disease morbidity and mortality from vaccinia infection. J Immunol 2008; 180(1):483–491.PubMedGoogle Scholar
  71. 71.
    Moore KW, de Waal Malefyt R, Coffman RL et al. Interleukin-10 and the interleukin-10 receptor. Annu Rev Immunol 2001; 19:683–765.CrossRefPubMedGoogle Scholar
  72. 72.
    Brooks DG, Trifilo MJ, Edelmann KH et al. Interleukin-10 determines viral clearance or persistence in vivo. Nat Med 2006; 12(11): 1301–1309CrossRefPubMedGoogle Scholar
  73. 73.
    Ejrnaes M, Filippi CM, Martinic MM et al. Resolution of a chronic viral infection after interleukin-10 receptor blockade. J Exp Med 2006; 203(11):2461–2472.CrossRefPubMedGoogle Scholar
  74. 74.
    Jude BA, Pobezinskaya Y, Bishop J et al. Subversion of the innate immune system by a retrovirus. Nat Immunol 2003; 4(6):573–578.CrossRefPubMedGoogle Scholar
  75. 75.
    Yoneyama M, Kikuchi M, Natsukawa T et al. The RNA helicase RIG-I has an essential function in double-stranded RNA-induced innate antiviral responses. Nat Immunol 2004; 5(7):730–737.CrossRefPubMedGoogle Scholar
  76. 76.
    Andrejeva J, Childs KS, Young DF et al. The V proteins of paramyxoviruses bind the IFN-inducible RNA helicase, mda-5 and inhibit its activation of the IFN-beta promoter. Proc Natl Acad Sei USA 2004; 101(49):17264–17269.CrossRefGoogle Scholar
  77. 77.
    Saito T, Hirai R, Loo YM et al. Regulation of innate antiviral defenses through a shared repressor domain in RIG-I and LGP2. Proc Natl Acad Sei USA 2007; 104(2):582–587.CrossRefGoogle Scholar
  78. 78.
    Rothenfusser S, Goutagny N, DiPerna G et al. The RNA helicase Lgp2 inhibits TLR-independent sensing of viral replication by retinoic acid-inducible gene-I. J Immunol 2005; 175(8):5260–5268.PubMedGoogle Scholar
  79. 79.
    Komuro A, Horvath CM. RNA-and virus-independent inhibition of antiviral signaling by RNA helicase LGP2. J Virol 2006; 80(24): 12332–12342.CrossRefPubMedGoogle Scholar
  80. 80.
    Kato H, Takeuchi O, Sato S et al. Differential roles of MDA5 and RIG-I helicases in the recognition of RNA viruses. Nature 2006; 44l(7089):101–105.CrossRefGoogle Scholar
  81. 81.
    Takeuchi O, Akira S. Recognition of viruses by innate immunity. Immunol Rev 2007; 220:214–224.CrossRefPubMedGoogle Scholar
  82. 82.
    Pichlmair A, Schulz O, Tan CP et al. RIG-I-mediated antiviral responses to single-stranded RNA bearing 5′-phosphates. Science 2006; 314(5801):997–1001.CrossRefPubMedGoogle Scholar
  83. 83.
    Hornung V, Ellegast J, Kim S et al 5′-Triphosphate RNA is the ligand for RIG-I. Science 2006; 314(5801):994–997.CrossRefPubMedGoogle Scholar
  84. 84.
    Kawai T, Takahashi K, Sato S et al. IPS-1, an adaptor triggering RIG-I-and Mda5-mediated Type I interferon induction. Nat Immunol 2005; 6(10):981–988.CrossRefPubMedGoogle Scholar
  85. 85.
    Seth RB, Sun L, Ea CK et al. Identification and characterization of MAVS, a mitochondrial antiviral signaling protein that activates NF-kappaB and IRF 3. Cell 2005; 122(5):669–682.CrossRefPubMedGoogle Scholar
  86. 86.
