Advertisement

FOXL2: At the Crossroads of Female Sex Determination and Ovarian Function

  • Bérénice A. Benayoun
  • Aurélie Dipietromaria
  • Claude Bazin
  • Reiner A. Veitia
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 665)

Abstract

The gene FOXL2 encodes a forkhead transcription factor whose mutations are responsible for the blepharophimosis ptosis epicanthus-inversus syndrome. This genetic disorder is characterized by eyelid and mild craniofacial abnormalities often in association with premature ovarian failure. FOXL2 orthologs are found throughout the animal phylum and its sequence is highly conserved in vertebrates. FOXL2 is one ofthe earliest ovarian markers and it offers,along with its targets, a model to study ovarian development and function. In this chapter, we review recent data concerningits mutations, targets, regulation and functions. Studies ofthe cellular consequences ofFOXL2 mutations seem to indicate that aggregation is a common pathogenic mechanism. However, no reliable genotype/phenotype correlation has been established to predict the exact impact ofpoint mutations in the coding region of FOXL2. FOXL2 has been suggested to be involved in the regulation of cholesterol homeostasis, steroid metabolism, apoptosis, reactive oxygen species detoxification and inflammation processes. Interestingly, all these processes are not equally affected by FOXL2 mutations. The elucidation of the impact of the FOXL2 function in the ovary will allow a better understanding of normal ovarian development and function as well as the pathogenic mechanisms underlying BPES.

