Bacterial Toxins as Immunomodulators

Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 666)


Bacterial toxins are the causative agent of pathology in a variety of diseases. Although not always the primary target of these toxins, many have been shown to have potent immuno-modulatory effects, for example, inducing immune responses to co-administered antigens and suppressing activation of immune cells. These abilities of bacterial toxins can be harnessed and used in a therapeutic manner, such as in vaccination or the treatment of autoimmune diseases. Furthermore, the ability of toxins to gain entry to cells can be used in novel bacterial toxin based immuno-therapies in order to deliver antigens into MHC Class I processing pathways. Whether the immunomodulatory properties of these toxins arose in order to enhance bacterial survival within hosts, to aid spread within the population or is pure serendipity, it is interesting to think that these same toxins potentially hold the key to preventing or treating human disease.


Experimental Autoimmune Encephalomyelitis Adenylate Cyclase Listeria Monocytogenes Cholera Toxin Pertussis Toxin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.


  1. 1.
    Roux E, Yersin A. Contribution a letude de la diphtherie. Annales de l’Institut Pasteur 1888; 2:629–661.Google Scholar
  2. 2.
    Smith H. The basis of immunity to anthrax. Proc R Soc Med 1958; 51(5):375–377.PubMedGoogle Scholar
  3. 3.
    Stanley JL, Smith H. Purification of factor I and recognition of a third factor of the anthrax toxin. J Gen Microbiol 1961; 26:49–63.PubMedGoogle Scholar
  4. 4.
    Smith H, Stoner HB. Anthrax toxic complex. Fed Proc 1967; 26(5):1554–1557.PubMedGoogle Scholar
  5. 5.
    Singh Y, Klimpel KR, Quinn CP et al. The carboxyl-terminal end of protective antigen is required for receptor binding and anthrax toxin activity. J Biol Chem 1991; 266(23):15493–15497.PubMedGoogle Scholar
  6. 6.
    Leppla SH. Anthrax toxin edema factor: A bacterial adenylate cyclase that increases cyclic AMP con-centrations of eukaryotic cells. Proc Natl Acad Sci USA 1982; 79(10):3162–3166.PubMedGoogle Scholar
  7. 7.
    Klimpel KR, Arora N, Leppla SH. Anthrax toxin lethal factor contains a zinc metalloprotease consensus sequence which is required for lethal toxin activity. Mol Microbiol 1994; 13(6):1093–1100.PubMedGoogle Scholar
  8. 8.
    Duesbery NS, Webb CP, Leppla SH et al. Proteolytic inactivation of MAP-kinase-kinase by anthrax lethal factor. Science 1998; 280(5364):734–737.PubMedGoogle Scholar
  9. 9.
    Friedlander AM. Macrophages are sensitive to anthrax lethal toxin through an acid-dependent process. J Biol Chem 1986; 261(16):7123–7126.PubMedGoogle Scholar
  10. 10.
    Park JM, Greten FR, Li ZW et al. Macrophage apoptosis by anthrax lethal factor through p38 MAP kinase inhibition. Science 2002; 297(5589):2048–2051.PubMedGoogle Scholar
  11. 11.
    Popov SG, Villasmil R, Bernardi J et al. Lethal toxin of bacillus anthracis causes apoptosis of macrophages. Biochem Biophys Res Commun 2002; 293(1):349–355.PubMedGoogle Scholar
  12. 12.
    Popov SG, Villasmil R, Bernardi J et al. Effect of bacillus anthracis lethal toxin on human peripheral blood mononuclear cells. FEBS Lett 2002; 527(1–3):211–215.PubMedGoogle Scholar
  13. 13.
    Guidi-Rontani C, Duflot E, Mock M. Anthrax lethal toxin-induced mitogenic response of human T-cells. FEMS Microbiol Lett 1997; 157(2):285–289.PubMedGoogle Scholar
  14. 14.
    Pellizzari R, Guidi-Rontani C, Vitale G et al. Anthrax lethal factor cleaves MKK3 in macrophages and inhibits the LPS/IFNgamma-induced release of NO and TNFalpha. FEBS Lett 1999; 462(1–2):199–204.PubMedGoogle Scholar
  15. 15.
    Erwin JL, DaSilva LM, Bavari S et al. Macrophage-derived cell lines do not express proinflammatory cytokines after exposure to bacillus anthracis lethal toxin. Infect Immun 2001; 69(2):1175–1177.PubMedGoogle Scholar
  16. 16.
    Dang O, Navarro L, Anderson K et al. Cutting edge: anthrax lethal toxin inhibits activation of IFN-regulatory factor 3 by lipopolysaccharide. J Immunol 2004; 172(2):747–751.PubMedGoogle Scholar
  17. 17.
    Rossi Paccani S, Tonello F, Patrussi L et al. Anthrax toxins inhibit immune cell Chemotaxis by perturbing chemokine receptor signalling. Cell Microbiol 2007; 9(4):924–929.PubMedGoogle Scholar
  18. 18.
    Kim J, Park H, Myung-Hyun J et al. The effects of anthrax lethal factor on the macrophage proteome: Potential activity on nitric oxide synthases. Arch Biochem Biophys 2008; 472(1 ):58–64PubMedGoogle Scholar
  19. 19.
    Alileche A, Serfass ER, Muehlbauer SM et al. Anthrax lethal toxin-mediated killing of human and murine dendritic cells impairs the adaptive immune response. PLoS Pathog 2005; 1(2):e19.PubMedGoogle Scholar
  20. 20.
    Agrawal A, Lingappa J, Leppla SH et al. Impairment of dendritic cells and adaptive immunity by anthrax lethal toxin. Nature 2003; 424(6946):329–334.PubMedGoogle Scholar
  21. 21.
    Cleret A, Quesnel Hellmann A, Mathieu J et al. Resident CDllc+ lung cells are impaired by anthrax toxins after spore infection. J Infect Dis 2006; 194(1): 86–94.PubMedGoogle Scholar
  22. 22.
    Fang H, Xu L, Chen TY et al. Anthrax lethal toxin has direct and potent inhibitory effects on B-cell proliferation and immunoglobulin production. J Immunol 2006; 176(10):6155–6161.PubMedGoogle Scholar
  23. 23.
    Comer JE, Chopra AK, Peterson JW et al. Direct inhibition of T-lymphocyte activation by anthrax toxins in vivo. Infect Immun 2005; 73(12):8275–8281.PubMedGoogle Scholar
  24. 24.
    Fang H, Cordoba-Rodriguez R, Lankford CS et al. Anthrax lethal toxin blocks MAPK kinase-dependent IL-2 production in CD4+ T-cells. J Immunol 2005; 174(8):4966–4971.PubMedGoogle Scholar
  25. 25.
    Duverger A, Jackson RJ, van Ginkel FW et al. Bacillus anthracis edema toxin acts as an adju-vant for mucosal immune responses to nasally administered vaccine antigens. J Immunol 2006; 176(3):1776–1783.PubMedGoogle Scholar
  26. 26.
    Comer JE, Galindo CL, Zhang F et al. Murine macrophage transcriptional and functional responses to bacillus anthracis edema toxin. Microb Pathog 2006; 4l(2-3):96–110.Google Scholar
  27. 27.
    Tournier JN, Quesnel Hellmann A, Mathieu J et al. Anthrax edema toxin cooperates with lethal toxin to impair cytokine secretion during infection of dendritic cells. J Immunol 2005; 174(8):4934–4941.PubMedGoogle Scholar
  28. 28.
    During RL, Li W, Hao B et al. Anthrax lethal toxin paralyzes neutrophil actin-based motility. J Infect Dis 2005; 192(5):837–845.PubMedGoogle Scholar
  29. 29.
    Wright GG, Mandell GL. Anthrax toxin blocks priming of neutrophils by lipopolysaccharide and by muramyl dipeptide. J Exp Med 1986; 164(5):1700–1709.PubMedGoogle Scholar
  30. 30.
    Crawford MA, Aylott CV, Bourdeau RW et al. Bacillus anthracis toxins inhibit human neutrophil NADPH oxidase activity. J Immunol 2006; 176(12):7557–7565.PubMedGoogle Scholar
  31. 31.
    Goletz TJ, Klimpel KR, Arora N et al. Targeting HIV proteins to the major histocompatibility complex class I processing pathway with a novel gpl20-anthrax toxin fusion protein. Proc Natl Acad Sci USA 1997; 94(22):12059–12064.PubMedGoogle Scholar
  32. 32.
    Doling AM, Ballard JD, Shen H et al. Cytotoxic T-lymphocyte epitopes fused to anthrax toxin induce protective antiviral immunity. Infect Immun 1999; 67(7):3290–3296.PubMedGoogle Scholar
  33. 33.
    Lu Y, Friedman R, Kushner N et al. Genetically modified anthrax lethal toxin safely delivers whole HIV protein antigens into the cytosol to induce T-cell immunity. Proc Natl Acad Sci USA 2000; 97(14):8027–8032.PubMedGoogle Scholar
  34. 34.
