Innate Immune Evasion by Staphylococci

Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 666)


When bacteria invade the human host, they are directly confronted with a serious threat, the human innate immune system. This chapter describes the challenge that a staphylococci face and recent findings on how this bacterium counteracts the massive attack of this innate immune system. In order to survive within the human host, staphylococci have evolved a wide variety of small, excreted proteins that interfere with subsequent steps of the human innate immune system cascade.


Staphylococcus Aureus Innate Immune System Chronic Granulomatous Disease Immune Evasion Toxic Shock Syndrome 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Wu S, Shen L. Plasmid analysis and phage typing in the study of staphylococcal colonization and disease in newborn infants. Chin Med Sei J 1993; 8:157–161.Google Scholar
  2. 2.
    Perl TM, Golub JE. New approaches to reduce Staphylococcus aureus nosocomial infection rates: treating S. aureus nasal carriage. Ann Pharmacother 1998; 32:S7–16.Google Scholar
  3. 3.
    Kluytmans J, van Belkum A, Verbrugh H. Nasal carriage of Staphylococcus aureus: epidemiology, underlying mechanisms and associated risks. Clin Microbiol Rev 1997; 10:505–520.PubMedGoogle Scholar
  4. 4.
    Norse SI. Staphylococci. In: Davis BD, Dulbecco R, Eisen HN, et al, eds. Microbiology. Hagertown: Harper and Row, 1980:624.Google Scholar
  5. 5.
    Knox KW, Wicken AJ. Immunological properties of teichoic acids. Bacteriol Rev 1973; 37:215–257.PubMedGoogle Scholar
  6. 6.
    Foster TJ, Hook M. Surface protein adhesins of Staphylococcus aureus. Trends Microbiol 1998; 6:484–488.CrossRefPubMedGoogle Scholar
  7. 7.
    Coleman G, Jakeman CM, Martin N. Patterns of total extracellular protein secretion by a number of clinically isolated strains of Staphylococcus aureus. J Gen Microbiol 1978; 107:189–192.PubMedGoogle Scholar
  8. 8.
    Sperber WH. The identification of staphylococci in clinical and food microbiology laboratories. Crit Rev Clin Lab Sei 1976; 7:121–184.CrossRefGoogle Scholar
  9. 9.
    Bhakdi S, Muhly M, Fussle R. Correlation between toxin binding and hemolytic activity in membrane damage by staphylococcal alpha-toxin. Infect Immun 1984; 46:318–323.PubMedGoogle Scholar
  10. 10.
    Bubeck Wardenburg J, Schneewind O. Vaccine protection against Staphylococcus aureus pneumonia J Exp Med 2008; 205:287–294.CrossRefPubMedGoogle Scholar
  11. 11.
    Möllby R. Isolation and properties of membrane damaging toxins. In: Easmon CSF, Adlam C, eds. Staphylococci and staphylococcal infections. 2 ed. London: Academic Press, 1983:619–669.Google Scholar
  12. 12.
    Prévost G, Cribier B, Couppie P et al. Panton-Valentine leucocidin and gammahemolysin from Staphylococcus aureus ATCC 49775 are encoded by distinct genetic loci and have different biological activities. Infect Immun 1995; 63:4121–4129.PubMedGoogle Scholar
  13. 13.
    Prévost G, Couppie P, Prévost P et al. Epidemiological data on Staphylococcus aureus strains producing synergohymenotropic toxins. J Med Microbiol 1995; 42:237–245.CrossRefPubMedGoogle Scholar
  14. 14.
    Schmitz FJ, Veldkamp KE, Van Kessel KP et al. Delta-toxin from Staphylococcus aureus as a costimulator of human neutrophil oxidative burst. J Infect Dis 1997; 176:1531–1537.CrossRefPubMedGoogle Scholar
  15. 15.
    Wang R, Braughton KR, Kretschmer D et al. Identification of novel cytolytic peptides as key virulence determinants for community-associated MRSA. Nat Med 2007; 13:1510–1514.CrossRefPubMedGoogle Scholar
  16. 16.
    Kuroda M, Ohta T, Uchiyama I et al. Whole genome sequencing of meticillin-resistant Staphylococcus aureus. Lancet 2001; 357:1225–1240.CrossRefPubMedGoogle Scholar
  17. 17.
    Marrack P, Kappler J. The staphylococcal enterotoxins and their relatives. Science 1990; 248:705–711.CrossRefPubMedGoogle Scholar
  18. 18.
