Molecular Regulation ofCellular Immunity by FOXP3

  • Alicia N. McMurchy
  • Sara Di Nunzio
  • Maria Grazia Roncarolo
  • Rosa Bacchetta
  • Megan K. Levings
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 665)

Abstract

The immune system is responsible for not only eliminating threats to the body, but also for protecting the body from its own immune responses that would cause harm if left unchecked. Forkhead box protein 3 (FOXP3) is a forkhead family member with an important role in the development and function of a type of CD4+ T cell called T regulatory cells that is fundamental for maintaining immune tolerance to self. This chapter reviews the structure of FOXP3 and how its role in the immune system was discovered. Studies ofpatients with mutations in FOXP3 who suffer from a syndrome known as IPEX (immune dysregulation, polyendocrinopathy, enteropathy, x-linked) are also discussed. Investigation into howexpression of FOXP3 is regulated and how it interacts with other proteins have recently provided considerable insight into mechanisms bywhich the lack of this protein could cause disease. We also discuss how FOXP3 is involved in the reciprocal development of T regulatory cellsand proinflammatory T-cells that produce IL-17. A better understanding ofhow FOXP3 is regulated and the molecular basis for its function will ultimately contribute to the development of T regulatory cell-based cellular therapies that could be used to restore dysregulated immune responses.

Keywords

Estrogen Lysine Methotrexate Folate Cyclosporin 

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Allan SE, Broady R, Gregori S et al. CD4+ T-regulatory cells:toward therapy for human diseases. Immunol Rev 2008; 223:391–421.PubMedCrossRefGoogle Scholar
  2. 2.
    Miyara M, Sakaguchi S. Natural regulatory T-cells: mechanisms of suppression. Trends Mol Med 2007; 13(3):108–116.PubMedCrossRefGoogle Scholar
  3. 3.
    van Maurik A, Herber M, Wood KJ et al. Cutting edge: CD4+CD25+ alloantigen-specific immunoregulatory cells that can prevent CD8+ T-cell-mediated graft rejection: implications for anti-CD154 immunotherapy. J Immunol 2002; 169(10):5401–5404.PubMedGoogle Scholar
  4. 4.
    Lin CY, Graca L, Cobbold SP et al. Dominant transplantation tolerance impairs CD8+ T-cell function but not expansion. Nat Immunol 2002; 3(12):1208–1213.PubMedCrossRefGoogle Scholar
  5. 5.
    Lim HW, Hillsamer P, Banham AH et al. Cutting edge: direct suppression of B-cells by CD4+ CD25+ regulatory T-cells. J Immunol 2005; 175(7):4180–4183.PubMedGoogle Scholar
  6. 6.
    Maloy KJ, Antonelli LR, Lefevre M et al. Cure of innate intestinal immune pathology by CD4+CD25+ regulatory T-cells. Immunol Lett 2005; 97(2):189–192.PubMedCrossRefGoogle Scholar
  7. 7.
    Tiemessen MM, Jagger AL, Evans HG et al. CD4+CD25+Foxp3+ regulatory T-cells induce alternative activation of human monocytes/macrophages. Proc Natl Acad Sci USA 2007; 104(49):19446–19451.PubMedCrossRefGoogle Scholar
  8. 8.
    Chen GY, Chen C, Wang L et al. Cutting edge: Broad expression of the FoxP3 locus in epithelial cells: a caution against early interpretation of fatal inflammatory diseases following in vivo depletion of FoxP3-expressing cells. J Immunol 2008; 180(8):5163–5166.PubMedGoogle Scholar
  9. 9.
    Zuo T, Wang L, Morrison C et al. FOXP3 is an X-linked breast cancer suppressor gene and an important repressor of the HER-2/ErbB2 oncogene. Cell 2007; 129(7):1275–1286.PubMedCrossRefGoogle Scholar
  10. 10.
    Brunkow ME, Jeffery EW, Hjerrild KA et al. Disruption of a new forkhead/winged-helix protein, scurfin, results in the fatal lymphoproliferative disorder of the scurfy mouse. Nat Genet 2001; 27(1):68–73.PubMedCrossRefGoogle Scholar
  11. 11.
    Bennett CL, Christie J, Ramsdell F et al. The immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome (IPEX) is caused by mutations of FOXP3. Nat Genet 2001; 27(1):20–21.PubMedCrossRefGoogle Scholar
  12. 12.
    Wildin RS, Ramsdell F, Peake J et al. X-linked neonatal diabetes mellitus, enteropathy and endocrinopathy syndrome is the human equivalent of mouse scurfy. Nat Genet 2001; 27(1):18–20.PubMedCrossRefGoogle Scholar
  13. 13.
    Godfrey VL, Wilkinson JE, Russell LB. X-linked lymphoreticular disease in the scurfy (sf) mutant mouse. Am J Pathol 1991; 138(6):1379–1387.PubMedGoogle Scholar
  14. 14.
    Schubert LA, Jeffery E, Zhang Y et al. Scurfin (FOXP3) acts as a repressor of transcription and regulates T-cell activation. J Biol Chern 2001; 276(40):37672–37679.CrossRefGoogle Scholar
  15. 15.