Keywords

Premature Ovarian Failure Forkhead Transcription Factor Ovarian Dysfunction Forkhead Domain polyAlanine Tract 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Smith DW. Recognizable patterns of human malformation: genetic, embryologic and clinical aspects. Major Probl Clin Pediatr 1970; 7:1–368.PubMedGoogle Scholar
  2. 2.
    Vignes NI. Epicanthus héréditaire. Rev Gen Ophtal 1889; 8:438.Google Scholar
  3. 3.
    Moraine C, Titeca C, Delplace MP et al. (Familial blepharophimosis and female sterility: pleiotropism or linked genes?). J Genet Hum 1976; 24 Suppl:125–132.PubMedGoogle Scholar
  4. 4.
    Townes PL, Muechler EK. Blepharophimosis, ptosis, epicanthus inversus and primary amenorrhea. A dominant trait. Arch Ophthalmol 1979; 97(9):1664–1666.PubMedGoogle Scholar
  5. 5.
    Zlotogora J, Sagi M, Cohen T. The blepharophimosis, ptosis and epicanthus inversussyndrome: delineation of two types. Am J Hum Genet 1983; 35(5):1020–1027.PubMedGoogle Scholar
  6. 6.
    Nallathambi J, Moumne L, De Baere E et al. A novel polyalanine expansion in FOXL2: the first evidence for a recessive form of the blepharophimosis syndrome (BPES) associated with ovarian dysfunction. Hum Genet 2007; 121(1):107–112.CrossRefPubMedGoogle Scholar
  7. 7.
    Crisponi L, Deiana M, Loi A et al. The putative forkhead transcription factor FOXL2 is mutated in blepharophimosis/ptosis/epicanthus inversus syndrome. Nat Genet 2001; 27(2):159–166.CrossRefPubMedGoogle Scholar
  8. 8.
    Carlsson P, Mahlapuu M. Forkhead transcription factors: key players in development and metabolism. Dev Biol 2002; 250(1):1–23.CrossRefPubMedGoogle Scholar
  9. 9.
    Lehmann OJ, Sowden JC, Carlsson P et al. Fox’s in development and disease. Trends Genet 2003; 19(6):339–344.CrossRefPubMedGoogle Scholar
  10. 10.
    Myatt SS, Lam EW. The emerging roles of forkhead box (Fox) proteins in cancer. Nat Rev Cancer 2007; 7(11):847–859.CrossRefPubMedGoogle Scholar
  11. 11.
    De Baere E, Beysen D, Oley C et al. FOXL2 and BPES: mutational hotspots, phenotypic variability and revision of the genotype-phenotype correlation. Am J Hum Genet 2003; 72(2):478–487.CrossRefPubMedGoogle Scholar
  12. 12.
    Cocquet J, Pailhoux E, Jaubert F et al. Evolution and expression of FOXL2. J Med Genet 2002; 39(12):916–921.CrossRefPubMedGoogle Scholar
  13. 13.
    Moumne L, Batista F, Benayoun BA et al. The mutations and potential targets of the forkhead transcription factor FOXL2. Mol Cell Endocrinol 2008; 282(1–2):2–11.CrossRefPubMedGoogle Scholar
  14. 14.
    Baron D, Batista F, Chaffaux S et al. Foxl2 gene and the development of the ovary: a story about goat, mouse, fish and woman. Reprod Nutr Dev 2005; 45(3):377–382.CrossRefPubMedGoogle Scholar
  15. 15.
    Loffler KA, Zarkower D, Koopman P. Etiology of ovarian failure in blepharophimosis ptosis epicanthus inversus syndrome: FOXL2 is a conserved, early-acting gene in vertebrate ovarian development. Endocrinology 2003; 144(7):3237–3243.CrossRefPubMedGoogle Scholar
  16. 16.
    Govoroun MS, Pannetier M, Pailhoux E et al. Isolation of chicken homolog of the FOXL2 gene and comparison of its expression patterns with those of arornatase during ovarian development. Dev Dyn 2004; 231(4):859–870.CrossRefPubMedGoogle Scholar
  17. 17.
    Wang D, Kobayashi T, Zhou L et al. Molecular cloning and gene expression of Foxl2 in the Nile tilapia, Oreochromis niloticus. Biochem Biophys Res Commun 2004; 320(1):83–89.CrossRefPubMedGoogle Scholar
  18. 18.
    Nakamoto M, Matsuda M, Wang DS et al. Molecular cloning and analysis of gonadal expression of Foxl2 in the medaka, Oryzias latipes. Biochem Biophys Res Commun 2006; 344(1):353–361.CrossRefPubMedGoogle Scholar
  19. 19.
    Wotton KR, French KE, Shimeld SM. The developmental expression of foxl2 in the dogfish Scyliorhinus canicula. Gene Expr Patterns 2007; 7(7):793–797.CrossRefPubMedGoogle Scholar
  20. 20.
    Oshima Y, Uno Y, Matsuda Y et al. Molecular cloning and gene expression of Foxl2 in the frog Rana rugosa. Gen Comp Endocrinol 2008; 159(2–3):170–177.CrossRefPubMedGoogle Scholar
