Advertisement

New Insights for FOXO and Cell-Fate Decision in HIV Infection and HIV Associated Neurocognitive Disorder

  • Min Cui
  • Yunlong Huang
  • Yong Zhao
  • Jialin Zheng
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 665)

Abstract

Human immunodeficiency virus Type 1 (HIV-I) infection and associated diseases continue to represent major health problem worldwide. FOXO transcriptional factors play an important role in the regulation of cell apoptosis, cell cycle arrest, stress resistance, metabolism and differentiation. This chapter will discuss the diverse functions of FOXO in different cell types including T-cells, macrophages, neurons and astrocytes within the context of HIV-1 infection. Given the overwhelming evidence that FOXO proteins influence the cell fate of immune cells and involve in the homeostasis of the central nervous system (CNS), we will also discuss the potential role of FOXO factors in HIV-1-associated neurological disorders.

Keywords

Human Immunodeficiency Virus Type Forkhead Transcription Factor FOXO Transcription Factor Ginkgo Biloba Extract FOXO Protein 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. 1.
    Galili N, Davis RJ, Fredericks WJ et al. Fusion of a fork head domain gene to PAX3 in the solid tumour alveolar rhabdomyosarcoma. Nat Genet 1993; 5(3):230–235.PubMedCrossRefGoogle Scholar
  2. 2.
    Hillion J, Le Coniat M, Jonveaux P et al. AF6q21, a novel partner of the MLL gene in t(6; 11)(q21; q23), defines a forkhead transcriptional factor subfamily. Blood 1997; 90(9):3714–3719.PubMedGoogle Scholar
  3. 3.
    Anderson MJ, Viars CS, Czekay S et al. Cloning and characterization of three human forkhead genes that comprise an FKHR-like gene subfamily. Genomics 1998; 47(2):187–199.PubMedCrossRefGoogle Scholar
  4. 4.
    Borkhardt A, Repp R, Haas OA et al. Cloning and characterization of AFX, the gene that fuses to MLL in acute leukemias with a t(X; 11) (q13; q23). Oncogene 1997; 14(2):195–202.PubMedCrossRefGoogle Scholar
  5. 5.
    Jacobs FM, van der Heide LP, Wijchers PJ et al. Fox06, a novel member of the FoxO class of transcription factors with distinct shuttling dynamics. J Biol Chem 2003; 278(38):35959–35967.PubMedCrossRefGoogle Scholar
  6. 6.
    Ho KK, Myatt SS, Lam EW. Many forks in the path: cycling with FoxO. Oncogene 2008; 27(16):2300–2311.PubMedCrossRefGoogle Scholar
  7. 7.
    Huang H, Tindall DJ. Dynamic FoxO transcription factors. J Cell Sci 2007; 120(Pt 15):2479–2487.PubMedCrossRefGoogle Scholar
  8. 8.
    Tran H, Brunet A, Griffith EC et al. The many forks in FOXO’s road. Sci STKE 2003; 2003(172):RE5.PubMedCrossRefGoogle Scholar
  9. 9.
    Arden KC. FOXO animal models reveal a variety of diverse roles for FOXO transcription factors. Oncogene 2008; 27(16):2345–2350.PubMedCrossRefGoogle Scholar
  10. 10.
    Calnan DR, Brunet A. The FoxO code. Oncogene 2008; 27(16):2276–2288.PubMedCrossRefGoogle Scholar
  11. 11.
    Brunet A, Bonni A, Zigmond MJ et al. Akr promotes cell survival by phosphorylating and inhibiting a Forkhead transcription factor. Cell 1999; 96(6):857–868.PubMedCrossRefGoogle Scholar
  12. 12.
    Lehtinen MK, Yuan Z, Boag PR et al. A conserved MST-FOXO signaling pathway mediates oxidative-stress responses and extends life span. Cell 2006; 125(5):987–1001.PubMedCrossRefGoogle Scholar
  13. 13.