    Wu Y, Borde M, Heissmeyer V et al. FOXP3 controls regulatory T-cell function through cooperation with NFAT. Cell 2006; 126(2):375–387.PubMedCrossRefGoogle Scholar
  16. 16.
    Marson A, Kretschmer K, Frampton GM et al. Foxp3 occupancy and regulation of key target genes during T-cell stimulation. Nature 2007; 445(7130):931–935.PubMedCrossRefGoogle Scholar
  17. 17.
    Zheng Y, Josefowicz SZ, Kas A et al. Genome-wide analysisof Foxp3 target genes in developing and mature regulatory T-cells. Nature 2007; 445(7130):936–940.PubMedCrossRefGoogle Scholar
  18. 18.
    Ziegler SF. FOXP3: of mice and men. Annu Rev Immunol 2006; 24:209–226.PubMedCrossRefGoogle Scholar
  19. 19.
    Li B, Samanta A, Song X et al. FOXP3 ensembles in T-cell regulation. Immunol Rev 2006; 212:99–113.PubMedCrossRefGoogle Scholar
  20. 20.
    Li B, Greene MI. FOXP3 actively represses transcription by recruiting the HAT/HDAC complex. Cell Cycle 2007; 6(12):1432–1436.PubMedGoogle Scholar
  21. 21.
    Lopes JE, Torgerson TR, Schubert LA et al. Analysis of FOXP3 reveals multiple domains required for its function as a transcriptional repressor. J Immunol 2006; 177(5):3133–3142.PubMedGoogle Scholar
  22. 22.
    Li B, Samanta A, Song X et al. FOXP3 interactions with histone acetyltransferase and class II histone deacetylases are required for repression. Proc Natl Acad Sci USA 2007; 104(11):4571–4576.PubMedCrossRefGoogle Scholar
  23. 23.
    Chae WJ, Henegariu O, Lee SK et al. The mutant leucine-zipper domain impairs both dimerization and suppressive function of Foxp3 in T-cells. Proc Natl Acad Sci USA 2006; 103(25):9631–9636.PubMedCrossRefGoogle Scholar
  24. 24.
    Li B, Samanta A, Song X et al. FOXP3 is a homo-oligomer and a component of a supramolecular regulatory complex disabled in the human XLAAD/IPEX autoimmune disease. Int Immunol 2007; 19(7):825–835.PubMedCrossRefGoogle Scholar
  25. 25.
    Khattri R, Cox T, Yasayko SA et al. An essential role for Scurfin in CD4+CD25+ T regulatory cells. Nat Immunol 2003; 4(4):337–342.PubMedCrossRefGoogle Scholar
  26. 26.
    Hori S, Nomura T, Sakaguchi S. Control of regulatory T-cell development by the transcription factor Foxp3. Science 2003; 299(5609):1057–1061.PubMedCrossRefGoogle Scholar
  27. 27.
    Fontenot JD, Gavin MA, Rudensky AY. Foxp3 programs the development and function of CD4+CD25+ regulatory T-cells. Nat Immunol 2003; 4(4):330–336.PubMedCrossRefGoogle Scholar
  28. 28.
    Sakaguchi S, Sakaguchi N, Asano M et al. Immunologic self-tolerance maintained by activated T-cells expressing IL-2 receptor alpha-chains (CD25). Breakdown of a single mechanism of self-tolerance causes various autoimmune diseases. J Immunol 1995; 155(3):1151–1164.PubMedGoogle Scholar
  29. 29.
    Suri-Payer E, Amar AZ, Thornton AM et al. CD4+CD25+ T-cells inhibit both the induction and effector function of autoreactive T-cells and represent a unique lineage of immunoregulatory cells. J Immunol 1998; 160(3):1212–1218.PubMedGoogle Scholar
  30. 30.
    Maynard CL, Harrington LE, Janowski KM et al. Regulatory T-cells expressinginterleukin 10 develop from Foxp3+ and Foxp3-precursor cells in the absence of interleukin 10. Nat Immunol 2007; 8(9):931–941.PubMedCrossRefGoogle Scholar
  31. 31.
    Lin W, Haribhai D, Relland LM et al. Regulatory T-cell development in the absence of functional Foxp3. Nat Immunol 2007; 8(4):359–368.PubMedCrossRefGoogle Scholar
  32. 32.
    Wan YY, Flavell RA. Identifying Foxp3-expressingsuppressor T-cells with a bicistronic reporter. Proc Natl Acad Sci USA 2005; 102(14):5126–5131.PubMedCrossRefGoogle Scholar
  33. 33.
    Sakaguchi S. Naturally arising Foxp3-expressing CD25+CD4+ regulatory T-cells in immunological tolerance to self and nonself. Nat Immunol 2005; 6(4):345–352.PubMedCrossRefGoogle Scholar
  34. 34.
    Shevach EM. From vanilla to 28 flavors: multiple varieties of T regulatory cells. Immunity 2006; 25(2):195–201.PubMedCrossRefGoogle Scholar
  35. 35.