    McEvers K, Elrefaei M, Norris P et al. Modified anthrax fusion proteins deliver HIV antigens through MHC Class I and II pathways. Vaccine 2005; 23(32):4128–4135.PubMedGoogle Scholar
  35. 35.
    Marshall BJ, Warren JR. Unidentified curved bacilli in the stomach of patients with gastritis and peptic ulceration. Lancet 1984; 1(8390):1311–1315.PubMedGoogle Scholar
  36. 36.
    Cover TL, Blaser MJ. Purification and characterization of the vacuolating toxin from helicobacter pylori. J Biol Chem 1992; 267(15):10570–10575.PubMedGoogle Scholar
  37. 37.
    Salama NR, Otto G, Tompkins L et al. Vacuolating cytotoxin of helicobacter pylori plays a role during colonization in a mouse model of infection. Infect Immun 2001; 69(2):730–736.PubMedGoogle Scholar
  38. 38.
    Telford JL, Ghiara P, Dell’Orco M et al. Gene structure of the helicobacter pylori cytotoxin and evidence of its key role in gastric disease. J Exp Med. 1994; 179(5):1653–1658.PubMedGoogle Scholar
  39. 39.
    Nakayama M, Kimura M, Wada A et al. helicobacter pylori VacA activates the p38/activating transcription factor 2-mediated signal pathway in AZ-521 cells. J Biol Chem 2004; 279(8) 7024–7028.PubMedGoogle Scholar
  40. 40.
    Sewald X, Gebert-Vogl B, Prassl S et al. Integrin subunit CD 18 Is the T-lymphocyte receptor for the helicobacter pylori vacuolating cytotoxin. Cell Host Microbe 2008; 3(l):20–29.PubMedGoogle Scholar
  41. 41.
    Gebert B, Fischer W, Weiss E et al. Helicobacter pylori vacuolating cytotoxin inhibits T-lymphocyte activation. Science 2003; 301(5636):1099–1102.PubMedGoogle Scholar
  42. 42.
    Boncristiano M, Paccani SR, Barone S et al. The Helicobacter pylori vacuolating toxin inhibits T-cell activation by two independent mechanisms. J Exp Med 2003; 198(12):1887–1897.PubMedGoogle Scholar
  43. 43.
    Sundrud MS, Torres VJ, Unutmaz D et al. Inhibition of primary human T-cell proliferation by helicobacter pylori vacuolating toxin (VacA) is independent of VacA effects on IL-2 secretion. Proc Natl Acad Sci USA 2004; 101(20):7727–7732.PubMedGoogle Scholar
  44. 44.
    Oswald-Richter K, Torres VJ, Sundrud MS et al. Helicobacter pylori VacA toxin inhibits human immunodeficiency virus infection of primary human T-cells. J Virol 2006; 80(23):11767–11775.PubMedGoogle Scholar
  45. 45.
    Molinari M, Salio M, Galli C et al. Selective inhibition of Ii-dependent antigen presentation by helicobacter pylori toxin VacA. J Exp Med 1998; 187(1):135–140.PubMedGoogle Scholar
  46. 46.
    Zheng PY, Jones NL. Helicobacter pylori strains expressing the vacuolating cytotoxin interrupt phago-some maturation in macrophages by recruiting and retaining TACO (coronin 1) protein. Cell Microbiol 2003; 5(1):25–40.PubMedGoogle Scholar
  47. 47.
    Supajatura V, Ushio H, Wada A et al. Cutting edge: VacA, a vacuolating cytotoxin of helicobacter pylori, directly activates mast cells for migration and production of proinflammatory cytokines. J Immunol 2002; 168(6):2603–2607.PubMedGoogle Scholar
  48. 48.
    de Bernard M, Cappon A, Pancotto L et al. The helicobacter pylori VacA cytotoxin activates RBL-2H3 cells by inducing cytosolic calcium oscillations. Cell Microbiol 2005; 7(2):19T198.Google Scholar
  49. 49.
    Bartlett JG. Antibiotic-associated diarrhea. Clin Infect Dis 1992; 15(4):573–581.PubMedGoogle Scholar
  50. 50.
    Banno Y, Kobayashi T, Kono H et al. Biochemical characterization and biologic actions of two toxins (D-1 and D-2) from Clostridium difficile. Rev Infect Dis 1984; 6(Suppl 1):S11–20.Google Scholar
  51. 51.
    Just I, Selzer J, Wilm M et al. Glucosylation of rho proteins by Clostridium difficile toxin B. Nature 1995; 375(6531):500–503.PubMedGoogle Scholar
  52. 52.
    Just I, Wilm M, Selzer J et al. The enterotoxin from Clostridium difficile (ToxA) monoglucosylates the Rho proteins. J Biol Chem 1995; 270(23):13932–13936.PubMedGoogle Scholar
  53. 53.
    Lima AA, Lyerly DM, Wilkins TD et al. Effects of Clostridium difficile toxins A and B in rabbit small and large intestine in vivo and on cultured cells in vitro. Infect Immun 1988; 56(3):582–588.PubMedGoogle Scholar
  54. 54.
    Flegel WA, Muller F, Daubener W et al. Cytokine response by human monocytes to Clostridium difficile toxin A and toxin B. Infect Immun 1991; 59(10):3659–3666.PubMedGoogle Scholar
  55. 55.
    Linevsky JK, Pothoulakis C, Keates S et al. IL-8 release and neutrophil activation by Clostridium difficile toxin-exposed human monocytes. Am J Physiol 1997; 273(6 Pt 1):G1333–1340.PubMedGoogle Scholar
  56. 56.
    Brito GA, Sullivan GW, Ciesla WT Jr et al. Clostridium difficile toxin A alters in vitro-adherent neutrophil morphology and function. J Infect Dis 2002; 185(9):1297–1306.PubMedGoogle Scholar
  57. 57.
    Mahida YR, Galvin A, Makh S et al. Effect of Clostridium difficile toxin A on human colonic lamina propria cells: early loss of macrophages followed by T-cell apoptosis. Infect Immun 1998; 66(11):5462–5469.PubMedGoogle Scholar
  58. 58.
    Miller PD, Pothoulakis C, Baeker TR et al. Macrophage-dependent stimulation of T-cell-depleted spleen cells by Clostridium difficile toxin A and calcium ionophore. Cell Immunol 1990; 126(1):155–163.PubMedGoogle Scholar
  59. 59.
    Calderon GM, Torres Lopez J, Lin TJ et al. Effects of toxin A from Clostridium difficile on mast cell activation and survival. Infect Immun 1998; 66(6):2755–2761.PubMedGoogle Scholar
  60. 60.
    Prepens U, Just I, von Eichel-Streiber C et al. Inhibition of Fc epsilon-RI-mediated activation of rat basophilic leukemia cells by Clostridium difficile toxin B (monoglucosyltransferase). J Biol Chem 1996; 271(13):7324–7329.PubMedGoogle Scholar
  61. 61.
    Wex CB, Koch G, Aktories K. Effects of Clostridium difficile toxin B on activation of rat peritoneal mast cells. Naunyn Schmiedebergs Arch Pharmacol 1997; 355(3):328–334.PubMedGoogle Scholar
  62. 62.
    Meyer GK, Neetz A, Brandes G et al. Clostridium difficile toxins A and B directly stimulate human mast cells. Infect Immun 2007; 75(8):3868–3876.PubMedGoogle Scholar
  63. 63.
    Imamura K, Spriggs D, Ohno T et al. Effects of botulinum toxin Type D on secretion of tumor necrosis factor from human monocytes. Mol Cell Biol 1989; 9(5):2239–2243.PubMedGoogle Scholar
  64. 64.
    Jolivet-Reynaud C, Cavaillon JM, Alouf JE. Selective cytotoxicity of Clostridium perfringens delta toxin on rabbit leukocytes. Infect Immun 1982; 38(3):860–864.PubMedGoogle Scholar
  65. 65.
    Mattoo S, Cherry JD. Molecular pathogenesis, epidemiology and clinical manifestations of respiratory infections due to bordetella pertussis and other bordetella subspecies. Clin Microbiol Rev 2005; 18(2):326–382.PubMedGoogle Scholar
  66. 66.
    Katada T, Tamura M, Ui M. The A protomer of islet-activating protein, pertussis toxin, as an active peptide catalyzing ADP-ribosylation of a membrane protein. Arch Biochem Biophys 1983; 224(1):290–298.PubMedGoogle Scholar
  67. 67.
    Moss J, Stanley SJ, Burns DL et al. Activation by thiol of the latent NAD glycohydrolase and ADP-ribosyltransferase activities of bordetella pertussis toxin (islet-activating protein). J Biol Chem 1983; 258(19):11879–11882.PubMedGoogle Scholar
  68. 68.