    Murray DL, Ohlendorf DH, Schlievert PM. Staphylococcal and streptococcal superantigens: Their role in human diseases. ASM News 1995; 61:229–235.Google Scholar
  19. 19.
    Alber G, Hammer DK, Fleischer B. Relationship between enterotoxic-and T-lymphocyte-stimulating activity of staphylococcal enterotoxin B. J Immunol 1990; 144:4501–4506.PubMedGoogle Scholar
  20. 20.
    Harris TO, Grossman D, Kappler JW et al. Lack of complete correlation between emetic and T-cell-stimulatory activities of staphylococcal enterotoxins. Infect Immun 1993; 61:3175–3183.PubMedGoogle Scholar
  21. 21.
    Bailey CJ, Lockhart BP, Redpath MB et al. The epidermolytic (exfoliative) toxins of Staphylococcus aureus. Med Microbiol Immunol 1995; 184:53–61.CrossRefPubMedGoogle Scholar
  22. 22.
    Elias PM, Fritsch P, Dahl MV et al. Staphylococcal toxic epidermal necrolysis: pathogenesis and studies on the subcellular site of action of exfoliatin. J Invest Dermatol 1975; 65:501–512.CrossRefPubMedGoogle Scholar
  23. 23.
    Labandeira-Rey M, Couzon F, Boisset S et al. Staphylococcus aureus Panton-Valentine Leukocidin Causes Necrotizing Pneumonia Science 2007; 315:1130–1133.Google Scholar
  24. 24.
    Bubeck Wardenburg J, Bae T, Otto M et al. Poring over pores: alpha-hemolysin and Panton-Valentine leukocidin in Staphylococcus aureus pneumonia. Nat Med 2007; 13:1405–1406.CrossRefPubMedGoogle Scholar
  25. 25.
    Lambris JD, Ricklin D, Geisbrecht BV. Complement evasion by human pathogens. Nat Rev Microbiol 2008; 6:132–142.CrossRefPubMedGoogle Scholar
  26. 26.
    Rooijakkers SH, van Strijp JA. Bacterial complement evasion. Mol Immunol 2007; 44:23–32.CrossRefPubMedGoogle Scholar
  27. 27.
    Metschnikoff E. Sur la lutte des cellules de l’organisme contre l’invasion des microbes. Annales de l’institut Pasteur 2001; 1:321.Google Scholar
  28. 28.
    Heifets L. Centennial of Metchnikoff’s discovery. J Reticuloendothel Soc 1982; 31:381–391.PubMedGoogle Scholar
  29. 29.
    Meager A. Cytokine regulation of cellular adhesion molecule expression in inflammation. Cytokine Growth Factor Rev 1999; 10:27–39.CrossRefPubMedGoogle Scholar
  30. 30.
    Dunon D, Piali L, Imhof BA. To stick or not to stick: the new leukocyte homing paradigm. Curr Opin Cell Biol 1996; 8:714–723.CrossRefPubMedGoogle Scholar
  31. 31.
    Carlos TM, Harlan JM. Leukocyte-endothelial adhesion molecules. Blood 1994; 84:2068–2101.PubMedGoogle Scholar
  32. 32.
    Muller WA, Weigl SA, Deng X et al. PEC AM-1 is required for transendothelial migration of leukocytes. J Exp Med 1993; 178:449–460.CrossRefPubMedGoogle Scholar
  33. 33.
    Marasco WA, Phan SH, Krutzsch H et al. Purification and identification of formyl-methionyl-leucyl-phenylalanine as the major peptide neutrophil chemotactic factor produced by Escherichia coli. J Biol Chem 1984; 259:5430–5439.PubMedGoogle Scholar
  34. 34.
    Carp H. Mitochondrial N-formylmethionyl proteins as chemoattractants for neutrophils. J Exp Med 1982; 155:264–275.CrossRefPubMedGoogle Scholar
  35. 35.
    Schiffmann E, Corcoran BA, Wahl SM. N-formyl-methionyl peptides and chemoattractants for leukocytes. Proc Natl Acad Sei USA 1975; 72:1059.CrossRefGoogle Scholar
  36. 36.
    Baggiolini M, Dewald B, Moser B. Interleukin-8 and related chemotactic cytokines—CXC and CC chemokines. Adv Immunol 1994; 55:97–179.CrossRefPubMedGoogle Scholar
  37. 37.
    Graves DT, Jiang Y. Chemokines, a family of chemotactic cytokines. Crit Rev Oral Biol Med 1995; 6:109–118.CrossRefPubMedGoogle Scholar
  38. 38.