    Levings MK, Sangregorio R, Roncarolo MG. Human cd25(+)cd4(+) t regulatory cells suppress naive and memory T-cell proliferation and can be expanded in vitro without loss of function. J Exp Med 2001; 193(11):1295–1302.PubMedCrossRefGoogle Scholar
  36. 36.
    Dieckmann D, Plottner H, Berchtold S et al. Ex vivo isolation and characterization of CD4(+)CD25(+) T-cells with regulatory properties from human blood. J Exp Med 2001; 193(11):1303–1310.PubMedCrossRefGoogle Scholar
  37. 37.
    Jonuleit H, Schmitt E, Stassen M et al. Identification and functional characterization of human CD4(+)CD25(+) T-cells with regulatory properties isolated from peripheral blood. J Exp Med 2001; 193(11):1285–1294.PubMedCrossRefGoogle Scholar
  38. 38.
    Thornton AM, Shevach EM. CD4+CD25+ immunoregulatory T-cells suppress polyclonal T-cell activation in vitro by inhibiting interleukin 2 production. J Exp Med 1998; 188(2):287–296.PubMedCrossRefGoogle Scholar
  39. 39.
    Takahashi T, Kuniyasu Y, Toda M et al. Immunologic self-tolerance maintained by CD25+CD4+ naturally anergic and suppressive T-cells: induction of autoimmune disease by breaking their anergic/suppressive state. Int Immunol 1998; 10(12):1969–1980.PubMedCrossRefGoogle Scholar
  40. 40.
    Collison LW, Workman CJ, Kuo TT et al. The inhibitory cytokine IL-35 contributes to regulatory T-cell function. Nature 2007; 450(7169):566–569.PubMedCrossRefGoogle Scholar
  41. 41.
    Niedbala W, Wei XQ, Cai B et al. IL-35 is a novel cytokine with therapeutic effects against collagen-induced arthritis through the expansion of regulatory T-cells and suppression of Th17 cells. Eur J Immunol 2007; 37(11):3021–3029.PubMedCrossRefGoogle Scholar
  42. 42.
    Sakaguchi S, Ono M, Setoguchi R et al. Foxp3+ CD25+ CD4+ natural regulatory T-cells in dominant self-tolerance and autoimmune disease. Immunol Rev 2006; 212:8–27.PubMedCrossRefGoogle Scholar
  43. 43.
    Lan RY, Ansari AA, Lian ZX et al. Regulatory T-cells: development, function and role in autoimmunity. Autoimmun Rev 2005; 4(6):351–363.PubMedCrossRefGoogle Scholar
  44. 44.
    Mays LE, Chen YH. Maintaining immunological tolerance with Foxp3. Cell Res 2007; 17(11):904–918.PubMedCrossRefGoogle Scholar
  45. 45.
    Liu W, Putnam AL, Xu-Yu Z et al. CD127 expression inversely correlates with FoxP3 and suppressive function of human CD4+ T reg cells. J Exp Med 2006; 203(7): 1701–1711.PubMedCrossRefGoogle Scholar
  46. 46.
    Seddiki N, Santner-Nanan B, Martinson J et al. Expression of interleukin (IL)-2 and IL-7 receptors discriminates between human regulatory and activated T-cells. J Exp Med 2006; 203(7):1693–1700.PubMedCrossRefGoogle Scholar
  47. 47.
    Yamaguchi T, Hirota K, Nagahama K et al. Control of immune responses by antigen-specific regulatory T-cells expressing the folate receptor. Immunity 2007; 27(1):145–159.PubMedCrossRefGoogle Scholar
  48. 48.
    Bruder D, Probst-Kepper M, Westendorf AM et al. Neuropilin-I: a surface marker of regulatory T-cells. Eur J Immunol 2004; 34(3):623–630.PubMedCrossRefGoogle Scholar
  49. 49.
    Vignali DA, Collison LW, Workman CJ. How regulatory T-cells work. Nat Rev Immunol 2008; 8(7):523–532.PubMedCrossRefGoogle Scholar
  50. 50.
    Yi H, Zhen Y, Jiang L et al. The phenotypic characterization of naturally occurring regulatory CD4+CD25+ T-cells. Cell Mol Immunol 2006; 3(3):189–195.PubMedGoogle Scholar
  51. 51.
    Banham AH, Powrie FM, Suri-Payer E. FOXP3+ regulatory T-cells: Current controversies and future perspectives. Eur J Immunol 2006; 36(11):2832–2836.PubMedCrossRefGoogle Scholar
  52. 52.
    Tang Q, Henriksen KJ, Bi M et al. In vitro-expanded antigen-specific regulatory T-cells suppress autoimmune diabetes. J Exp Med 2004; 199(11):1455–1465.PubMedCrossRefGoogle Scholar
  53. 53.
    Mottet C, Uhlig HH, Powrie F. Cutting edge: cure ofcolitis by CD4+CD25+ regulatory T-cells. J Immunol 2003; 170(8):3939–3943.PubMedGoogle Scholar
  54. 54.