    Skurk C, Maatz H, Kim HS et al. The Akt-regulated forkhead transcription factor FOXO3a controls endothelial cell viability through modulation of the caspase-8 inhibitor FLIP. J Biol Chem 2004; 279(2): 1513–1525.PubMedCrossRefGoogle Scholar
  14. 14.
    Yusuf I, Zhu X, Kharas MG et al. Optimal B-cell proliferation requires phosphoinositide 3-kinase-dependent inactivation of FOXO transcription factors. Blood 2004; 104(3):784–787.PubMedCrossRefGoogle Scholar
  15. 15.
    Greer EL, Brunet A. FOXO transcription factors in ageing and cancer. Acta Physiol (Oxf) 2008; 192(1):19–28.Google Scholar
  16. 16.
    Fu Z, Tindall DJ. FOXOs, cancer and regulation of apoptosis. Oncogene 2008; 27(16):2312–2319.PubMedCrossRefGoogle Scholar
  17. 17.
    Huang H, Regan KM, Wang F et al. Skp2 inhibits FOXO1 in tumor suppression through ubiquitin-mediated degradation. Proc Natl Acad Sci USA 2005; 102(5):1649–1654.PubMedCrossRefGoogle Scholar
  18. 18.
    Tothova Z, Gilliland DG. FoxO transcription factors and stem cell homeostasis: insights from the hematopoietic system. Cell Stem Cell 2007; 1(2):140–152.PubMedCrossRefGoogle Scholar
  19. 19.
    Rena G, Guo S, Cichy SC et al. Phosphorylation of the transcription factor forkhead family member FKHR by protein kinase B. J Biol Chem 1999; 274(24):17179–17183.PubMedCrossRefGoogle Scholar
  20. 20.
    Tomizawa M, Kumar A, Perrot V et al. Insulin inhibits the activation of transcription by a C-terminal fragment of the forkhead transcription factor FKHR. A mechanism for insulin inhibition of insulin-like growth factor-binding protein-1 transcription. J Biol Chem 2000; 275(10):7289–7295.PubMedCrossRefGoogle Scholar
  21. 21.
    Guo S, Rena G, Cichy S et al. Phosphorylation of serine 256 by protein kinase B disrupts transactivation by FKHR and mediates effects of insulin on insulin-like growth factor-binding protein-1 promoter activity through a conserved insulin response sequence. J Biol Chem 1999; 274(24):17184–17192.PubMedCrossRefGoogle Scholar
  22. 22.
    Kops GJ, de Ruiter ND, De Vries-Smits AM et al. Direct control of the Forkhead transcription factor AFX by protein kinase B. Nature 1999; 398(6728):630–634.PubMedCrossRefGoogle Scholar
  23. 23.
    Richards JS, Sharma SC, Falender AE et al. Expression of FKHR, FKHRL1 and AFX genes in the rodent ovary: evidence for regulation by IGF-I, estrogen and the gonadotropins. Mol Endocrinol 2002; 16(3):580–599.PubMedCrossRefGoogle Scholar
  24. 24.
    Takaishi H, Konishi H, Matsuzaki H et al. Regulation of nuclear translocation of forkhead transcription factor AFX by protein kinase B. Proc Natl Acad Sci USA 1999; 96(21):11836–11841.PubMedCrossRefGoogle Scholar
  25. 25.
    Brunet A, Park J, Tran H et al. Protein kinase SGK mediates survival signals by phosphorylating the forkhead transcription factor FKHRL1 (FOXO3a). Mol Cell Biol 2001; 21(3):952–965.PubMedCrossRefGoogle Scholar
  26. 26.
    Rena G, Woods YL, Prescott AR et al. Two novel phosphorylation sites on FKHR that are critical for its nuclear exclusion. EMBO J 2002; 21(9):2263–2271.PubMedCrossRefGoogle Scholar
  27. 27.
    Zhu J, Shibasaki F, Price R et al. Intramolecular masking of nuclear import signal on NF-AT4 by casein kinase I and MEKK1. Cell 1998; 93(5):851–861.PubMedCrossRefGoogle Scholar
  28. 28.