    Kelvin DJ, Michiel DF, Johnston JA et al. Chemokines and serpentines: the molecular biology of chemokine receptors. J Leukoc Biol 1993; 54:604–612.PubMedGoogle Scholar
  39. 39.
    Bokoch GM. Chemoattractant signaling and leukocyte activation. Blood 1995; 86:1649–1660.PubMedGoogle Scholar
  40. 40.
    Premack BA, Schall TJ. Chemokine receptors: gateways to inflammation and infection. Nat Med 1996; 2:1174–1178.CrossRefPubMedGoogle Scholar
  41. 41.
    Laudanna C, Campbell JJ, Butcher EC. Role of Rho in chemoattractant-activated leukocyte adhesion through integrins. Science 1996; 271:981–983.CrossRefPubMedGoogle Scholar
  42. 42.
    Rot A, Henderson LE, Sowder R et al. Staphylococcus aureus tetrapeptide with high chemotactic potency and efficacy for human leukocytes. J Leukoc Biol 1989; 45:114–120.PubMedGoogle Scholar
  43. 43.
    Yao L, Lowy FD, Berman JW Interleukin-8 gene expression in Staphylococcus aureus-infected endothelial cells. Infect Immun 1996; 64:3407–3409.PubMedGoogle Scholar
  44. 44.
    Standiford TJ, Arenberg DA, Danforth JM et al. Lipoteichoic acid induces secretion of interleukin-8 from human blood monocytes: a cellular and molecular analysis. Infect Immun 1994; 62:119–125.PubMedGoogle Scholar
  45. 45.
    Riber U, Espersen F, Wilkinson BJ et al. Neutrophil chemotactic activity of peptidoglycan. A comparison between Staphylococcus aureus and Staphylococcus epidermidis. APMIS 1990; 98:881–886.CrossRefPubMedGoogle Scholar
  46. 46.
    Konig B, Prévost G, Piémont Y et al. Effects of Staphylococcus aureus leukocidins on inflammatory mediator release from human granulocytes. J Infect Dis 1995; 171:607–613.PubMedGoogle Scholar
  47. 47.
    Hensler T, Koller M, Geoffroy C et al. Staphylococcus aureus toxic shock syndrome toxin 1 and Streptococcus pyogenes erythrogenic toxin A modulate inflammatory mediator release from human neutrophils. Infect Immun 1993; 61:1055–1061.PubMedGoogle Scholar
  48. 48.
    Griffin FM Jr, Griffin JA, Silverstein SC. Studies on the mechanism of phagocytosis II. The interaction of macrophages with anti-immunoglobulin IgG-coated bone marrow-derived lymphocytes. J Exp Med 1976; 144:788–809.CrossRefPubMedGoogle Scholar
  49. 49.
    Griffin FM Jr, Griffin JA, Leider JE et al. Studies on the mechanism of phagocytosis I. Requirements for circumferential attachment of particle-bound ligands to specific receptors on the macrophage plasma membrane. J Exp Med 1975; 142:1263–1282.CrossRefPubMedGoogle Scholar
  50. 50.
    Babior BM. Oxygen-dependent microbial killing by phagocytes (second of two parts). N Engl J Med 1978; 298:721–725.PubMedGoogle Scholar
  51. 51.
    Babior BM. Oxygen-dependent microbial killing by phagocytes (first of two parts). N Engl J Med 1978; 298:659–668.PubMedGoogle Scholar
  52. 52.
    Klebanoff SJ. Antimicrobial mechanisms in neutrophilic polymorphonuclear leukocytes. Semin Hematol 1975; 12:117–142.PubMedGoogle Scholar
  53. 53.
    Segal BH, Leto TL, Gallin JI et al. Genetic, biochemical and clinical features of chronic granulomatous disease. Medicine 2000; 79:170–200.CrossRefPubMedGoogle Scholar
  54. 54.
    Johnston RB Jr. Clinical aspects of chronic granulomatous disease. Curr Opin Hematol 2001; 8:17–22.CrossRefPubMedGoogle Scholar
  55. 55.
    Veldkamp KE, Heezius HC, Verhoef J et al. Modulation of Neutrophil Chemokine Receptors by Staphylococcus aureus Supernate. Infect Immun 2000; 68:5908–5913.CrossRefPubMedGoogle Scholar
  56. 56.
    de Haas CJ, Veldkamp KE, Peschel A et al. Chemotaxis inhibitory protein of Staphylococcus aureus, a bacterial anti-inflammatory agent. J Exp Med 2004; 199:687–695.CrossRefPubMedGoogle Scholar
  57. 57.