    Taylor PA, Lees CJ, Blazar BR. The infusion of ex vivo activated and expanded CD4(+)CD25(+) immune regulatory cells inhibits graft-versus-host disease lethality. Blood 2002; 99(10):3493–3499.PubMedCrossRefGoogle Scholar
  55. 55.
    Hoffmann P, Ermann J, Edinger M et al. Donor-type CD4(+)CD25(+) regulatory T-cells suppress lethal acute graft-versus-host disease after allogeneic bone marrow transplantation. J Exp Med 2002; 196(3):389–399.PubMedCrossRefGoogle Scholar
  56. 56.
    Xia G, He J, Zhang Z et al. Targeting acute allograft rejection by immunotherapy with ex vivo-expanded natural CD4+ CD25+ regulatory T-cells. Transplantation 2006; 82(12):1749–1755.PubMedCrossRefGoogle Scholar
  57. 57.
    Graca L, Le Moine A, Lin CY et al. Donor-specific transplantation tolerance: the paradoxical behavior of CD4+CD25+ T-cells. Proc Natl Acad Sci USA 2004; 101(27):10122–10126.PubMedCrossRefGoogle Scholar
  58. 58.
    Viglietta V, Baecher-Allan C, Weiner HL et al. Loss of functional suppression by CD4+CD25+ regulatory T-cells in patients with multiple sclerosis. J Exp Med 2004; 199(7):971–979.PubMedCrossRefGoogle Scholar
  59. 59.
    Kriegel MA, Lohmann T, Gabler C et al. Defective suppressor function of human CD4+ CD25+ regulatory T-cells in autoimmune polyglandular syndrome type II. J Exp Med 2004; 199(9):1285–1291.PubMedCrossRefGoogle Scholar
  60. 60.
    Huan J, Culbertson N, Spencer L et al. Decreased FOXP3 levels in multiple sclerosis patients. J Neurosci Res 2005; 81(1):45–52.PubMedCrossRefGoogle Scholar
  61. 61.
    Offner H, Vandenbark AA. Congruent effectsof estrogen and T-cell receptor peptide therapy on regulatory T-cells in EAE and MS. Int Rev Immunol 2005; 24(5–6):447–477.PubMedCrossRefGoogle Scholar
  62. 62.
    Venken K, Hellings N, Hensen K et al. Secondary progressive in contrast to relapsing-remitting multiple sclerosis patients show a normal CD4+CD25+ regulatory T-cell function and FOXP3 expression. J Neurosci Res 2006; 83(8):1432–1446.PubMedCrossRefGoogle Scholar
  63. 63.
    Takahashi M, Nakamura K, Honda K et al. An inverse correlation of human peripheral blood regulatory T-cell frequency with the disease activity of ulcerative colitis. Dig Dis Sci 2006; 51(4):677–686.PubMedCrossRefGoogle Scholar
  64. 64.
    Kawai T, Cosimi AB, Spitzer TR et al. HLA-mismatched renal transplantation without maintenance immunosuppression. N Engl J Med 2008; 358(4):353–361.PubMedCrossRefGoogle Scholar
  65. 65.
    Martin L, Funes de la Vega M, Bocrie O et al. Detection of Foxp3+ cells on biopsies of kidney transplants with early acute rejection. Transplant Proc 2007; 39(8):2586–2588.PubMedCrossRefGoogle Scholar
  66. 66.
    Lathrop SK, Santacruz NA, Pham D et al. Antigen-specific peripheral shaping of the natural regulatory T-cell population. J Exp Med 2008; 205(13):3105–3117.PubMedCrossRefGoogle Scholar
  67. 67.
    Hsieh CS, Liang Tyznik AJ et al. Recognition of the peripheral self by naturally arising CD25+ CD4+ T-cell receptors. Immunity 2004; 21(2):267–277.PubMedCrossRefGoogle Scholar
  68. 68.
    Jordan MS, Boesteanu A, Reed AJ et al. Thymic selection of CD4+CD25+ regulatory T-cells induced by an agonist self-peptide. Nat Immunol 2001; 2(4):301–306.PubMedCrossRefGoogle Scholar
  69. 69.
    Kretschmer K, Apostolou I, Hawiger D et al. Inducing and expanding regulatory T-cell populations by foreign antigen. Nat Immunol 2005; 6(12):1219–1227.PubMedCrossRefGoogle Scholar
  70. 70.
    Gavin MA, Rasmussen JP, Fontenot JD et al. Foxp3-dependent programme of regulatory T-cell differentiation. Nature 2007; 445(7129):771–775.PubMedCrossRefGoogle Scholar
  71. 71.
    Hill JA, Feuerer M, Tash K et al. Foxp3 transcription-factor-dependent and-independent regulation of the regulatory T-cell transcriptional signature. Immunity 2007; 27(5):786–800.PubMedCrossRefGoogle Scholar
  72. 72.
    Zheng SG, Wang JH, Stohl W et al. TGF-beta requires CTLA-4 early after T-cell activation to induce FoxP3 and generate adaptive CD4+CD25+ regulatory cells. J Immunol 2006; 176(6):3321–3329.PubMedGoogle Scholar
  73. 73.