    Huang H, Regan KM, Lou Z et al. CDK2-dependent phosphorylation of FOXO1 as an apoptotic response to DNA damage. Science 2006; 314(5797):294–297.PubMedCrossRefGoogle Scholar
  29. 29.
    Woods YL, Rena G, Morrice N et al. The kinase DYRK1A phosphorylates the transcription factor FKHR at Ser329 in vitro, a novel in vivo phosphorylation site. Biochem J 2001; 355(Pt 3):597–607.PubMedGoogle Scholar
  30. 30.
    Yang JY, Zong CS, Xia W et al. ERK promotes tumorigenesis by inhibiting FOXO3a via MDM2-mediated degradation. Nat Cell Biol 2008; 10(2):138–148.PubMedCrossRefGoogle Scholar
  31. 31.
    Essers MA, Weijzen S, de Vries-Smits AM et al. FOXO transcription factor activation by oxidative stress mediated by the small GTPase Ral and JNK. EMBO J 2004; 23(24):4802–4812.PubMedCrossRefGoogle Scholar
  32. 32.
    Finnberg N, El-Deiry WS. Activating FOXO3a, NF-kappaB and p53 by targeting IKKs: an effective multi-faceted targeting of the tumor-cell phenotype? Cancer Biol Ther 2004; 3(7):614–616.PubMedCrossRefGoogle Scholar
  33. 33.
    Brunet A, Sweeney LB, Sturgill JF et al. Stress-dependent regulation of FOXO transcription factors by the SIRT1 deacetylase. Science 2004; 303(5666):2011–2015.PubMedCrossRefGoogle Scholar
  34. 34.
    Accili D, Arden KC. FoxOs at the crossroads of cellular metabolism, differentiation and transformation. Cell 2004; 117(4):421–426.PubMedCrossRefGoogle Scholar
  35. 35.
    Daitoku H, Hatta M, Matsuzaki H et al. Silent information regulator 2 potentiates Foxol-mediated transcription through its deacetylase activity. Proc Natl Acad Sci USA 2004; 101(27):10042–10047.PubMedCrossRefGoogle Scholar
  36. 36.
    van der Horst A, Tertoolen LG, de Vries-Smits LM et al. FOXO4 is acetylated upon peroxide stress and deacetylated by the longevity protein hSir2(SIRT1). J Biol Chem 2004; 279(28):28873–28879.PubMedCrossRefGoogle Scholar
  37. 37.
    Kitamura YI, Kitamura T, Kruse JP et al. FoxO1 protects against pancreatic beta cell failure through NeuroD and MafA induction. Cell Metab. 2005; 2(3):153–163.PubMedCrossRefGoogle Scholar
  38. 38.
    van der Heide LP, Smidt MP. Regulation of FoxO activity by CBP/p300-mediated acetylation. Trends in biochemical sciences 2005; 30(2):81–86.PubMedCrossRefGoogle Scholar
  39. 39.
    Matsuzaki H, Daitoku H, Hatta M et al. Acetylation of Foxol alters its DNA-binding ability and sensitivity to phosphorylation. Proc Natl Acad Sci USA 2005; 102(32):11278–11283.PubMedCrossRefGoogle Scholar
  40. 40.
    Wang F, Nguyen M, Qin FX et al. SIRT2 deacetylates FOXO3a in response to oxidative stress and caloric restriction. Aging Cell 2007; 6(4):505–514.PubMedCrossRefGoogle Scholar
  41. 41.
    Plas DR, Thompson CB. Akt activation promotes degradation of tuberin and FOXO3a via the proteasome. Biol Chem 2003; 278(14):12361–12366.CrossRefGoogle Scholar
  42. 42.
    Yamagata K, Daitoku H, Takahashi Y et al. Arginine methylation of FOXO transcription factors inhibits their phosphorylation by Akt, Mol Cell 2008; 32(2):221–231.PubMedCrossRefGoogle Scholar
  43. 43.