    Fedtke I, Götz F, Peschel A. Bacterial evasion of innate host defenses—the Staphylococcus aureus lesson. Int J Med Microbiol 2004; 294:189–194.CrossRefPubMedGoogle Scholar
  58. 58.
    Foster TJ. Immune evasion by staphylococci. Nat Rev Microbiol 2005; 3:948–958.CrossRefPubMedGoogle Scholar
  59. 59.
    van Belkum A. Staphylococcal colonization and infection: homeostasis versus disbalance of human(innate) immunity and bacterial virulence. Curr Opin Infect Dis 2006; 19:339–344.CrossRefPubMedGoogle Scholar
  60. 60.
    Chavakis T, Preissner KT, Herrmann M. The anti-inflammatory activities of Staphylococcus aureus. Trends Immunol 2007; 28:408–418.CrossRefPubMedGoogle Scholar
  61. 61.
    Nizet V. Understanding how leading bacterial pathogens subvert innate immunity to reveal novel therapeutic targets. J Allergy Clin Immunol 2007; 120:13–22CrossRefPubMedGoogle Scholar
  62. 62.
    Rooijakkers SH, van Kessel KP, van Strijp JA. Staphylococcal innate immune Evasion. Trends Microbiol 2005; 13:596–601.CrossRefPubMedGoogle Scholar
  63. 63.
    Rooijakkers SH, Ruyken M, Roos A et al. Immune evasion by a staphylococcal complement inhibitor that acts on C3 convertases. Nat Immunol 2005; 6:920–927.CrossRefPubMedGoogle Scholar
  64. 64.
    Rooijakkers SH, Ruyken M, van Roon J et al. Early expression of SCIN and CHIPS drives instant immune evasion by Staphylococcus aureus. Cell Microbiol 2006; 8:1282–1293.CrossRefPubMedGoogle Scholar
  65. 65.
    van Wamel WJ, Rooijakkers SH, Ruyken M et al. The innate immune modulators staphylococcal complement inhibitor and Chemotaxis inhibitory protein of Staphylococcus aureus are located on beta-hemolysin-converting bacteriophages. J Bacteriol 2006; 188:1310–1315.CrossRefPubMedGoogle Scholar
  66. 66.
    Rooijakkers SH, Milder FJ, Bardoel BW et al. Staphylococcal complement inhibitor: structure and active sites. J Immunol 2007; 179:2989–2998.PubMedGoogle Scholar
  67. 67.
    Jongerius I, Kohl J, Pandey MK et al. Staphylococcal complement evasion by various convertase-blocking molecules. J Exp Med 2007; 204:2461–2471.CrossRefPubMedGoogle Scholar
  68. 68.
    Lee LY, Liang X, Höök M et al. Identification and characterization of the C3 binding domain of the Staphylococcus aureus extracellular fibrinogen-binding protein (Efb). J Biol Chem 2004; 279:50710–50716.CrossRefPubMedGoogle Scholar
  69. 69.
    Lee LY, Höök M, Haviland D et al. Inhibition of complement activation by a secreted Staphylococcus aureus protein. J Infect Dis 2004; 190:571–579.CrossRefPubMedGoogle Scholar
  70. 70.
    Verhoef J et al. Staphylococci and other micrococci. In: Cohen J, Powderly WG, eds. Infectious Disease. New York: Elsevier (Mosby), 2004:2119–2132.Google Scholar
  71. 71.
    Gómez MI, Lee A, Reddy B et al. Staphylococcus aureus protein A induces airway epithelial inflamma-tory responses by activating TNFR1. Nat Med 2004; 10:842–848.CrossRefPubMedGoogle Scholar
  72. 72.
    Langley R, Wines B, Willoughby N et al. The staphylococcal superantigen-like protein 7 binds IgA and complement C5 and inhibits IgA-Fc alpha RI binding and serum killing of bacteria. J Immunol 2005; 174:2926–2933.PubMedGoogle Scholar
  73. 73.
    Bestebroer J, Poppelier MJ, Ulfman LH et al. Staphylococcal superantigen-like 5 binds PSGL-1 and inhibits P-selectin-mediated neutrophil rolling. Blood 2007; 109:2936–2943.PubMedGoogle Scholar
  74. 74.