    Chen W, Jin W, Hardegen N et al. Conversion of peripheral CD4+CD25-naive T-cells to CD4+CD25+ regulatory T-cells by TGF-beta induction of transcription factor Foxp3. J Exp Med 2003; 198(12):1875–1886.PubMedCrossRefGoogle Scholar
  74. 74.
    Fantini MC, Becker C, Monteleone G et al. Cutting edge: TGF-beta induces a regulatory phenotype in CD4+CD25-T-cells through Foxp3 induction and down-regulation of Smad7. J Immunol 2004; 172(9):5149–5153.PubMedGoogle Scholar
  75. 75.
    Andersson J, Tran DQ, Pesu M et al. CD4+ FoxP3+ regulatory T-cells confer infectious tolerance in a TGF-beta-dependent manner. J Exp Med 2008; 205(9):1975–1981.PubMedCrossRefGoogle Scholar
  76. 76.
    Huter EN, Punkosdy GA, Glass DD et al. TGF-beta-induced Foxp3+ regulatory T-cells rescue scurfy mice. Eur J Immunol 2008; 38(7):1814–1821.PubMedCrossRefGoogle Scholar
  77. 77.
    Huter EN, Stummvoll GH, DiPaolo RJ et al. Cutting edge: antigen-specific TGF beta-induced regulatory T-cells suppress Th17-mediated autoimmune disease. J Immunol 2008; 181(12):8209–8213.PubMedGoogle Scholar
  78. 78.
    Coombes JL, Siddiqui KR, Arancibia-Carcamo CV et al. A functionally specialized population of mucosal CD103+ DCs induces Foxp3+ regulatory T-cells via a TGF-beta and retinoic acid-dependent mechanism. J Exp Med 2007; 204(8):1757–1764.PubMedCrossRefGoogle Scholar
  79. 79.
    Benson MJ, Pino-Lagos K, Rosemblatt M et al. All-trans retinoic acid mediates enhanced T reg cell growth, differentiation and gut homing in the face of high levels of costimulation. J Exp Med 2007; 204(8):1765–1774.PubMedCrossRefGoogle Scholar
  80. 80.
    Sun CM, Hall JS, Blank RB et al. Small intestine lamina propria dendritic cells promote de novo generation of Foxp3 T reg cells via retinoic acid. J Exp Med 2007; 204(8):1775–1785.PubMedCrossRefGoogle Scholar
  81. 81.
    Mucida D, Park Y, Kim G et al. Reciprocal TH17 and regulatory T-cell differentiation mediated by retinoic acid. Science 2007; 317(5835):256–260.PubMedCrossRefGoogle Scholar
  82. 82.
    Liu Y, Zhang P, Li J et al. A critical function for TGF-beta signaling in the development of natural CD4+CD25+Foxp3+ regulatory T-cells. Nat Immunol 2008; 9(6):632–640.PubMedCrossRefGoogle Scholar
  83. 83.
    Floess S, Freyer J, Siewert C et al. Epigenetic control of the foxp3 locus in regulatory T-cells. PLoS BioI 2007; 5(2):e38.CrossRefGoogle Scholar
  84. 84.
    Shevach EM, Davidson TS, Huter EN et al. Role of TGF-Beta in the induction of Foxp3 expression and T regulatory cell function. J Clin Immunol 2008; 28(6): 640–646.PubMedCrossRefGoogle Scholar
  85. 85.
    Chai JG, Xue SA, Coe D et al. Regulatory T-cells, derived from naive CD4+CD25-T-cells by in vitro Foxp3 gene transfer, can induce transplantation tolerance. Transplantation 2005; 79(10):1310–1316.PubMedCrossRefGoogle Scholar
  86. 86.
    Allan SE, Passerini L, Bacchetta R et al. The role of2 FOXP3 isoforms in the generation ofhuman CD4+ Tregs. J Clin Invest 2005; 115(11):3276–3284.PubMedCrossRefGoogle Scholar
  87. 87.
    Allan SE, Alstad AN, Merindol N et al. Generation of potent and stable human CD4+ T regulatory cells by activation-independent expression of FOXP3. Mol Ther 2008; 16(1):194–202.PubMedCrossRefGoogle Scholar
  88. 88.
    Ziegler SF. FOXP3: not just for regulatory T-cells anymore. Eur J Immunol 2007; 37(1):21–23.PubMedCrossRefGoogle Scholar
  89. 89.
    Allan SE, Song-Zhao GX, Abraham T et al. Inducible reprogramming of human T-cells into Treg cells by a conditionally active form of FOXP3. EurJ Immunol 2008; 38(12):3282–3289.CrossRefGoogle Scholar
  90. 90.
    Wann Flavell RA. Regulatory T-cell functions are subverted and converted owing to attenuated Foxp3 expression. Nature 2007; 445(7129):766–770.CrossRefGoogle Scholar
  91. 91.