    Zhao J, Brault JJ, Schild A et al. Coordinate activation of autophagy and the proteasome pathway by FoxO transcription factor. Autophagy 2008; 4(3):378–380.PubMedGoogle Scholar
  44. 44.
    Hu MC, Lee DF, Xia W et al. IkappaB kinase promotes tumorigenesis through inhibition of forkhead FOXO3a. Cell 2004; 117(2):225–237.PubMedCrossRefGoogle Scholar
  45. 45.
    Matsuzaki H, Daitoku H, Hatta M et al. Insulin-induced phosphorylation of FKHR (Foxo1) targets to proteasomal degradation. Proc Natl Acad Sci USA 2003; 100(20):11285–11290.PubMedCrossRefGoogle Scholar
  46. 46.
    Brenkman AB, de Keizer PL, van den Broek NJ et al. The peptidyl-isomerase Pin1 regulates p27kip1 expression through inhibition of Forkhead box O tumor suppressors. Cancer Res 2008; 68(18):7597–7605.PubMedCrossRefGoogle Scholar
  47. 47.
    Brenkman AB, de Keizer PL, van den Broek NJ et al. Mdm2 induces mono-ubiquitination of FOXO4. PLoS ONE. 2008; 3(7):e2819.PubMedCrossRefGoogle Scholar
  48. 48.
    van der Horst A, de Vries-Smits AM, Brenkman AB et al. FOXO4 transcriptional activity is regulated by monoubiquitination and USP7/HAUSP. Nat Cell Biol 2006; 8(10):1064–1073.PubMedCrossRefGoogle Scholar
  49. 49.
    Brunet A, Kanai F, Stehn J et al 14-3-3 transits to the nucleus and participates in dynamic nucleocytoplasmic transport. J Cell Biol 2002; 156(5):817–828.PubMedCrossRefGoogle Scholar
  50. 50.
    Yaffe MB. How do 14-3-3 proteins work?—Gatekeeper phosphorylation and the molecular anvil hypothesis. FEBS Lett 2002; 513(1):53–57.PubMedCrossRefGoogle Scholar
  51. 51.
    Dong S, Kang S, Gu TL et al 14-3-3 Integrates prosurvival signals mediated by the AKT and MAPK pathways in ZNF198-FGFR1-transformed hematopoietic cells. Blood 2007; 110(1):360–369.PubMedCrossRefGoogle Scholar
  52. 52.
    Gomis RR, Alarcon C, Nadal C et al. C/EBPbeta at the core of the TGFbeta cytostatic response and its evasion in metastatic breast cancer cells. Cancer Cell 2006; 10(3):203–214.PubMedCrossRefGoogle Scholar
  53. 53.
    Gomis RR, Alarcon C, He W et al. A FoxO-Smad synexpression group in human keratinocytes. Proc Natl Acad Sci USA 2006; 103(34):12747–12752.PubMedCrossRefGoogle Scholar
  54. 54.
    Allen DL, Unterman TG. Regulation of myostatin expression and myoblast differentiation by FoxO and SMAD transcription factors. Am J Physiol Cell Physiol 2007; 292(1):C188–199.PubMedCrossRefGoogle Scholar
  55. 55.
    Arden KC. FoxO: linking new signaling pathways. Mol Cell 2004; 14(4):416–418.PubMedCrossRefGoogle Scholar
  56. 56.
    Seoane J, Le HV, Shen L et al. Integration of Smad and forkhead pathways in the control of neuroepithelial and glioblastoma cell proliferation. Cell 2004; 117(2):211–223.PubMedCrossRefGoogle Scholar
  57. 57.
    Yamamura Y, Lee WL, Inoue K et al. RUNX3 cooperates with FoxO3a to induce apoptosis in gastric cancer cells. J Biol Chem 2006; 281(8):5267–5276.PubMedCrossRefGoogle Scholar
  58. 58.
    Nemoto S, Fergusson MM, Finkel T. Nutrient availability regulates SIRT1 through a forkhead-dependent pathway. Science 2004; 306(5704):2105–2108.PubMedCrossRefGoogle Scholar
  59. 59.