    Munoz JJ, Arai H, Bergman RK et al. Biological activities of crystalline pertussigen from bordetella pertussis. Infect Immun 1981; 33(3):820–826.PubMedGoogle Scholar
  69. 69.
    Carbonetti NH, Artamonova GV, Mays RM et al. Pertussis toxin plays an early role in respiratory tract colonization by bordetella pertussis. Infect Immun 2003; 71(11):6358–6366.PubMedGoogle Scholar
  70. 70.
    Hewlett E, Wolff J. Soluble adenylate cyclase from the culture medium of bordetella pertussis: purification and characterization. J Bacteriol 1976; 127(2):890–898.PubMedGoogle Scholar
  71. 71.
    Wolff J, Cook GH, Goldhammer AR et al. Calmodulin activates prokaryotic adenylate cyclase. Proc Natl Acad Sci USA 1980; 77(7):3841–3844.PubMedGoogle Scholar
  72. 72.
    Guermonprez P, Khelef N, Blouin E et al. The adenylate cyclase toxin of bordetella pertussis binds to target cells via the alpha(M)beta (2) integrin (CDllb/CD18). J Exp Med 2001; 193(9):1035–1044.PubMedGoogle Scholar
  73. 73.
    Goodwin MS, Weiss AA. Adenylate cyclase toxin is critical for colonization and pertussis toxin is critical for lethal infection by Bordetella pertussis in infant mice. Infect Immun 1990; 58(10):3445–3447.PubMedGoogle Scholar
  74. 74.
    Munoz JJ, Peacock MG. Action of pertussigen (pertussis toxin) on serum IgE and on Fc epsilon receptors on lymphocytes. Cell Immunol 1990; 127(2):327–336.PubMedGoogle Scholar
  75. 75.
    Mu HH, Sewell WA. Enhancement of interleukin-4 production by pertussis toxin. Infect Immun 1993; 61(7):2834–2840.PubMedGoogle Scholar
  76. 76.
    Roberts M, Bacon A, Rappuoli R et al. A mutant pertussis toxin molecule that lacks ADP-ribosyltransferase activity, PT-9K/129G, is an effective mucosal adjuvant for intranasally delivered proteins. Infect Immun 1995; 63(6):2100–2108.PubMedGoogle Scholar
  77. 77.
    Sewell WA, Munoz JJ, Vadas MA. Enhancement of the intensity, persistence and passive transfer of delayed-type hypersensitivity lesions by pertussigen in mice. J Exp Med 1983; 157(6):2087–2096.PubMedGoogle Scholar
  78. 78.
    Ryan M, McCarthy L, Rappuoli R et al. Pertussis toxin potentiates Thl and Th2 responses to co-injected antigen: adjuvant action is associated with enhanced regulatory cytokine production and expression of the costimulatory molecules B7-1, B7-2 and CD28. Int Immunol 1998; 10(5):651–662.PubMedGoogle Scholar
  79. 79.
    Chen X, Howard OM, Oppenheim JJ. Pertussis toxin by inducing IL-6 promotes the generation of IL-17-producing CD4 cells. J Immunol 2007; 178(10):6123–6129.PubMedGoogle Scholar
  80. 80.
    Hofstetter HH, Grau C, Buttmann M et al. The PLPp-specific T-cell population promoted by pertussis toxin is characterized by high frequencies of IL-17-producing cells. Cytokine 2007; 40(1):35–43.PubMedGoogle Scholar
  81. 81.
    Munoz JJ, Bernard CC, Mackay IR. Elicitation of experimental allergic encephalomyelitis (EAE) in mice with the aid of pertussigen. Cell Immunol 1984; 83(1):92–100.PubMedGoogle Scholar
  82. 82.
    Linthicum DS, Munoz JJ, Blaskett A. Acute experimental autoimmune encephalomyelitis in mice. I adjuvant action of bordetella pertussis is due to vasoactive amine sensitization and increased vascular permeability of the central nervous system. Cell Immunol 1982; 73(2):299–310.PubMedGoogle Scholar
  83. 83.
    Caspi RR, Chan CC, Leake WC et al. Experimental autoimmune uveoretinitis in mice. Induction by a single eliciting event and dependence on quantitative parameters of immunization. J Autoimmun 1990; 3(3):237–246.PubMedGoogle Scholar
  84. 84.
    Amiel SA. The effects of bordetella pertussis vaccine on cerebral vascular permeability. Br J Exp Pathol 1976; 57(6):653–662.PubMedGoogle Scholar
  85. 85.
    Gonzalo JA, Gonzalez-Garcia A, Baixeras E et al. Pertussis toxin interferes with superantigen-induced deletion of peripheral T-cells without affecting T-cell activation in vivo. Inhibition of deletion and associated programmed cell death depends on ADP-ribosyltransferase activity. J Immunol 1994; 152(9):4291–4299.PubMedGoogle Scholar
  86. 86.
    Chen X, Winkler Pickett RT, Carbonetti NH et al. Pertussis toxin as an adjuvant suppresses the number and function of CD4+CD25+ T regulatory cells. Eur J Immunol 2006; 36(3):671–680.PubMedGoogle Scholar
  87. 87.
    Cassan C, Piaggio E, Zappulla JP et al. Pertussis toxin reduces the number of splenic Foxp3+ regulatory T-cells. J Immunol 2006; 177(3):1552–1560.PubMedGoogle Scholar
  88. 88.
    Hou W, Wu Y, Sun S et al. Pertussis toxin enhances Thl responses by stimulation of dendritic cells. J Immunol 2003; 170(4):1728–1736.PubMedGoogle Scholar
  89. 89.
    Ben-Nun A, Mendel I, Kerlero de Rosbo N. Immunomodulation of murine experimental autoimmune encephalomyelitis by pertussis toxin: the protective activity, but not the disease-enhancing activity, can be attributed to the nontoxic B-oligomer. Proc Assoc Am Physicians 1997; 109(2):120–125.PubMedGoogle Scholar
  90. 90.
    Mielcarek N, Riveau G, Remoue F et al. Homologous and heterologous protection after single intranasal administration of live attenuated recombinant bordetella pertussis. Nat Biotechnol 1998; 16(5):454–457.PubMedGoogle Scholar
  91. 91.
    Ausiello CM, Fedele G, Urbani F et al. Native and genetically inactivated pertussis toxins induce human dendritic cell maturation and synergize with lipopolysaccharide in promoting T helper Type 1 responses. J Infect Dis 2002; 186(3):351–360.PubMedGoogle Scholar
  92. 92.
    Bagley KC, Abdelwahab SF, Tuskan RG et al. Pertussis toxin and the adenylate cyclase toxin from bordetella pertussis activate human monocyte-derived dendritic cells and dominantly inhibit cytokine production through a cAMP-dependent pathway. J Leukoc Biol 2002; 72(5):962–969.PubMedGoogle Scholar
  93. 93.
    He J, Gurunathan S, Iwasaki A et al. Primary role for Gi protein signaling in the regulation of interleukin 12 production and the induction of T helper cell Type 1 responses. J Exp Med 2000; 191(9):1605–1610.PubMedGoogle Scholar
  94. 94.
    Tonon S, Goriely S, Aksoy E et ai. Bordetella pertussis toxin induces the release of inflammatory cytokines and dendritic cell activation in whole blood: Impaired responses in human newborns. Eur J Immunol 2002; 32(11):3118–3125.PubMedGoogle Scholar
  95. 95.
    Carbonetti NH, Artamonova GV, Van Rooijen N et al. Pertussis toxin targets airway macrophages to promote bordetella pertussis infection of the respiratory tract. Infect Immun 2007; 75(4):1713–1720.PubMedGoogle Scholar
  96. 96.
    Meade BD, Kind PD, Manclark CR. Lymphocytosis-promoting factor of bordetella pertussis alters mono-nuclear phagocyte circulation and response to inflammation. Infect Immun 1984; 46(3):733–739.PubMedGoogle Scholar
  97. 97.
    Zhang X, Morrison DC. Pertussis toxin-sensitive factor differentially regulates lipopolysaccharide-induced tumor necrosis factor-alpha and nitric oxide production in mouse peritoneal macrophages. J Immunol 1993; 150(3):1011–1018.PubMedGoogle Scholar
  98. 98.
    He YX, Hewlett E, Temeles D et al. Inhibition of interleukin 3 and colony-stimulating factor 1-stimulated marrow cell proliferation by pertussis toxin. Blood 1988; 71(5):1187–1195.PubMedGoogle Scholar
  99. 99.
    Wang SW, Parhar K, Chiu KJ et al. Pertussis toxin promotes macrophage survival through inhibition of acid sphingomyelinase and activation of the phosphoinositide 3-kinase/protein kinase B pathway. Cell Signal 2007; 19(8):1772–1783.PubMedGoogle Scholar
  100. 100.