    Andersen KG, Butcher T, Betz AG. Specific immuno suppression with inducible Foxp3-transduced polyclonal T-cells. PLoS Biol 2008; 6(ll):e276.PubMedCrossRefGoogle Scholar
  92. 92.
    Morgan ME, van Bilsen JH, Bakker AM et al. Expression of FOXP3 mRNA is not confined to CD4+CD25+ T regulatory cells in humans. Hum Immunol 2005; 66(1):13–20.PubMedCrossRefGoogle Scholar
  93. 93.
    Tran DQ Ramsey H, Shevach EM. Induction of FOXP3 expression in naive human CD4+FOXP3 T-cells by T-cell receptor stimulation is transforming growth factor-beta dependent but does not confer a regulatory phenotype. Blood 2007; 110(8):2983–2990.PubMedCrossRefGoogle Scholar
  94. 94.
    Allan SE, Crome SQ Crellin NK et al. Activation-induced FOXP3 in human T effector cells does not suppress proliferation or cytokine production. Int Immunol 2007; 19(4):345–354.PubMedCrossRefGoogle Scholar
  95. 95.
    Gavin MA, Torgerson TR, Houston E et al. Single-cell analysis of normal and FOXP3-mutant human T-cells: FOXP3 expression without regulatory T-cell development. Proc Natl Acad Sci USA 2006; 103(17):6659–6664.PubMedCrossRefGoogle Scholar
  96. 96.
    Wang J, Ioan-Facsinay A, van der Voort EI et al. Transient expression of FOXP3 in human activated nonregulatory CD4+ T-cells. Eur J Immunol 2007; 37(1):129–138.PubMedCrossRefGoogle Scholar
  97. 97.
    Pillai V, Ortega SB, Wang CK et al. Transient regulatory T-cells: a state attained by all activated human T-cells. Clin Immunol 2007; 123(1):18–29.PubMedCrossRefGoogle Scholar
  98. 98.
    Walker MR, Kasprowicz DJ, Gersuk VH et al. Induction of FoxP3 and acquisition of T regulatory activity by stimulated human CD4+CD25-T-cells. J Clin Invest 2003; 112(9):1437–1443.PubMedGoogle Scholar
  99. 99.
    Levings MK, Gregori S, Tresoldi et al. Differentiation of Tr1 cells by immature dendritic cells requires IL-I0 but not CD25+CD4+ Tr cells. Blood 2005; 105(3):1162–1169.PubMedCrossRefGoogle Scholar
  100. 100.
    Chatila TA, Blaeser F, Ho N et al. JM2, encoding a fork head-related protein, is mutated in X-linked autoimmunity-allergic disregulation syndrome. J Clin Invest 2000; 106(12):R75–81.PubMedCrossRefGoogle Scholar
  101. 101.
    Torgerson TR, Ochs HD. Immune dysregulation, polyendocrinopathy, enteropathy, X-linked: forkhead box protein 3 mutations and lack of regulatory T-cells. J Allergy Clin Immunol 2007; 120(4):744–750; quiz 751–742.PubMedCrossRefGoogle Scholar
  102. 102.
    Gambineri E, Perroni L, Passerini L et al. Clinical and molecular profile of a new series of patients with immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome: inconsistent correlation between for khead box protein 3 expression and disease severity. J Allergy Clin Immunol 2008; 122(6):1105–1112 ell01.PubMedCrossRefGoogle Scholar
  103. 103.
    Yong PL, Russo P, Sullivan KE. Use of sirolimus in IPEX and IPEX-like children. J Clin Immunol 2008; 28(5):581–587.PubMedCrossRefGoogle Scholar
  104. 104.
    Bindl L, Torgerson T, Perroni L et al. Successful use of the new immune-suppressor sirolimus in IPEX (immune dysregulation, polyendocrinopathy, enteropathy, X-linked syndrome). J Pediatr 2005; 147(2):256–259.PubMedCrossRefGoogle Scholar
  105. 105.
    Battaglia M, Stabilini A, Migliavacca B et al. Rapamycin promotes expansion of functional CD4+CD25+FOXP3+ regulatory T-cells of both healthy subjects and type 1 diabetic patients. J Immunol 2006; 177(12):8338–8347.PubMedGoogle Scholar
  106. 106.
    Coenen JJ, Koenen HJ, van Rijssen E et aI. Rapamycin, not cyclosporine, permits thymic generation and peripheral preservation of CD4+ CD25+ FoxP3+ T-cells. Bone Marrow Transplant 2007; 39(9):537–545.PubMedCrossRefGoogle Scholar
  107. 107.
    Rao A, Kamani N, Filipovich A et al. Successful bone marrow transplantation for IPEX syndrome after reduced-intensity conditioning. Blood 2007; 109(1):383–385.PubMedCrossRefGoogle Scholar
  108. 108.
    Bacchetta R, Passerini L, Gambineri E et al. Defective regulatory and effector T-cell functions in patients with FOXP3 mutations. J Clin Invest 2006; 116(6):1713–1722.PubMedCrossRefGoogle Scholar
  109. 109.