  21. 21.
    Yang Z, Bielawski JP. Statistical methods for detecting molecular adaptation. Trends Ecol Evol 2000; 15(12):496–503.CrossRefPubMedGoogle Scholar
  22. 22.
    Cocquet J, De Baere E, Gareil M et al. Structure, evolution and expression of the FOXL2 transcription unit. Cytogenet Genome Res 2003; 101(3–4):206–211.CrossRefPubMedGoogle Scholar
  23. 23.
    Pailhoux E, Vigier B, Chaffaux S et al. A 11.7-kb deletion triggers intersexuality and polledness in goats. Nat Genet 2001; 29(4):453–458.CrossRefPubMedGoogle Scholar
  24. 24.
    Dollfus H, Stoetzel C, Riehm S et al. Sporadic and familial blepharophimosis-ptosis-epicanthus inversus syndrome: FOXL2 mutation screen and MRI study of the superior levator eyelid muscle. Clin Genet 2003; 63(2):117–120.CrossRefPubMedGoogle Scholar
  25. 25.
    Pannetier M, Servel N, Cocquet J et al. Expression studies of the PIS-regulated genes suggest different mechanisms of sex determination within mammals. Cytogenet Genome Res 2003; 101(3–4):199–205.CrossRefPubMedGoogle Scholar
  26. 26.
    Treier M, Gleiberman AS, O’Connell SM et al. Multistep signaling requirements for pituitary organogenesis in vivo. Genes Dev 1998; 12(11):1691–1704.CrossRefPubMedGoogle Scholar
  27. 27.
    Kioussi C, O’Connell S, St-Onge L et al. Pax6 is essential for establishing ventral-dorsal cell boundaries in pituitary gland development. Proc Natl Acad Sci USA 1999; 96(25):14378–14382.CrossRefPubMedGoogle Scholar
  28. 28.
    Ellsworth BS, Egashira N, Haller JL et al. FOXL2 in the pituitary: molecular, genetic and developmental analysis. Mol Endocrinol 2006; 20(11):2796–2805.CrossRefPubMedGoogle Scholar
  29. 29.
    Beysen D, Vandesompele J, Messiaen L et al. The human FOXL2 mutation database. Hum Murat 2004; 24(3):189–193.CrossRefGoogle Scholar
  30. 30.
    Beysen D, Moumne L, Veitia R et al. Missense mutations in the forkhead domain of FOXL2 lead to subcellular mislocalisation, protein aggregation and impaired transactivation. Hum Mol Genet 2008; Jul 1;17(13):2030–8.CrossRefPubMedGoogle Scholar
  31. 31.
    Nallathambi J, Laissue P, Batista F et al. Differential functional effects of novel mutations of the transcription factor FOXL2 in BPES patients. 2008 May 16;29(8):E123–E131.Google Scholar
  32. 32.
    Benayoun BA, Caburet S, Dipietromaria A et al. The identification and characterization of a FOXL2 response element provides insights into the pathogenesis of mutant alleles. Hum Mol Genet 2008 17(20):3118–27.bl]ReferencesCrossRefPubMedGoogle Scholar
  33. 33.
    Harris SE, Chand AL, Winship IM et al. Identification of novel mutations in FOXL2 associated with premature ovarian failure. Mol Hum Reprod 2002; 8(8):729–733.CrossRefPubMedGoogle Scholar
  34. 34.
    Ramirez-Castro JL, Pineda-Trujillo N, Valencia AV et al. Mutations in FOXL2 underlying BPES (types 1 and 2) in Colombian families. Am J Med Genet 2002; 113(1):47–51.CrossRefPubMedGoogle Scholar
  35. 35.
    Moumne L, Fellous M, Veitia RA. Deletions in the polyAlanine-containing transcription factor FOXL2 lead to intranuclear aggregation. Hum Mol Genet 2005; 14(23):3557–3564.CrossRefPubMedGoogle Scholar
  36. 36.
    De Baere E, Dixon MJ, Small KW et al. Spectrum of FOXL2 gene mutations in blepharophimosisptosis-epicanthus inversus (BPES) families demonstrates a genotype—phenotype correlation. Hum Mol Genet 2001; 10(15):1591–1600.CrossRefGoogle Scholar
  37. 37.
    Udar N, Yellore V, Chalukya M et al. Comparative analysis of the FOXL2 gene and characterization of mutations in BPES patients. Hum Mutat 2003; 22(3):222–228.CrossRefPubMedGoogle Scholar
  38. 38.
    Cha SC, Jang YS, Lee JH et al. Mutational analysis of forkhead transcriptional factor 2 (FOXL2) in Korean patients with blepharophimosis-ptosis-epicanthus inversus syndrome. Clin Genet 2003; 64(6):485–490.CrossRefPubMedGoogle Scholar
  39. 39.