    Dowell P, Otto TC, Adi S et al. Convergence of peroxisome proliferator-activated receptor gamma and Foxol signaling pathways. J Blol Chem 2003; 278(46):45485–45491.CrossRefGoogle Scholar
  60. 60.
    Douek DC, Picker LJ, Koup RA. T-cell dynamics in HIV-l infection. Annu Rev Immunol 2003; 21:265–304.PubMedCrossRefGoogle Scholar
  61. 61.
    Grossman Z, Meier-Schellersheim M, Paul WE et al. Pathogenesis of HIV infection: what the virus spares is as important as what it destroys. Nat Med 2006; 12(3):289–295.PubMedCrossRefGoogle Scholar
  62. 62.
    Dickson DW, Lee SC, Mattiace LA et al. Microglia and cytokines in neurological disease, with special reference to AIDS and Alzheimer’s disease. Glia 1993; 7(1):75–83.PubMedCrossRefGoogle Scholar
  63. 63.
    Mrak RE, Griffin WS. The role of chronic self-propagating glial responses in neurodegeneration: implications for long-lived survivors of human immunodeficiency virus. J Neurovirol 1997; 3(4):241–246.PubMedCrossRefGoogle Scholar
  64. 64.
    Zhang K, McQuibban GA, Silva C et al. HIV-induced metalloproteinase processing of the chemokine stromal cell derived factor-l causes neurodegeneration. Nat Neurosci 2003; 6(10):1064–1071.PubMedCrossRefGoogle Scholar
  65. 65.
    Koenig S, Gendelman HE, Orenstein JM et al. Detection of AIDS virus in macrophages in brain tissue from AIDS patients with encephalopathy. Science 1986; 233(4768):1089–1093.PubMedCrossRefGoogle Scholar
  66. 66.
    Eilbott DJ, Peress N, Burger H et al. Human immunodeficiency virus type 1 in spinal cords of acquired immunodeficiency syndrome patients with myelopathy: expression and replication in macrophages. Proc Natl Acad Sci USA 1989; 86(9):3337–3341.PubMedCrossRefGoogle Scholar
  67. 67.
    Navia BA, Jordan BD, Price RW. The AIDS dementia complex: I. Clinical features. Annals of Neurology 1986; 19:517–524.PubMedCrossRefGoogle Scholar
  68. 68.
    McArthur JC. Neurologic manifestations of AIDS. Medicine (Baltimore) 1987; 66(6):407–437.Google Scholar
  69. 69.
    Muthumani K, Choo AY, Hwang DS et al. HIV-l Nef-induced FasL induction and bystander killing requires p38 MAPK activation. Blood 2005; 106(6):2059–2068.PubMedCrossRefGoogle Scholar
  70. 70.
    Bouzar AB, Villet S, Morin T et al. Simian immunodeficiency virus Vpr/Vpx proteins kill bystander noninfected CD4+ T-Iymphocytes by induction of apoptosis. Virology 2004; 326(1):47–56.PubMedCrossRefGoogle Scholar
  71. 71.
    Jekle A, Keppler OT, De Clercq E et al. In vivo evolution of human immunodeficiency virus type 1 toward increased pathogenicity through CXCR4-mediated killing of uninfected CD4 T-cells. J Virol 2003; 77(10):5846–5854.PubMedCrossRefGoogle Scholar
  72. 72.
    Peng SL. Foxo in the immune system. Oncogene 2008; 27(16):2337–2344.PubMedCrossRefGoogle Scholar
  73. 73.
    Coffer PJ, Burgering BM. Forkhead-box transcription factors and their role in the immune system. Nat Rev Immunol 2004; 4(11):889–899.PubMedCrossRefGoogle Scholar
  74. 74.
    Lin L, Hron JD, Peng SL. Regulation of NF-kappaB, Th activation and autoinflammation by the forkhead transcription factor Foxo3a. Immunity 2004; 21(2):203–213.PubMedCrossRefGoogle Scholar
  75. 75.