    Mielcarek N, Hornquist EH, Johansson BR et al. Interaction of Bordetella pertussis with mast cells, modulation of cytokine secretion by pertussis toxin. Cell Microbiol 2001; 3(3):181–188.PubMedGoogle Scholar
  101. 101.
    Thomazzi SM, Souza MH, Melo Filho AA et al. Pertussis toxin from bordetella pertussis blocks neutrophil migration and neutrophil-dependent edema in response to inflammation. Braz J Med Biol Res 1995; 28(1):120–124.PubMedGoogle Scholar
  102. 102.
    Carbonetti NH, Artamonova GV, Andreasen C et al. Pertussis toxin and adenylate cyclase toxin provide a one-two punch for establishment of bordetella pertussis infection of the respiratory tract. Infect Immun 2005; 73(5):2698–2703.PubMedGoogle Scholar
  103. 103.
    Spangrude GJ, Sacchi F, Hill HR et al. Inhibition of lymphocyte and neutrophil Chemotaxis by pertussis toxin. J Immunol 1985; 135(6):4135–4143.PubMedGoogle Scholar
  104. 104.
    Morse JH, Kong AS, Lindenbaum J et al. The mitogenic effect of the lymphocytosis promoting factor from Bordetella pertussis on human lymphocytes. J Clin Invest 1977; 60(3):683–692.PubMedGoogle Scholar
  105. 105.
    Tonon S, Badran B, Benghiat FS et al. Pertussis toxin activates adult and neonatal naive human CD4+ T-lymphocytes. Eur J Immunol 2006; 36(7):1794–1804.PubMedGoogle Scholar
  106. 106.
    Lyons AB. Pertussis toxin pretreatment alters the in vivo cell division behaviour and survival of B-lymphocytes after intravenous transfer. Immunol Cell Biol 1997; 75(1):7–12.PubMedGoogle Scholar
  107. 107.
    Cyster JG, Goodnow CC. Pertussis toxin inhibits migration of B and T-lymphocytes into splenic white pulp cords. J Exp Med 1995; 182(2):581–586.PubMedGoogle Scholar
  108. 108.
    Hormozi K, Parton R, Coote J. Adjuvant and protective properties of native and recombinant bordetella pertussis adenylate cyclase toxin preparations in mice. FEMS Immunol Med Microbiol 1999; 23(4):273–282.PubMedGoogle Scholar
  109. 109.
    Orr B, Douce G, Baillie S et al. Adjuvant effects of adenylate cyclase toxin of bordetella pertussis after intranasal immunisation of mice. Vaccine 2007; 25(1):64–71.PubMedGoogle Scholar
  110. 110.
    Ross PJ, Lavelle EC, Mills KH et al. Adenylate cyclase toxin from bordetella pertussis synergizes with lipopolysaccharide to promote innate interleukin-10 production and enhances the induction of Th2 and regulatory T-cells. Infect Immun 2004; 72(3):1568–1579.PubMedGoogle Scholar
  111. 111.
    Dadaglio G, Moukrim Z, Lo-Man R et al. Induction of a polarized Thl response by insertion of multiple copies of a viral T-cell epitope into adenylate cyclase of bordetella pertussis. Infect Immun 2000; 68(7):3867–3872.PubMedGoogle Scholar
  112. 112.
    Friedman RL, Fiederlein RL, Glasser L et al. Bordetella pertussis adenylate cyclase: effects of affinity-purified adenylate cyclase on human polymorphonuclear leukocyte functions. Infect Immun 1987; 55(1):135–140.PubMedGoogle Scholar
  113. 113.
    Weingart CL, Weiss AA. Bordetella pertussis virulence factors affect phagocytosis by human neutrophils. Infect Immun 2000; 68(3):1735–1739.PubMedGoogle Scholar
  114. 114.
    Mobberley-Schuman PS, Weiss AA. Influence of CR3 (CDllb/CD18) expression on phagocytosis of bordetella pertussis by human neutrophils. Infect Immun 2005; 73(11):7317–7323.PubMedGoogle Scholar
  115. 115.
    Khelef N, Zychlinsky A, Guiso N. Bordetella pertussis induces apoptosis in macrophages: role of adenylate cyclase-hemolysin. Infect Immun 1993; 61(10):4064–4071.PubMedGoogle Scholar
  116. 116.
    Gueirard P, Druilhe A, Pretolani M et al. Role of adenylate cyclase-hemolysin in alveolar macrophage apoptosis during bordetella pertussis infection in vivo. Infect Immun 1998; 66(4):1718–1725.PubMedGoogle Scholar
  117. 117.
    Boyd AP, Ross PJ, Conroy H et al. Bordetella pertussis adenylate cyclase toxin modulates innate and adaptive immune responses: distinct roles for acylation and enzymatic activity in immunomodulation and cell death. J Immunol 2005; 175(2):730–738.PubMedGoogle Scholar
  118. 118.
    Pearson RD, Symes P, Conboy M et al. Inhibition of monocyte oxidative responses by bordetella pertussis adenylate cyclase toxin. J Immunol 1987; 139(8):2749–]ReferencesPubMedGoogle Scholar
  119. 119.
    Njamkepo E, Pinot F, Francois D et al. Adaptive responses of human monocytes infected by bordetella pertussis: the role of adenylate cyclase hemolysin. J Cell Physiol 2000; 183(1):91–99.PubMedGoogle Scholar
  120. 120.
    Siciliano NA, Skinner JA, Yuk MH. Bordetella bronchiseptica modulates macrophage phenotype leading to the inhibition of CD4+ T-cell proliferation and the initiation of a Th17 immune response. J Immunol 2006; 177(10):7131–7138.PubMedGoogle Scholar
  121. 121.
    Skinner JA, Reissinger A, Shen H et al. Bordetella Type III secretion and adenylate cyclase toxin synergize to drive dendritic cells into a semimature state. J Immunol 2004; 173(3): 1934–1940.PubMedGoogle Scholar
  122. 122.
    Spensieri F, Fedele G, Fazio C et al. Bordetella pertussis inhibition of interleukin-12 (IL-12) p70 in human monocyte-derived dendritic cells blocks IL-12 p35 through adenylate cyclase toxin-dependent cyclic AMP induction. Infect Immun 2006; 74(5):2831–2838.PubMedGoogle Scholar
  123. 123.
    Carbonetti NH, Tuskan RG, Lewis GK. Stimulation of HIV gp120-specific cytolytic T-lymphocyte responses in vitro and in vivo using a detoxified pertussis toxin vector. AIDS Res Hum Retroviruses 2001; 17(9):819–827.PubMedGoogle Scholar
  124. 124.
    Fayolle C, Sebo P, Ladant D et al. In vivo induction of CTL responses by recombinant adenylate cyclase of Bordetella pertussis carrying viral CD8+ T-cell epitopes. J Immunol 1996; 156(12):4697–4706.PubMedGoogle Scholar
  125. 125.
    Saron MF, Fayolle C, Sebo P et al. Anti-viral protection conferred by recombinant adenylate cyclase toxins from bordetella pertussis carrying a CD8+ T-cell epitope from lymphocytic choriomeningitis virus. Proc Natl Acad Sci USA 1997; 94(7):3314–3319.PubMedGoogle Scholar
  126. 126.
    Fayolle C, Ladant D, Karimova G et al. Therapy of murine tumors with recombinant bordetella pertussis adenylate cyclase carrying a cytotoxic T-cell epitope. J Immunol 1999; 162(7):4157–4162.PubMedGoogle Scholar
  127. 127.
    Sebo P, Moukrim Z, Kalhous M et al. In vivo induction of CTL responses by recombinant adenylate cyclase of bordetella pertussis carrying multiple copies of a viral CD8(+) T-cell epitope. FEMS Immunol Med Microbiol 1999; 26(2):167–173.PubMedGoogle Scholar
  128. 128.
    Fayolle C, Osickova A, Osicka R et al. Delivery of multiple epitopes by recombinant detoxified adenylate cyclase of bordetella pertussis induces protective antiviral immunity. J Virol 2001; 75(16):7330–7338.PubMedGoogle Scholar
  129. 129.
    Loucka J, Schlecht G, Vodolanova J et al. Delivery of a MalE CD4(+)-T-cell epitope into the major histocompatibility complex class II antigen presentation pathway by bordetella pertussis adenylate cyclase. Infect Immun 2002; 70(2):1002–1005.PubMedGoogle Scholar
  130. 130.
    Geoffroy C, Gaillard JL, Alouf JE et al. Purification, characterization and toxicity of the sulfhydryl-activated hemolysin listeriolysin O from listeria monocytogenes. Infect Immun 1987; 55(7): 1641–1646.PubMedGoogle Scholar
  131. 131.
    Lety MA, Frehel C, Dubail I et al. Identification of a PEST-like motif in listeriolysin O required for phagosomal escape and for virulence in listeria monocytogenes. Mol Microbiol 2001; 39(5): 1124–1139.PubMedGoogle Scholar
  132. 132.