    Raile K, Stobbe H, Trobs RB et al. A new heterozygous mutation of the FOXL2 gene is associated with a large ovarian cyst and ovarian dysfunction in an adolescent girl with blepharophimosis/ptosis/ epicanthus inversus syndrome. Eur J Endocrinol 2005; 153(3):353–358.CrossRefPubMedGoogle Scholar
  40. 40.
    Gersak K, Harris SE, Smale WJ et al. A novel 30 bp deletion in the FOXL2 gene in a phenotypically normal woman with primary amenorrhoea: case report. Hum Reprod 2004; 19(12):2767–2770.CrossRefPubMedGoogle Scholar
  41. 41.
    Caburet S, Demarez A, Moumne L et al. A recurrent polyalanine expansion in the transcription factor FOXL2 induces extensive nuclear and cytoplasmic protein aggregation. J Med Genet 2004; 41(12):932–936.CrossRefPubMedGoogle Scholar
  42. 42.
    Moumne L, Dipietromaria A, Batista F et al. Differential aggregation and functional impairment induced by polyalanine expansions in FOXL2, a transcription factor involved in cranio-facial and ovarian development. Hum Mol Genet 2008; 17(7):1010–1019.CrossRefPubMedGoogle Scholar
  43. 43.
    Caburet S, Vaiman D, Veitia RA. A genomic basis for the evolution of vertebrate transcription factors containing amino Acid runs. Genetics 2004; 167(4):1813–1820.CrossRefPubMedGoogle Scholar
  44. 44.
    Beysen D, Raes J, Leroy BP et al. Deletions involving long-range conserved nongenic sequences upstream and downstream of FOXL2 as a novel disease-causing mechanism in blepharophimosis syndrome. Am J Hum Genet 2005; 77(2):205–218.CrossRefPubMedGoogle Scholar
  45. 45.
    Crisponi L, Uda M, Deiana M et al. FOXL2 inactivation by a translocation 171 kb away: analysis of 500 kb of chromosome 3 for candidate long-range regulatory sequences. Genomics 2004; 83(5):757–764.CrossRefPubMedGoogle Scholar
  46. 46.
    Praphanphoj V, Goodman BK, Thomas GH et al. Molecular cytogenetic evaluation in a patient with a translocation (3; 21) associated with blepharophimosis, ptosis, epicanthus inversus syndrome (BPES). Genomics 2000; 65(1):67–69.CrossRefPubMedGoogle Scholar
  47. 47.
    Schmidt D, Ovitt CE, Anlag K et al. The murine winged-helix transcription factor Foxl2 is required for granulosa cell differentiation and ovary maintenance. Development 2004; 131(4):933–942.CrossRefPubMedGoogle Scholar
  48. 48.
    Uda M, Ottolenghi C, Crisponi L et al. Foxl2 disruption causes mouse ovarian failure by pervasive blockage of follicle development. Hum Mol Genet 2004; 13(11):1171–1181.CrossRefPubMedGoogle Scholar
  49. 49.
    Castrillon DH, Miao L, Kollipara R et al. Suppression of ovarian follicle activation in mice by the transcription factor Foxo3a. Science 2003; 301(5630):215–218.CrossRefPubMedGoogle Scholar
  50. 50.
    Hosaka T, Biggs WH 3rd, Tieu D et al. Disruption of forkhead transcription factor (FOXO) family members in mice reveals their functional diversification. Proc Natl Acad Sci USA 2004; 101(9):2975–2980.CrossRefPubMedGoogle Scholar
  51. 51.
    Ottolenghi C, Omari S, Garcia-Ortiz JE et al. Foxl2 is required for commitment to ovary differentiation. Hum Mol Genet 2005; 14(14):2053–2062.CrossRefPubMedGoogle Scholar
  52. 52.
    Ottolenghi C, Pelosi E, Tran J et al. Loss of Wnt4 and Foxl2leads to female-to-male sex reversal extending to germ cells. Hum Mol Genet 2007; 16(23):2795–2804.CrossRefPubMedGoogle Scholar
  53. 53.
    Vainio S, Heikkila M, Kispert A et al. Female development in mammals is regulated by Wnt-4 signalling. Nature 1999; 397(6718):405–409.CrossRefPubMedGoogle Scholar
  54. 54.
    Asdell SA. The genetic sex of intersexual goats and a probable linkage with the gene for hornlessness. Science 1944; 99(2563):124.CrossRefPubMedGoogle Scholar
  55. 55.
    Benayoun BA, Batista F, Auer J et al. Positive and negative feedback regulates the transcription factor FOXL2 in response to cell stress: evidence for a regulatory imbalance induced by disease-causing mutations. Hum Mol Genet 2008.Google Scholar
  56. 56.
    Baron D, Cocquet J, Xia X et al. An evolutionary and functional analysis of FoxL2 in rainbow trout gonad differentiation. J Mol Endocrinol 2004; 33(3):705–715.CrossRefPubMedGoogle Scholar
  57. 57.