    Manavalan JS, Kim-Schulze S, Scotto L et al. Alloantigen specific CD8+CD28-FOXP3+ T suppressor cells induce ILT3+ ILT4+ tolerogenic endothelial cells, inhibiting alloreactivity. Int Immunol 2004; 16(8):1055–1068.PubMedCrossRefGoogle Scholar
  110. 110.
    Smith EL, Finney HM, Nesbitt AM et al. Splice variants of human FOXP3 are functional inhibitors of human CD4+ T-cell activation. Immunology 2006; 119(2):203–211.PubMedCrossRefGoogle Scholar
  111. 111.
    Du J, Huang C, Zhou B et al. Isoform-specific inhibition of ROR alpha-mediated transcriptional activation by human FOXP3. J Immunol 2008; 180(7):4785–4792.PubMedGoogle Scholar
  112. 112.
    Krejsgaard T, Gjerdrum LM, Ralfkiaer E et al. Malignant Tregs express low molecular splice forms of FOXP3 in Sezary syndrome. Leukemia 2008; 22(12):2230–2239.PubMedCrossRefGoogle Scholar
  113. 113.
    Macian F. NFAT proteins: key regulators of T-cell development and function. Nat Rev Immunol 2005; 5(6):472–484.PubMedCrossRefGoogle Scholar
  114. 114.
    Rao A, Luo C, Hogan PG. Transcription factors of the NFAT family: regulation and function. Annu Rev Immunol 1997; 15:707–747.PubMedCrossRefGoogle Scholar
  115. 115.
    Bettelli E, Dastrange M, Oukka M. Foxp3 interacts with nuclear factor of activated T-cells and NF-kappa B to repress cytokine gene expression and effector functions of T helper cells. Proc Natl Acad Sci USA 2005; 102(14):5138–5143.PubMedCrossRefGoogle Scholar
  116. 116.
    Macian F, Garcia-Cozar F, Im SH et al. Transcriptional mechanisms underlying lymphocyte tolerance. Cell 2002; 109(6):719–731.PubMedCrossRefGoogle Scholar
  117. 117.
    Lee SM, Gao B, Fang D. FoxP3 maintains Treg unresponsiveness by selectively inhibiting the promoter DNA-binding activity of AP-l. Blood 2008; 111(7):3599–3606.PubMedCrossRefGoogle Scholar
  118. 118.
    Derijard B, Hibi M, Wu IH et al. JNKl: a protein kinase stimulated by UV light and Ha-Ras that binds and phosphorylates the c-Jun activation domain. Cell 1994; 76(6):1025–1037.PubMedCrossRefGoogle Scholar
  119. 119.
    Su B, Jacinto E, Hibi M et al. JNK is involved in signal integration during costimulation of T-lymphocytes. Cell 1994; 77(5): 727–736.PubMedCrossRefGoogle Scholar
  120. 120.
    Kwon HK, So JS, Lee CG et al. Foxp3 induces IL-4 gene silencing by affecting nuclear translocation of NFkappaB and chromatin structure. Mol Immunol 2008; 45(11):3205–3212.PubMedCrossRefGoogle Scholar
  121. 121.
    Ono M, Yaguchi H, Ohkura N et al. Foxp3 controls regulatory T-cell function by interacting with AMLI/ Runx1. Nature 2007; 446(7136):685–689.PubMedCrossRefGoogle Scholar
  122. 122.
    Zhang F, Meng G, Strober W. Interactions among the transcription factors Runxl, ROR gammat and Foxp3 regulate the differentiation of interleukin 17-producing T-cells. Nat Immunol 2008; 9(11):1297–1306.PubMedCrossRefGoogle Scholar
  123. 123.
    Yang XO, Nurieva R, Martinez GJ et al. Molecular antagonism and plasticity of regulatory and inflammatory T-cell programs. Immunity 2008; 29(1):44–56.PubMedCrossRefGoogle Scholar
  124. 124.
    Zhou L, Lopes JE, Chong MM et al. TGF-beta-induced Foxp3 inhibits T(H) 17 cell differentiation by antagonizing RORgammat function. Nature 2008; 453(7192):236–240.PubMedCrossRefGoogle Scholar
  125. 125.
    Samanta A, Li B, Song X et al. TGF-beta and IL-6 signals modulate chromatin binding and promoter occupancy by acetylated FOXP3. Proc Natl Acad Sci USA 2008; 105(37):14023–14027.PubMedCrossRefGoogle Scholar
  126. 126.
    Tao R, de Zoeten EF, Ozkaynak E et al. Deacetylase inhibition promotes the generation and function of regulatory T-cells. Nat Med 2007; 13(11):1299–1307.PubMedCrossRefGoogle Scholar
  127. 127.
    Kouzarides T. Chromatin modifications and their function. Cell 2007; 128(4):693–705.PubMedCrossRefGoogle Scholar
  128. 128.
    Chen C, Rowell EA, Thomas RM et al. Transcriptional regulation by Foxp3 is associated with direct promoter occupancy and modulation of histone acetylation. J BioI Chem 2006; 281(48):36828–36834.CrossRefGoogle Scholar
  129. 129.