    Guzman CA, Domann E, Rohde M et al. Apoptosis of mouse dendritic cells is triggered by listeriolysin, the major virulence determinant of listeria monocytogenes. Mol Microbiol 1996; 20(1): 119–126.PubMedGoogle Scholar
  133. 133.
    Carrero JA, Calderon B, Unanue ER. Listeriolysin O from listeria monocytogenes is a lymphocyte apoptogenic molecule. J Immunol 2004; 172(8):4866–4874.PubMedGoogle Scholar
  134. 134.
    Nishibori T, Xiong H, Kawamura I et al. Induction of cytokine gene expression by listeriolysin O and roles of macrophages and NK cells. Infect Immun 1996; 64(8):3188–3195.PubMedGoogle Scholar
  135. 135.
    Kohda C, Kawamura I, Baba H et al. Dissociated linkage of cytokine-inducing activity and cyto-toxicity to different domains of listeriolysin O from listeria monocytogenes. Infect Immun 2002; 70(3):1334–1341.PubMedGoogle Scholar
  136. 136.
    Nomura T, Kawamura I, Tsuchiya K et al. Essential role of interleukin-12 (IL-12) and IL-18 for gamma interferon production induced by listeriolysin O in mouse spleen cells. Infect Immun 2002; 70(3):1049–1055.PubMedGoogle Scholar
  137. 137.
    Sibelius U, Schulz EC, Rose F et al. Role of Listeria monocytogenes exotoxins listeriolysin and phosphatidylinositol-specific phospholipase C in activation of human neutrophils. Infect Immun 1999; 67(3):1125–1130.PubMedGoogle Scholar
  138. 138.
    Darji A, Stockinger B, Wehland J et al. T-cell anergy induced by antigen presenting cells treated with the hemolysin of listeria monocytogenes. Immunol Lett 1997; 57(1–3):33–37.PubMedGoogle Scholar
  139. 139.
    Yamamoto K, Kawamura I, Tominaga T et al. Listeriolysin O, a cytolysin derived from Listeria monocytogenes, inhibits generation of ovalbumin-specific Th2 immune response by skewing maturation of antigen-specific T-cells into Th1 cells. Clin Exp Immunol 2005; 142(2):268–274.PubMedGoogle Scholar
  140. 140.
    Yamamoto K, Kawamura I, Tominaga T et al. Listeriolysin O derived from listeria monocytogenes inhibits the effector phase of an experimental allergic rhinitis induced by ovalbumin in mice. Clin Exp Immunol 2006; 144(3):475–484.PubMedGoogle Scholar
  141. 141.
    Higgins DE, Shastri N, Portnoy DA. Delivery of protein to the cytosol of macrophages using Escherichia coli K-12. Mol Microbiol 1999; 31(6):1631–1641.PubMedGoogle Scholar
  142. 142.
    Radford KJ, Higgins DE, Pasquini S et al. A recombinant E. coli vaccine to promote MHC class I-dependent antigen presentation: Application to cancer immunotherapy. Gene Ther 2002; 9(21):1455–1463.PubMedGoogle Scholar
  143. 143.
    Hu PQ, Tuma-Warrino RJ, Bryan MA et al. Escherichia coli expressing recombinant antigen and listeriolysin O stimulate class I-restricted CD8+ T-cells following uptake by human APC. J Immunol 2004; 172(3):1595–1601.PubMedGoogle Scholar
  144. 144.
    Nitcheu-Tefit J, Dai MS, Critchley-lhorne RJ et al. Listeriolysin O expressed in a bacterial vaccine suppresses CD4+CD25 high regulatory T-cell function in vivo. J Immunol 2007; 179(3): 1532–1541.PubMedGoogle Scholar
  145. 145.
    Mandai M, Lee KD. Listeriolysin O-liposome-mediated cytosolic delivery of macromolecule antigen in vivo: enhancement of antigen-specific cytotoxic T-lymphocyte frequency, activity and tumor protection. Biochim Biophys Acta 2002; 1563(1–2):7–17.Google Scholar
  146. 146.
    Sewell DA, Douven D, Pan ZK et al. Regression of HPV-positive tumors treated with a new listeria monocytogenes vaccine. Arch Otolaryngol Head Neck Surg 2004; 130(1):92–97.PubMedGoogle Scholar
  147. 147.
    Singh R, Dominiecki ME, Jaffee EM et al. Fusion to listeriolysin O and delivery by listeria monocytogenes enhances the immunogenicity of HER-2/neu and reveals subdominant epitopes in the FVB/N mouse. J Immunol 2005; 175(6):3663–3673.PubMedGoogle Scholar
  148. 148.
    Spangler BD. Structure and function of cholera toxin and the related Escherichia coli heat-labile enterotoxin. Microbiol Rev 1992; 56(4):622–647.PubMedGoogle Scholar
  149. 149.
    Sixma TK, Pronk SE, Kalk KH et al. Lactose binding to heat-labile enterotoxin revealed by X-ray crystallography. Nature 1992; 355(6360):561–564.PubMedGoogle Scholar
  150. 150.
    Zhang J, Van Meel JC, Pfaffendorf M et al. Cholera toxin but not pertussis toxin inhibits angiotensin II-enhanced contractions in the rat portal vein. Eur J Pharmacol 1993; 230(1):95–97.PubMedGoogle Scholar
  151. 151.
    Holmgren J, Lonnroth I, Svennerholm L. Tissue receptor for cholera exotoxin: Postulated structure from studies with GM1 ganglioside and related glycolipids. Infect Immun 1973; 8(2):208–214.PubMedGoogle Scholar
  152. 152.
    Holmgren J, Fredman P, Lindblad M et al. Rabbit intestinal glycoprotein receptor for Escherichia coli heat-labile enterotoxin lacking affinity for cholera toxin. Infect Immun 1982; 38(2):424–433.PubMedGoogle Scholar
  153. 153.
    Fukuta S, Magnani JL, Twiddy EM et al. Comparison of the carbohydrate-binding specificities of cholera toxin and Escherichia coli heat-labile enterotoxins LTh-I, LT-IIa and LT-IIb. Infect Immun 1988; 56(7):1748–1753.PubMedGoogle Scholar
  154. 154.
    Orlandi PA, Critchley DR, Fishman PH. The heat-labile enterotoxin of Escherichia coli binds to polylactosaminoglycan-containing receptors in CaCo-2 human intestinal epithelial cells. Biochemistry 1994; 33(43):12886–12895.PubMedGoogle Scholar
  155. 155.
    Karlsson KA, Teneberg S, Angstrom J et al. Unexpected carbohydrate cross-binding by Escherichia coli heat-labile enterotoxin. Recognition of human and rabbit target cell glycoconjugates in comparison with cholera toxin. Bioorg Med Chem 1996; 4(11):1919–1928.PubMedGoogle Scholar
  156. 156.
    Elson CO, Ealding W Generalized systemic and mucosal immunity in mice after mucosal stimulation with cholera toxin. J Immunol 1984; 132(6):2736–2741.PubMedGoogle Scholar
  157. 157.
    Clements JD, Hartzog NM, Lyon FL. Adjuvant activity of Escherichia coli heat-labile enterotoxin and effect on the induction of oral tolerance in mice to unrelated protein antigens. Vaccine 1988; 6(3):269–277.PubMedGoogle Scholar
  158. 158.
    Vajdy M, Lycke NY. Cholera toxin adjuvant promotes long-term immunological memory in the gut mucosa to unrelated immunogens after oral immunization. Immunology 1992; 75(3):488–492.PubMedGoogle Scholar
  159. 159.
    Wilson AD, Bailey M, Williams NA et al. The in vitro production of cytokines by mucosal lymphocytes immunized by oral administration of keyhole limpet hemocyanin using cholera toxin as an adjuvant. Eur J Immunol 1991; 21(10):2333–2339.PubMedGoogle Scholar
  160. 160.
    Takahashi I, Marinaro M, Kiyono H et al. Mechanisms for mucosal immunogenicity and adjuvancy of Escherichia coli labile enterotoxin. J Infect Dis 1996; 173(3):627–635.PubMedGoogle Scholar
  161. 161.
    Yamamoto M, Kiyono H, Kweon MN et al. Enterotoxin adjuvants have direct effects on T-cells and antigen-presenting cells that result in either interleukin-4-dependent or-independent immune responses. J Infect Dis 2000; 182(1):180–190.PubMedGoogle Scholar
  162. 162.
    Boyaka PN, Ohmura M, Fujihashi K et al. Chimeras of labile toxin one and cholera toxin retain mucosal adjuvanticity and direct Th cell subsets via their B subunit. J Immunol 2003; 170(1):454–462.PubMedGoogle Scholar
  163. 163.