    Hudson QJ, Smith CA, Sinclair AH. Aromatase inhibition reduces expression of FOXL2 in the embryonic chicken ovary. Dev Dyn 2005; 233(3):1052–1055.CrossRefPubMedGoogle Scholar
  58. 58.
    Svingen T, Koopman P. Involvement of homeobox genes in mammalian sexual development. Sex Dev 2007; 1(1):12–23.CrossRefPubMedGoogle Scholar
  59. 59.
    Foucher I, Montesinos ML, Volovitch M et al. Joint regulation of the MAPIB promoter by HNF3beta/ Foxa2 and Engrailed is the result of a highly conserved mechanism for direct interaction of homeoproteins and Fox transcription factors. Development 2003; 130(9):1867–1876.CrossRefPubMedGoogle Scholar
  60. 60.
    Pannetier M, Renault L, Jolivet G et al. Ovarian-specific expression of a new gene regulated by the goat PIS region and transcribed by a FOXL2 bidirectional promoter. Genomics 2005; 85(6):715–726.CrossRefPubMedGoogle Scholar
  61. 61.
    Nishi Y, Yanase T, Mu Y et al. Establishment and characterization of a steroidogenic human granulosa-like tumor cell line, KGN, that expresses functional follicle-stimulating hormone receptor. Endocrinology 2001; 142(1):437–445.CrossRefPubMedGoogle Scholar
  62. 62.
    Batista F, Vaiman D, Dausset J et al. Potential targets of FOXL2, a transcription factor involved in craniofacial and follicular development, identified by transcriptomics. Proc Natl Acad Sci USA 2007; 104(9):3330–3335.CrossRefPubMedGoogle Scholar
  63. 63.
    Cocquet J, Pannetier M, Fellous M et al. Sense and antisense Foxl2 transcripts in mouse. Genomics 2005; 85(5):531–541.CrossRefPubMedGoogle Scholar
  64. 64.
    Hughes TA. Regulation of gene expression by alternative untranslated regions. Trends Genet 2006; 22(3):119–122.CrossRefPubMedGoogle Scholar
  65. 65.
    Capaccioli S, Quattrone A, Schiavone N et al. A bcl-2/IgH antisense transcript deregulates bcl-2 gene expression in human follicular lymphoma t(14; 18) cell lines. Oncogene 1996; 13(1):105–115.PubMedGoogle Scholar
  66. 66.
    Benayoun BA, Auer J, Caburet S et al. The posttranslational modification profile of the forkhead transcription factor FOXL2 suggests the existence of parallel processive/concerted modification pathways. Proteomics 2008; 8(15):3118–3123.CrossRefPubMedGoogle Scholar
  67. 67.
    Brunet A, Bonni A, Zigmond MJ et al. Akt promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 1999; 96(6):857–868.CrossRefPubMedGoogle Scholar
  68. 68.
    Giannakou ME, Partridge L. The interaction between FOXO and SIRTl: tipping the balance towards survival. Trends Cell Biol 2004; 14(8):408–412.CrossRefPubMedGoogle Scholar
  69. 69.
    Brent MM, Anand R, Marmorstein R. Structural basis for DNA recognition by FoxOI and its regulation by posttranslational modification. Structure 2008; 16(9):1407–1416.CrossRefPubMedGoogle Scholar
  70. 70.
    Sims RJ 3rd, Reinberg D. Is there a code embedded in proteins that is based on posttranslational modifications? Nat Rev Mol Cell Biol 2008; 9(10):815–820.CrossRefPubMedGoogle Scholar
  71. 71.
    Calnan DR, Brunet A. The FoxO code. Oncogene 2008; 27(16):2276–2288.CrossRefPubMedGoogle Scholar
  72. 72.
    Ellsworth BS, Burns AT, Escudero KW et al. The gonadotropin releasing hormone (GnRH) receptor activating sequence (GRAS) is a composite regulatory element that interacts with multiple classes of transcription factors including Smads, AP-l and a forkhead DNA binding protein. Mol Cell Endocrinol 2003; 206(1–2):93–111.CrossRefPubMedGoogle Scholar
  73. 73.
    Pailhoux E, Vigier B, Vaiman D et al. Ontogenesis of female-to-male sex-reversal in XX polled goats. Dev Dyn 2002; 224(1):39–50.CrossRefPubMedGoogle Scholar
  74. 74.
    Boulanger L, Kocer A, Daniel N et al. Attempt to rescue sex-reversal by transgenic expression of the PISRTI gene in XX PIS-/-goats. Sex Dev 2008; 2(3):142–151.CrossRefPubMedGoogle Scholar
  75. 75.
    Pannetier M, Fabre S, Batista F et al. FOXL2 activates P450 aromatase gene transcription: towards a better characterization of the early steps of mammalian ovarian development. J Mol Endocrinol 2006; 36(3):399–413.CrossRefPubMedGoogle Scholar