    Haxhinasto S, Mathis D, Benoist C. The AKT-mTOR axis regulates de novo differentiation of CD4+Foxp3+ cells. J Exp Med 2008; 205(3):565–574.PubMedCrossRefGoogle Scholar
  130. 130.
    Sauer S, Bruno L, Herrweck A et al. T-cell receptor signaling controls Foxp3 expression via PI3K, Ala and mTOR. Proc Natl Acad Sci USA 2008; 105(22):7797–7802.PubMedCrossRefGoogle Scholar
  131. 131.
    Zeiser R, Negrin RS. Interleukin-2 receptor downstream events in regulatory T-cells: implications for the choice of immunosuppressive drug therapy. Cell Cycle 2008; 7(4):458–462.PubMedGoogle Scholar
  132. 132.
    Wuest TY Willette-Brown J, Durum SK et al. The influence of IL-2 family cytokines on activation and function of naturally occurring regulatory T-cells. J Leukoc Biol 2008; 84(4): 973–980.PubMedCrossRefGoogle Scholar
  133. 133.
    Passerini L, Allan SE, Battaglia M et al. STAT5-signaling cytokines regulate the expression of FOXP3 in CD4+CD25+ regulatory T-cells and CD4+CD25-effector T-cells. Int Immunol 2008; 20(3):421–431.PubMedCrossRefGoogle Scholar
  134. 134.
    Huehn J, Polansky JK, Hamann A. Epigenetic control of FOXP3 expression: the key to a stable regulatory T-cell lineage? Nat Rev Immunol 2009; 9(2):83–89.PubMedCrossRefGoogle Scholar
  135. 135.
    Janson PC, Winerdal ME, Marits P et al. FOXP3 promoter demethylation reveals the committed Treg population in humans. PLoS ONE 2008; 3(2):e1612.PubMedCrossRefGoogle Scholar
  136. 136.
    Mantel PY Ouaked N, Ruckert B et al. Molecular mechanisms underlying FOXP3 induction in human T-cells. J Immunol 2006; 176(6):3593–3602.PubMedGoogle Scholar
  137. 137.
    Nagar M, Vernitsky H, Cohen Y et al. Epigenetic inheritance of DNA methylation limits activation-induced expression of FOXP3 in conventional human CD25-CD4+ T-cells. Int Immunol 2008; 20(8):1041–1055.PubMedCrossRefGoogle Scholar
  138. 138.
    Polansky JK, Kretschmer K, Freyer J et al. DNA methylation controls Foxp3 gene expression. Eur J Immunol 2008; 38(6):1654–1663.PubMedCrossRefGoogle Scholar
  139. 139.
    Dong C. TH17 cells in development: an updated view of their molecular identity and genetic programming. Nat Rev Immunol 2008; 8(5):337–348.PubMedCrossRefGoogle Scholar
  140. 140.
    Bettelli E, Oukka M, Kuchroo VK. T(H)-17 cells in the circle of immunity and autoimmunity. Nat Immunol 2007; 8(4):345–350.PubMedCrossRefGoogle Scholar
  141. 141.
    Lochner M, Peduto L, Cherrier M et al. In vivo equilibrium of proinflammatory IL-17+ and regulatory IL-I0+ Foxp3+ RORgamma t+ T-cells. J Exp Med 2008; 205(6):1381–1393.PubMedCrossRefGoogle Scholar
  142. 142.
    Xu L, Kitani A, Fuss I et al. Cutting edge: regulatory T-cells induce CD4+CD25-Foxp3-T-cells or are self-induced to become Th17 cells in the absence of exogenous TGF-beta. J Immunol 2007; 178(11):6725–6729.PubMedGoogle Scholar
  143. 143.
    Radhakrishnan S, Cabrera R, Schenk EL et al. Reprogrammed FoxP3+ T regulatory cells become IL-17+ antigen-specific autoimmune effectors in vitro and in vivo. J Immunol 2008; 181(5):3137–3147.PubMedGoogle Scholar
  144. 144.
    Koenen HJ, Smeets RL, Vink PM et al. Human CD25highFoxp3pos regulatory T-cells differentiate into IL-17 producing cells. Blood 2008; Sep 15;112(6):2340–52.PubMedCrossRefGoogle Scholar

Copyright information

© Landes Bioscience and Springer+Business Media 2009

Authors and Affiliations

  • Alicia N. McMurchy
    • 1
    • 2
  • Sara Di Nunzio
    • 3
  • Maria Grazia Roncarolo
    • 3
    • 4
  • Rosa Bacchetta
    • 3
  • Megan K. Levings
    • 1
    • 5
  1. 1.Department of SurgeryUniversity of British ColumbiaVancouverCanada
  2. 2.Immunity and Infection Research CentreVancouverCanada
  3. 3.San Raffaele Telethon Institute for GeneTherapy (HSR-TIGET)MilanItaly
  4. 4.Vita Salute San Raffaele UniversityMilanItaly
  5. 5.Immunity and Infection Research CentreVancouverCanada

Personalised recommendations