    Anastassiou ED, Yamada H, Francis ML et al. Effects of cholera toxin on human B-cells. cholera toxin induces B-cell surface DR expression while it inhibits anti-mu antibody-induced cell proliferation. J Immunol 1990; l45(8):2375–2380.Google Scholar
  164. 164.
    Arce S, Nawar HF, Muehlinghaus G et al. In vitro induction of immunoglobulin A (IgA)-and IgM-secreting plasma blasts by cholera toxin depends on T-cell help and is mediated by CD 154 up-regulation and inhibition of gamma interferon synthesis. Infect Immun 2007; 75(3): 1413–1423.PubMedGoogle Scholar
  165. 165.
    Cong Y, Weaver CT, Elson CO. The mucosal adjuvanticity of cholera toxin involves enhancement of costimulatory activity by selective up-regulation of B7.2 expression. J Immunol 1997; 159(11):5301–5308.PubMedGoogle Scholar
  166. 166.
    Martin M, Sharpe A, Clements JD et al. Role of B7 costimulatory molecules in the adjuvant activity of the heat-labile enterotoxin of Escherichia coli. J Immunol 2002; 169(4):1744–1752.PubMedGoogle Scholar
  167. 167.
    Agren LC, Ekman L, Lowenadler B et al. Genetically engineered nontoxic vaccine adjuvant that combines B-cell targeting with immunomodulation by cholera toxin Al subunit. J Immunol 1997; 158(8):3936–3946.PubMedGoogle Scholar
  168. 168.
    Petrovska L, Lopes L, Simmons CP et al. Modulation of dendritic cell endocytosis and antigen processing pathways by Escherichia coli heat-labile enterotoxin and mutant derivatives. Vaccine 2003; 21(13–14):1445–1454.PubMedGoogle Scholar
  169. 169.
    Bagley KC, Abdelwahab SF, Tuskan RG et al. Cholera toxin indirectly activates human monocyte-derived dendritic cells in vitro through the production of soluble factors, including prostaglandin E(2) and nitric oxide. Clin Vaccine Immunol 2006; 13(1):106–115.PubMedGoogle Scholar
  170. 170.
    Gagliardi MC, Sallusto F, Marinaro M et al. Cholera toxin induces maturation of human dendritic cells and licences them for Th2 priming. Eur J Immunol 2000; 30(8):2394–2403.PubMedGoogle Scholar
  171. 171.
    de Jong EC, Vieira PL, Kalinski P et al. Microbial compounds selectively induce Th1 cell-promoting or Th2 cell-promoting dendritic cells in vitro with diverse th cell-polarizing signals. J Immunol 2002; 168(4): 1704–1709.PubMedGoogle Scholar
  172. 172.
    Martin M, Metzger DJ, Michalek SM et al. Distinct cytokine regulation by cholera toxin and Type II heat-labile toxins involves differential regulation of CD40 ligand on CD4(+) T-cells. Infect Immun 2001; 69(7):4486–4492.PubMedGoogle Scholar
  173. 173.
    Lavelle EC, McNeela E, Armstrong ME et al. Cholera toxin promotes the induction of regulatory T-cells specific for bystander antigens by modulating dendritic cell activation. J Immunol 2003; 171(5):2384–2392.PubMedGoogle Scholar
  174. 174.
    Lycke N, Tsuji T, Holmgren J. The adjuvant effect of vibrio cholerae and Escherichia coli heat-labile enterotoxins is linked to their ADP-ribosyltransferase activity. Eur J Immunol 1992; 22(9):2277–2281.PubMedGoogle Scholar
  175. 175.
    Douce G, Turcotte C, Cropley I et al. Mutants of Escherichia coli heat-labile toxin lacking ADP-ribosyltransferase activity act as nontoxic, mucosal adjuvants. Proc Natl Acad Sci USA 1995; 92(5):1644–1648.PubMedGoogle Scholar
  176. 176.
    de Haan L, Verweij WR, Feil IK et al. Mutants of the Escherichia coli heat-labile enterotoxin with reduced ADP-ribosylation activity or no activity retain the immunogenic properties of the native holotoxin. Infect Immun 1996; 64(12):5413–5416.PubMedGoogle Scholar
  177. 177.
    Yamamoto S, Takeda Y, Yamamoto M et al. Mutants in the ADP-ribosyltransferase cleft of cholera toxin lack diarrheagenicity but retain adjuvanticity. J Exp Med 1997; 185(7): 1203–1210.PubMedGoogle Scholar
  178. 178.
    Richards CM, Shimeld C, Williams NA et al. Induction of mucosal immunity against herpes simplex virus Type 1 in the mouse protects against ocular infection and establishment of latency. J Infect Dis 1998; 177(6):1451–1457.PubMedGoogle Scholar
  179. 179.
    Richards CM, Aman AT, Hirst TR et al. Protective mucosal immunity to ocular herpes simplex virus Type 1 infection in mice by using Escherichia coli heat-labile enterotoxin B subunit as an adjuvant. J Virol 2001; 75(4):1664–1671.PubMedGoogle Scholar
  180. 180.
    Douce G, Fontana M, Pizza M et al. Intranasal immunogenicity and adjuvanticity of site-directed mutant derivatives of cholera toxin. Infect Immun 1997; 65(7):2821–2828.PubMedGoogle Scholar
  181. 181.
    Verweij WR, de Haan L, Holtrop M et al. Mucosal immunoadjuvant activity of recombinant Es-cherichia coli heat-labile enterotoxin and its B subunit: induction of systemic IgG and secretory IgA responses in mice by intranasal immunization with influenza virus surface antigen. Vaccine 1998; 16(20):2069–2076.PubMedGoogle Scholar
  182. 182.
    Park SJ, Chun SK, Kim PH. Intraperitoneal delivery of cholera toxin B subunit enhances systemic and mucosal antibody responses. Mol Cells 2003; 16(1):106–112.PubMedGoogle Scholar
  183. 183.
    Millar DG, Hirst TR, Snider DP. Escherichia coli heat-labile enterotoxin B subunit is a more potent mucosal adjuvant than its vlosely related homologue, the B subunit of cholera toxin. Infect Immun 2001; 69(5):3476–3482.PubMedGoogle Scholar
  184. 184.
    Wu HY, Russell MW. Induction of mucosal immunity by intranasal application of a streptococcal surface protein antigen with the cholera toxin B subunit. Infect Immun 1993; 61 (1):314–322.PubMedGoogle Scholar
  185. 185.
    Hirabayashi Y, Tamura SI, Shimada K et al. Involvement of antigen-presenting cells in the enhancement of the in vitro antibody responses by cholera toxin B subunit. Immunology 1992; 75(3):493–498.PubMedGoogle Scholar
  186. 186.
    Maeyama J, Isaka M, Yasuda Y et al. Cytokine responses to recombinant cholera toxin B subunit produced by bacillus brevis as a mucosal adjuvant. Microbiol Immunol 2001; 45(2):111–117.PubMedGoogle Scholar
  187. 187.
    Burkart V, Kim YE, Hartmann B et al. Cholera toxin B pretreatment of macrophages and monocytes diminishes their proinflammatory responsiveness to lipopolysaccharide. J Immunol 2002; 168(4):1730–1737.PubMedGoogle Scholar
  188. 188.
    Turcanu V, Hirst TR, Williams NA. Modulation of human monocytes by Escherichia coli heat-labile enterotoxin B-subunit; altered cytokine production and its functional consequences. Immunology 2002; 106(3):316–325.PubMedGoogle Scholar
  189. 189.
    Li TK, Fox BS. Cholera toxin B subunit binding to an antigen-presenting cell directly costimulates cytokine production from a T-cell clone. Int Immunol 1996; 8(12): 1849–1856.PubMedGoogle Scholar
  190. 190.
    Millar DG, Hirst TR. Cholera toxin and Escherichia coli enterotoxin B-subunits inhibit macrophage-mediated antigen processing and presentation: Evidence for antigen persistence in nonacidic recycling endosomal compartments. Cell Microbiol 2001; 3(5):311–329.PubMedGoogle Scholar
  191. 191.
    Matousek MP, Nedrud JG, Harding CV. Distinct effects of recombinant cholera toxin B subunit and holotoxin on different stages of class II MHC antigen processing and presentation by macrophages. J Immunol 1996; 156(11):4137–4145.PubMedGoogle Scholar
  192. 192.
    Nashar TO, Betteridge ZE, Mitchell RN. Evidence for a role of ganglioside GM1 in antigen presentation: binding enhances presentation of Escherichia coli enterotoxin B subunit (EtxB) to CD4(+) T-cells. Int Immunol 2001; 13(4):541–551.PubMedGoogle Scholar
  193. 193.
    George-Chandy A, Eriksson K, Lebens M et al. Cholera toxin B subunit as a carrier molecule promotes antigen presentation and increases CD40 and CD 86 expression on antigen-presenting cells. Infect Immun 2001; 69(9):5716–5725.PubMedGoogle Scholar
  194. 194.