  76. 76.
    Wang DS, Kobayashi T, Zhou LY et al. Foxl2 up-regulates arornatase gene transcription in a female-specific manner by binding to the promoter as well as interacting with ad4 binding protein/ steroidogenic factor 1. Mol Endocrinol 2007; 21(3):712–725.CrossRefPubMedGoogle Scholar
  77. 77.
    Stocco DM. StAR protein and the regulation of steroid hormone biosynthesis. Annu Rev Physiol 2001; 63:193–213.CrossRefPubMedGoogle Scholar
  78. 78.
    Pisarska MD, Bae J, Klein C et al. Forkhead 12 is expressed in the ovary and represses the promoter activity of the steroidogenic acute regulatory gene. Endocrinology 2004; 145(7):3424–3433.CrossRefPubMedGoogle Scholar
  79. 79.
    Lim H, Dey SK. Prostaglandin E2 receptor subtype EP2 gene expression in the mouse uterus coincides with differentiation of the luminal epithelium for implantation. Endocrinology 1997; 138(11):4599–4606.CrossRefPubMedGoogle Scholar
  80. 80.
    Espey LL, Tanaka N, Okamura H. Increase in ovarian leukotrienes during hormonally induced ovulation in the rat. Am J Physiol 1989; 256(6 Pt 1):E753–759.PubMedGoogle Scholar
  81. 81.
    Lee K, Pisarska MD, Ko JJ et al. Transcriptional factor FOXL2 interacts with DPIO3 and induces apoptosis. Biochem Biophys Res Commun 2005; 336(3):876–881.CrossRefPubMedGoogle Scholar
  82. 82.
    Burgering BM, Medema RH. Decisions on life and death: FOXO Forkhead transcription factors are in command when PKB/Akt is off duty. J Leukoc Biol 2003; 73(6):689–701.CrossRefPubMedGoogle Scholar
  83. 83.
    Muller FL, Lustgarten MS, Jang Y et al. Trends in oxidative aging theories. Free Radic Biol Med 2007; 43(4):477–503.CrossRefPubMedGoogle Scholar
  84. 84.
    Agarwal A, Gupta S, Sharma RIC Role of oxidative stress in female reproduction. Reprod Biol Endocrinol 2005; 3:28.CrossRefPubMedGoogle Scholar
  85. 85.
    Kalfa N, Philibert P, Patte C et al. Extinction of FOXL2 expression in aggressive ovarian granulosa cell tumors in children. Fertil Steril 2007; 87(4):896–901.CrossRefPubMedGoogle Scholar
  86. 86.
    Greer EL, Brunet A. FOXO transcription factors at the interface between longevity and tumor suppression. Oncogene 2005; 24(50):7410–7425.CrossRefGoogle Scholar
  87. 87.
    Kaestner KH, Knochel W, Martinez DE. Unified nomenclature for the winged helix/forkhead transcription factors. Genes Dev 2000; 14(2):142–146.PubMedGoogle Scholar
  88. 88.
    Cereghini S. Liver-enriched transcription factors and hepatocyte differentiation. FASEB J 1996; 10(2):267–282.PubMedGoogle Scholar
  89. 89.
    Brennan J, Capel B. One tissue, two fates: Molecular genetic events that underlie testis versus ovary development. Nat Rev Genet 2004; 5(7):509–521.CrossRefPubMedGoogle Scholar
  90. 90.
    Gallagher JC. Effect of early menopause on bone mineral density and fractures. Menopause 2007; 14(3 Pt 2):567–571.CrossRefPubMedGoogle Scholar
  91. 91.
    Maturana MA, Irigoyen MC, Spritzer PM. Menopause, estrogens and endothelial dysfunction: current concepts. Clinics 2007; 62(1):77–86.CrossRefPubMedGoogle Scholar
  92. 92.
    Pozzi S, Benedusi V, Maggi A et al. Estrogen action in neuroprotection and brain inflammation. Ann N Y Acad Sci 2006; 1089:302–323.CrossRefPubMedGoogle Scholar
  93. 93.
    Stein DG, Wright DW, Kellermann AL. Does progesterone have neuroprotective properties? Ann Emerg Med 2008; 51(2):164–172.CrossRefPubMedGoogle Scholar
  94. 94.
    Hamelin V, Letourneux C, Romeo PH et al. Thrombopoietin regulates IEX-1 gene expression through ERK-induced AML1 phosphorylation. Blood 2006; 107(8):3106–3113.CrossRefPubMedGoogle Scholar

Copyright information

© Landes Bioscience and Springer+Business Media 2009

Authors and Affiliations

  • Bérénice A. Benayoun
    • 1
    • 2
  • Aurélie Dipietromaria
    • 1
    • 2
  • Claude Bazin
    • 1
    • 2
  • Reiner A. Veitia
    • 1
    • 2
  1. 1.Institut Jacques MonodBâtiment BuffonParis Cx 13France
  2. 2.Université Paris Diderot-Paris 7ParisFrance

Personalised recommendations