    Xu LG, Wang YY, Han KJ et al. VISA is an adapter protein required for virus-triggered IFN-beta signaling. Mol Cell 2005; 19(6):727–740.CrossRefPubMedGoogle Scholar
  87. 87.
    Meylan E, Curran J, Hofmann K et al. Cardif is an adaptor protein in the RIG-I antiviral pathway and is targeted by hepatitis C virus. Nature 2005; 437(7062):1167–1172.CrossRefPubMedGoogle Scholar
  88. 88.
    Kumar H, Kawai T, Kato H et al. Essential role of IPS-1 in innate immune responses against RNA viruses. J Exp Med 2006; 203(7):1795–1803.CrossRefPubMedGoogle Scholar
  89. 89.
    Sun Q, Sun L, Liu HH et al. The specific and essential role of MAVS in antiviral innate immune responses. Immunity 2006; 24(5):633–642.CrossRefPubMedGoogle Scholar
  90. 90.
    Loo YM, Owen DM, Li K et al. Viral and therapeutic control of IFN-beta promoter stimulator 1 during hepatitis C virus infection. Proc Natl Acad Sei USA 2006; 103(15):6001–6006.CrossRefGoogle Scholar
  91. 91.
    Saha SK, Pietras EM, He JQ et al. Regulation of antiviral responses by a direct and specific interaction between TRAF3 and Cardif. EMBO J 2006; 25(l4):3257–3263.CrossRefPubMedGoogle Scholar
  92. 92.
    Pichlmair A, Reis e Sousa C. Innate recognition of viruses. Immunity 2007; 27(3):370–383.CrossRefPubMedGoogle Scholar
  93. 93.
    Yang Y, Liang Y, Qu L et al. Disruption of innate immunity due to mitochondrial targeting of a picornaviral protease precursor. Proc Natl Acad Sei USA 2007; 104(17):7253–7258.CrossRefGoogle Scholar
  94. 94.
    Takaoka A, Wang Z, Choi MK et al. DAI (DLM-1/ZBP1) is a cytosolic DNA sensor and an activator of innate immune response. Nature 2007; 448(7152):501–505.CrossRefPubMedGoogle Scholar
  95. 95.
    Kim YG, Muralinath M, Brandt T et al. A role for Z-DNA binding in vaccinia virus pathogenesis. Proc Natl Acad Sei USA 2003; 100(12):6974–6979.CrossRefGoogle Scholar
  96. 96.
    Unterholzner L, Bowie AG. The interplay between viruses and innate immune signaling: Recent insights and therapeutic opportunities. Biochem Pharmacol 2008; 75(3):589–602.CrossRefPubMedGoogle Scholar
  97. 97.
    Unterstab G, Ludwig S, Anton A et al. Viral targeting of the interferon-ta-inducing Traf family member-associated NF-{kappa}B activator (TANK)-binding kinase-1. Proc Natl Acad Sei USA 2005; 102(38):13640–13645.CrossRefGoogle Scholar
  98. 98.
    Lin R, Genin P, Mamane Y et al. HHV-8 encoded vIRF-1 represses the interferon antiviral response by blocking IRF-3 recruitment of the CBP/p300 coactivators. Oncogene 2001; 20(7):800–811.Google Scholar
  99. 99.
    Santoro MG, Rossi A, Amici C. NF-kappaB and virus infection: Who controls whom. EMBO J 2003; 22(ll):2552–2560.CrossRefPubMedGoogle Scholar
  100. 100.
    Hiscott J, Nguyen TL, Arguello M et al. Manipulation of the nuclear factor-kappaB pathway and the innate immune response by viruses. Oncogene 2006; 25(51):6844–6867.CrossRefPubMedGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2009

Authors and Affiliations

  • Orla Mulhern
    • 1
  • Barry Harrington
    • 1
  • Andrew G. Bowie
    • 1
  1. 1.School of Biochemistry and ImmunologyTrinity College DublinDublin 2Ireland

Personalised recommendations