    Isomura I, Yasuda Y, Tsujimura K et al. Recombinant cholera toxin B subunit activates dendritic cells and enhances antitumor immunity. Microbiol Immunol 2005; 49(1):79–87.PubMedGoogle Scholar
  195. 195.
    Francis ML, Ryan J, Jobling MG et al. Cyclic AMP-independent effects of cholera toxin on B-cell activation. II. Binding of ganglioside GM1 induces B-cell activation. J Immunol 1992; 148(7): 1999–2005.PubMedGoogle Scholar
  196. 196.
    Nashar TO, Hirst TR, Williams NA. Modulation of B-cell activation by the B subunit of Escherichia coli enterotoxin: receptor interaction up-regulates MHC class II, B7, CD40, CD25 and ICAM-1. Immunology 1997; 91(4):572–578.PubMedGoogle Scholar
  197. 197.
    Schnitzler AC, Burke JM, Wetzler LM. Induction of cell signaling events by the cholera toxin B subunit in antigen-presenting cells. Infect Immun 2007; 75(6):3150–3159.PubMedGoogle Scholar
  198. 198.
    Bone H, Eckholdt S, Williams NA. Modulation of B-lymphocyte signalling by the B subunit of Escherichia coli heat-labile enterotoxin. Int Immunol 2002; 14(6):647–658.PubMedGoogle Scholar
  199. 199.
    Woogen SD, Ealding W, Elson CO. Inhibition of murine lymphocyte proliferation by the B subunit of cholera toxin. J Immunol 1987; 139(11):3764–3770.PubMedGoogle Scholar
  200. 200.
    Truitt RL, Hanke C, Radke J et al. Glycosphingolipids as novel targets for T-cell suppression by the B subunit of recombinant heat-labile enterotoxin. Infect Immun 1998; 66(4): 1299–1308.PubMedGoogle Scholar
  201. 201.
    Lycke NY. Cholera toxin promotes B-cell isotype switching by two different mechanisms. cAMP induction augments germ-line Ig H-chain RNA transcripts whereas membrane ganglioside GM 1-receptor binding enhances later events in differentiation. J Immunol 1993; 150(11):4810–4821.PubMedGoogle Scholar
  202. 202.
    Kim PH, Eckmann L, Lee WJ et al. Cholera toxin and cholera toxin B subunit induce IgA switching through the action of TGF-beta 1. J Immunol 1998; 160(3):1198–1203.PubMedGoogle Scholar
  203. 203.
    Nashar TO, Webb HM, Eaglestone S et al. Potent immunogenicity of the B subunits of Escherichia coli heat-labile enterotoxin: receptor binding is essential and induces differential modulation of lymphocyte subsets. Proc Natl Acad Sci USA 1996; 93(1):226–230.PubMedGoogle Scholar
  204. 204.
    Yankelevich B, Soldatenkov VA, Hodgson J et al. Differential induction of programmed cell death in CD8+ and CD4+ T-cells by the B subunit of cholera toxin. Cell Immunol 1996; 168(2):229–234.PubMedGoogle Scholar
  205. 205.
    Wang M, Bregenholt S, Petersen JS. The cholera toxin B subunit directly costimulates antigen-primed CD4+ T-cells ex vivo. Scand J Immunol 2003; 58(3):342–349.PubMedGoogle Scholar
  206. 206.
    Apostolaki M, Williams NA. Nasal delivery of antigen with the B subunit of Escherichia coli heat-labile enterotoxin augments antigen-specific T-cell clonal expansion and differentiation. Infect Immun 2004; 72(7):4072–4080.PubMedGoogle Scholar
  207. 207.
    Viola A, Schroeder S, Sakakibara Y et al. T-lymphocyte costimulation mediated by reorganization of membrane microdomains. Science 1999; 283(5402):680–682.PubMedGoogle Scholar
  208. 208.
    Sun JB, Rask C, Olsson T et al. Treatment of experimental autoimmune encephalomyelitis by feeding myelin basic protein conjugated to cholera toxin B subunit. Proc Natl Acad Sci USA 1996; 93(14):7196–7201.PubMedGoogle Scholar
  209. 209.
    Bergerot I, Ploix C, Petersen J et al. A cholera toxoid-insulin conjugate as an oral vaccine against spontaneous autoimmune diabetes. Proc Natl Acad Sci USA 1997; 94(9):4610–4614.PubMedGoogle Scholar
  210. 210.
    Ploix C, Bergerot I, Durand A et al. Oral administration of cholera toxin B-insulin conjugates protects NOD mice from autoimmune diabetes by inducing CD4+ regulatory T-cells. Diabetes 1999; 48(11):2150–2156.PubMedGoogle Scholar
  211. 211.
    Tarkowski A, Sun JB, Holmdahl R et al. Treatment of experimental autoimmune arthritis by nasal administration of a Type II collagen-cholera toxoid conjugate vaccine. Arthritis Rheum 1999; 42(8): 1628–1634.PubMedGoogle Scholar
  212. 212.
    Sun JB, Xiao BG, Lindblad M et al. Oral administration of cholera toxin B subunit conjugated to myelin basic protein protects against experimental autoimmune encephalomyelitis by inducing transforming growth factor-beta-secreting cells and suppressing chemokine expression. Int Immunol 2000; 12(10):1449–1457.PubMedGoogle Scholar
  213. 213.
    Phipps PA, Stanford MR, Sun JB et al. Prevention of mucosally induced uveitis with a HSP60-derived peptide linked to cholera toxin B subunit. Eur J Immunol 2003; 33(1):224–232.PubMedGoogle Scholar
  214. 214.
    Rask C, Holmgren J, Fredriksson M et al. Prolonged oral treatment with low doses of allergen conjugated to cholera toxin B subunit suppresses immunoglobulin E antibody responses in sensitized mice. Clin Exp Allergy 2000; 30(7): 1024–1032.PubMedGoogle Scholar
  215. 215.
    Luross JA, Heaton T, Hirst TR et al. Escherichia coli heat-labile enterotoxin B subunit prevents autoimmune arthritis through induction of regulatory CD4+ T-cells. Arthritis Rheum 2002; 46(6):1671–1682.PubMedGoogle Scholar
  216. 216.
    Ola TO, Williams NA. Protection of nonobese diabetic mice from autoimmune diabetes by Escherichia coli heat-labile enterotoxin B subunit. Immunology 2006; 117(2):262–270.PubMedGoogle Scholar
  217. 217.
    Tamura S, Hatori E, Tsuruhara T et al. Suppression of delayed-type hypersensitivity and IgE antibody responses to ovalbumin by intranasal administration of Escherichia coli heat-labile enterotoxin B subunit-conjugated ovalbumin. Vaccine 1997; 15(2):225–229.PubMedGoogle Scholar
  218. 218.
    George Chandy A, Hultkrantz S, Raghavan S et al. Oral tolerance induction by mucosal administration of cholera toxin B-coupled antigen involves T-cell proliferation in vivo and is not affected by depletion of CD25+ T-cells. Immunology 2006; 118(3):311–320.PubMedGoogle Scholar
  219. 219.
    Sun JB, Cuburu N, Blomquist M et al. Sublingual tolerance induction with antigen conjugated to cholera toxin B subunit induces Foxp3+CD25+CD4+ regulatory T-cells and suppresses delayed-type hypersensitivity reactions. Scand J Immunol 2006; 64(3):25T259.Google Scholar
  220. 220.
    Sun JB, Raghavan S, Sjoling A et al. Oral tolerance induction with antigen conjugated to cholera toxin B subunit generates both Foxp3+CD25+ and Foxp3-CD25-CD4+ regulatory T-cells. J Immunol 2006; 177(11):7634–7644.PubMedGoogle Scholar
  221. 221.
    Ong KW, Wilson AD, Hirst TR et al. The B subunit of Escherichia coli heat-labile enterotoxin enhances CD8+ cytotoxic-T-lymphocyte killing of Epstein-Barr virus-infected cell lines. J Virol 2003; 77(7):4298–4305.PubMedGoogle Scholar
  222. 222.
    Loregian A, Papini E, Satin B et al. Intranuclear delivery of an antiviral peptide mediated by the B subunit of Escherichia coli heat-labile enterotoxin. Proc Natl Acad Sci USA 1999; 96(9):5221–5226.PubMedGoogle Scholar
  223. 223.
    De Haan L, Hearn AR, Rivett AJ et al. Enhanced delivery of exogenous peptides into the class I antigen processing and presentation pathway. Infect Immun 2002; 70(6):3249–3258.PubMedGoogle Scholar
  224. 224.
    Facciabene A, Aurisicchio L, Elia L et al. Vectors encoding carcinoembryonic antigen fused to the B subunit of heat-labile enterotoxin elicit antigen-specific immune responses and antitumor effects. Vaccine 2007; 26(1):47–58.PubMedGoogle Scholar
  225. 225.