    Haas PJ, de Haas CJ, Poppelier MJ et al. The structure of the C5a receptor-blocking domain of Chemotaxis inhibitory protein of Staphylococcus aureus is related to a group of immune evasive molecules. J Mol Biol 2005; 353:859–872.CrossRefPubMedGoogle Scholar
  75. 75.
    Baker HM, Basu I, Chung MC et al. Crystal structures of the staphylococcal toxin SSL5 in complex with sialyl Lewis X reveal a conserved binding site that shares common features with viral and bacterial sialic acid binding proteins. J Mol Biol 2007; 374:1298–1308.CrossRefPubMedGoogle Scholar
  76. 76.
    Chavakis T, Hussain M, Kanse SM et al. Staphylococcus aureus extracellular adherence protein serves as anti-inflammatory factor by inhibiting the recruitment of host leukocytes. Nat Med 2002; 8:687–693.CrossRefPubMedGoogle Scholar
  77. 77.
    Haggar A, Ehrnfelt C, Holgersson J et al. The extracellular adherence protein from Staphylococcus aureus inhibits neutrophil binding to endothelial cells. Infect Immun 2004; 72:6164–6167.CrossRefPubMedGoogle Scholar
  78. 78.
    Xie C, Alcaide P, Geisbrecht BV et al. Suppression of experimental autoimmune encephalomyelitis by extracellular adherence protein of Staphylococcus aureus. J Exp Med 2006; 203:985–994.CrossRefPubMedGoogle Scholar
  79. 79.
    Wright AJ, Higginbottom A, Philippe D et al. Characterisation of receptor binding by the Chemotaxis inhibitory protein of Staphylococcus aureus and the effects of the host immune response. Mol Immunol 2007; 44:2507–2517.CrossRefPubMedGoogle Scholar
  80. 80.
    Postma B, Kleibeuker W, Poppelier MJ et al. Residues 10-18 within the C5a receptor N terminus compose a binding domain for Chemotaxis inhibitory protein of Staphylococcus aureus. J Biol Chem 2005; 280:2020–2027.CrossRefPubMedGoogle Scholar
  81. 81.
    Postma B, Poppelier MJ, van Galen JC et al. Chemotaxis inhibitory protein of Staphylococcus aureus binds specifically to the C5a and formylated peptide receptor. J Immunol 2004; 172:6994–7001.PubMedGoogle Scholar
  82. 82.
    Haas PJ, de Haas CJ, Kleibeuker W et al. N-terminal residues of the Chemotaxis inhibitory protein of Staphylococcus aureus are essential for blocking formylated peptide receptor but not C5a receptor. J Immunol 2004; 173:5704–5711.PubMedGoogle Scholar
  83. 83.
    Prat C, Bestebroer J, de Haas CJ et al. A new staphylococcal anti-inflammatory protein that antagonizes the formyl peptide receptor-like 1. J Immunol 2006; 177:8017–8026.PubMedGoogle Scholar
  84. 84.
    Rooijakkers SH, van Wamel WJ, Ruyken M et al. Anti-opsonic properties of staphylokinase. Microbes Infect 2005; 7:476–484.CrossRefPubMedGoogle Scholar
  85. 85.
    Wines BD, Willoughby N, Fraser JD et al. A competitive mechanism for staphylococcal toxin SSL7 inhibiting the leukocyte IgA receptor, Fc alphaRI, is revealed by SSL7 binding at the C a2/C a3 interface of IgA. J Biol Chem 2006; 281:1389–1393.CrossRefPubMedGoogle Scholar
  86. 86.
    Ramsland PA, Willoughby N, Trist HM et al. Structural basis for evasion of IgA immunity by Staphy-lococcus aureus revealed in the complex of SSL7 with Fc of human IgAl. Proc Natl Acad Sei USA 2007; 104:15051–15056.CrossRefGoogle Scholar
  87. 87.
    Jin T, Bokarewa M, Foster T et al. Staphylococcus aureus resists human defensins by production of staphylokinase, a novel bacterial evasion mechanism. J Immunol 2004; 172:1169–1176.PubMedGoogle Scholar
  88. 88.
    Goerke C, Wirtz C, Flückiger U et al. Extensive phage dynamics in Staphylococcus aureus contributes to adaptation to the human host during infection. Mol Microbiol 2006; 61:1673–1685.CrossRefPubMedGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2009

Authors and Affiliations

  1. 1.Medical MicrobiologyUMC Utrecht G04-614UtrechtThe Netherlands

Personalised recommendations