    Hajishengallis G, Hollingshead SK, Koga T et al. Mucosal immunization with a bacterial protein antigen genetically coupled to cholera toxin A2/B subunits. J Immunol 1995; 154(9):4322–4332.PubMedGoogle Scholar
  226. 226.
    Stanford M, Whittall T, Bergmeier LA et al. Oral tolerization with peptide 336–351 linked to cholera toxin B subunit in preventing relapses of uveitis in behcet’s disease. Clin Exp Immunol 2004; 137(1):201–208.PubMedGoogle Scholar
  227. 227.
    Paananen A, Mikkola R, Sareneva T et al. Inhibition of human natural killer cell activity by cereulide, an emetic toxin from bacillus cereus. Clin Exp Immunol 2002; 129(3):420–428.PubMedGoogle Scholar
  228. 228.
    Stenmark H, Olsnes S, Madshus IH. Elimination of the disulphide bridge in fragment B of diphtheria toxin: effect on membrane insertion, channel formation and ATP binding. Mol Microbiol 1991; 5(3):595–606.PubMedGoogle Scholar
  229. 229.
    Shaw CA, Stambach MN. Stimulation of CD8+ T-cells following diphtheria toxin-mediated antigen delivery into dendritic cells. Infect Immun 2006; 74(2): 1001–1008.PubMedGoogle Scholar
  230. 230.
    Nawar HF, Arce S, Russell MW et al. Mutants of Type II heat-labile enterotoxin LT-IIa with altered ganglioside-binding activities and diminished toxicity are potent mucosal adjuvants. Infect Immun 2007; 75(2):621–633.PubMedGoogle Scholar
  231. 231.
    Arce S, Nawar HF, Russell MW et al. Differential binding of Escherichia coli enterotoxins LT-IIa and LT-IIb and of cholera toxin elicits differences in apoptosis, proliferation and activation of lymphoid cells. Infect Immun 2005; 73(5):2718–2727.PubMedGoogle Scholar
  232. 232.
    Hajishengallis G, Nawar H, Tapping RI et al. The Type II heat-labile enterotoxins LT-IIa and LT-IIb and their respective B pentamers differentially induce and regulate cytokine production in human monocytic cells. Infect Immun 2004; 72(11):6351–6358.PubMedGoogle Scholar
  233. 233.
    Hajishengallis G, Tapping RI, Martin MH et al. Toll-like receptor 2 mediates cellular activation by the B subunits of Type II heat-labile enterotoxins. Infect Immun 2005; 73(3):1343–1349.PubMedGoogle Scholar
  234. 234.
    Svensson LA, Tarkowski A, Thelestam M et al. The impact of haemophilus ducreyi cytolethal distending toxin on cells involved in immune response. Microb Pathog 2001; 30(3): 157–166.PubMedGoogle Scholar
  235. 235.
    Xu T, Lundqvist A, Ahmed HJ et al. Interactions of haemophilus ducreyi and purified cytolethal distending toxin with human monocyte-derived dendritic cells, macrophages and CD4+ T-cells. Microbes Infect 2004; 6(13): 1171–1181.PubMedGoogle Scholar
  236. 236.
    Coutanceau E, Decalf J, Martino A et al. Selective suppression of dendritic cell functions by mycobacterium ulcerans toxin mycolactone. J Exp Med 2007; 204(6): 1395–1403.PubMedGoogle Scholar
  237. 237.
    Torrado E, Adusumilli S, Fraga AG et al. Mycolactone-mediated inhibition of tumor necrosis factor production by macrophages infected with mycobacterium ulcerans has implications for the control of infection. Infect Immun 2007; 75(8):3979–3988.PubMedGoogle Scholar
  238. 238.
    Blocker D, Berod L, Fluhr JW et al. Pasteurella multocida toxin (PMT) activates RhoGTPases, induces actin polymerization and inhibits migration of human dendritic cells, but does not influence macropinocytosis. Int Immunol 2006; 18(3):459–464.PubMedGoogle Scholar
  239. 239.
    Bagley KC, Abdelwahab SF, Tuskan RG et al. Pasteurella multocida toxin activates human monocyte-derived and murine bone marrow-derived dendritic cells in vitro but suppresses antibody production in vivo. Infect Immun 2005; 73(1):413–421.PubMedGoogle Scholar
  240. 240.
    Donnelly JJ, Ulmer JB, Hawe LA et al. Targeted delivery of peptide epitopes to class I major histocompatibility molecules by a modified Pseudomonas exotoxin. Proc Natl Acad Sci USA 1993; 90(8):3530–3534.PubMedGoogle Scholar
  241. 241.
    Lippolis JD, Denis-Mize KS, Brinckerhoff LH et al. Pseudomonas exotoxin-mediated delivery of exogenous antigens to MHC class I and class II processing pathways. Cell Immunol 2000; 203(2):75–83.PubMedGoogle Scholar
  242. 242.
    Holt PS, Misfeldt ML. Biological effects of Pseudomonas aeruginosa exotoxin A: lymphoproliferation of T-lymphocytes in athymic mice. Eur J Epidemiol 1988; 4(1):25–32.PubMedGoogle Scholar
  243. 243.
    Zehavi-Willner T. Induction of murine cytolytic T-lymphocytes by Pseudomonas aeruginosa exotoxin A. Infect Immun 1988; 56(1):213–218.PubMedGoogle Scholar
  244. 244.
    Michalkiewicz J, Stachowski J, Barth C et al. Effect of pseudomonas aeruginosa exotoxin A on IFN-gamma synthesis: expression of costimulatory molecules on monocytes and activity of NK cells. Immunol Lett 1999; 69(3):359–366.PubMedGoogle Scholar
  245. 245.
    Holt PS, Misfeldt ML. Alteration of murine immune response by pseudomonas aeruginosa exotoxin A. Infect Immun 1984; 45(1):227–233.PubMedGoogle Scholar
  246. 246.
    Jenkins CE, Swiatoniowski A, Issekutz AC et al. Pseudomonas aeruginosa exotoxin A induces human mast cell apoptosis by a caspase-8 and-3-dependent mechanism. J Biol Chem 2004; 279(35):37201–37207.PubMedGoogle Scholar
  247. 247.
    Tesh VL, Ramegowda B, Samuel JE. Purified Shiga-like toxins induce expression of proinflammatory cytokines from murine peritoneal macrophages. Infect Immun 1994; 62(11):5085–5094.PubMedGoogle Scholar
  248. 248.
    Ramegowda B, Tesh VL. Differentiation-associated toxin receptor modulation, cytokine production and sensitivity to Shiga-like toxins in human monocytes and monocytic cell lines. Infect Immun 1996; 64(4):1173–1180.PubMedGoogle Scholar
  249. 249.
    van Setten PA, Monnens LA, Verstraten RG et al. Effects of verocytotoxin-1 on nonadherent human monocytes: binding characteristics, protein synthesis and induction of cytokine release. Blood 1996; 88(1):174–183.PubMedGoogle Scholar
  250. 250.
    Liu J, Akahoshi T, Sasahana T et al. Inhibition of neutrophil apoptosis by verotoxin 2 derived from Escherichia coli 0157:H7. Infect Immun 1999; 67(11):6203–6205.PubMedGoogle Scholar
  251. 251.
    Lee RS, Tartour E, van der Brüggen P et al. Major histocompatibility complex class I presentation of exogenous soluble tumor antigen fused to the B-fragment of shiga toxin. Eur J Immunol 1998; 28(9):2726–2737.PubMedGoogle Scholar
  252. 252.
    Noakes KL, Teisserenc HT, Lord JM et al. Exploiting retrograde transport of Shiga-like toxin 1 for the delivery of exogenous antigens into the MHC class I presentation pathway. FEBS Lett 1999; 453(1–2):95–99.PubMedGoogle Scholar
  253. 253.
    Haicheur N, Bismuth E, Bosset S et al. The B subunit of Shiga toxin fused to a tumor antigen elicits CTL and targets dendritic cells to allow MHC class I-restricted presentation of peptides derived from exogenous antigens. J Immunol 2000; 165(6):3301–3308.PubMedGoogle Scholar
  254. 254.
    King AJ, Sundaram S, Cendoroglo M et al. Shiga toxin induces superoxide production in polymorpho-nuclear cells with subsequent impairment of phagocytosis and responsiveness to phorbol esters. J Infect Dis 1999; 179(2):503–507.PubMedGoogle Scholar
  255. 255.
    LaCasse EC, Saleh MT, Patterson B et al. Shiga-like toxin purges human lymphoma from bone marrow of severe combined immunodeficient mice. Blood 1996; 88(5): 1561–1567.PubMedGoogle Scholar

Copyright information

© Landes Bioscience and Springer Science+Business Media 2009

Authors and Affiliations

  1. 1.Department of Cellular and Molecular Medicine, School of Medicine SciencesUniversity of BristolBristolUK

Personalised recommendations