    Asselin-Labat ML, David M, Biola-Vidamment A et al. GILZ, a new target for the transcription factor Fox03, protects T-Iymphocytes from interleukin-2 withdrawal-induced apoptosis. Blood 2004; 104(1):215–223.PubMedCrossRefGoogle Scholar
  76. 76.
    Stahl M, Dijkers PF, Kops GJ et al. The forkhead transcription factor FoxO regulates transcription of p27Kipl and Bim in response to IL-2. J Immunol 2002; 168(10):5024–5031.PubMedGoogle Scholar
  77. 77.
    Tang TT, Dowbenko D, Jackson A et al. The forkhead transcription factor AFX activates apoptosis by induction of the BCL-6 transcriptional repressor. J Biol Chem 2002; 277(16):14255–14265.PubMedCrossRefGoogle Scholar
  78. 78.
    Dijkers PE, Birkenkamp KU, Lam EW et al. FKHR-Ll can act as a critical effector of cell death induced by cytokine withdrawal: protein kinase B-enhanced cell survival through maintenance of mitochondrial integrity. J Cell Biol 2002; 156(3):531–542.PubMedCrossRefGoogle Scholar
  79. 79.
    Erlacher M, Labi V, Manzl C et al. Puma cooperates with Bim, the rate-limiting BH3-only protein in cell death during lymphocyte development, in apoptosis induction. J Exp Med 2006; 203(13):2939–2951.PubMedCrossRefGoogle Scholar
  80. 80.
    Selliah N, Finkel TH. Biochemical mechanisms of HIV induced T-cell apoptosis. Cell Death Differ 2001; 8(2):127–136.PubMedCrossRefGoogle Scholar
  81. 81.
    Li G, Elder RT, Qin K et al. Phosphatase type 2A-dependent and-independent pathways for ATR phosphorylation of Chkl. J BioI Chern 2007; 282(10):7287–7298.Google Scholar
  82. 82.
    Andersen JL, DeHart JL, Zimmerman ES et al. HIV-I Vpr-induced apoptosis is cell cycle dependent and requires Bax but not ANT. PLoS Pathog 2006; 2(12):e127.PubMedCrossRefGoogle Scholar
  83. 83.
    Lai M, Chen J. The role of Vpr in HIV-l disease progression is independent of its G2 arrest induction function. Cell Cycle 2006; 5(19):2275–2280.PubMedGoogle Scholar
  84. 84.
    Andersen JL, Zimmerman ES, DeHart JL et al. ATR and GADD45alpha mediate HIV-l Vpr-induced apoptosis. Cell Death Differ 2005; 12(4):326–334.PubMedCrossRefGoogle Scholar
  85. 85.
    Roshal M, Kim B, Zhu Y et al. Activation of the ATR-mediated DNA damage response by the HIV-I viral protein R. J Biol Chem 2003; 278(28):25879–25886.PubMedCrossRefGoogle Scholar
  86. 86.
    Fletcher TM 3rd, Brichacek B, Sharova N et al. Nuclear import and cell cycle arrest functions of the HIV-l Vpr protein are encoded by two separate genes in HIV-2/SIV(SM). EMBO J 1996; 15(22):6155–6165.PubMedGoogle Scholar
  87. 87.
    Zimmerman ES, Sherman MP, Blackett JL et al. Human immunodeficiency virus type 1 Vpr induces DNA replication stress in vitro and in vivo. J Virol 2006; 80(21):10407–10418.PubMedCrossRefGoogle Scholar
  88. 88.
    Belzile JP, Duisit G, Rougeau N et al. HIV-l Vpr-mediated G2 arrest involves the DDBI-CUL4AVPRBP E3 ubiquitin ligase. PLoS Pathog 2007; 3(7):e85.PubMedCrossRefGoogle Scholar
  89. 89.
    Kino T, Chrousos GP. Human immunodeficiency virus type-l accessory protein Vpr: a causative agent of the AIDS-related insulin resistance/lipodystrophy syndrome? Ann N Y Acad Sci 2004; 1024:153–167.PubMedCrossRefGoogle Scholar
  90. 90.
    Kino T, De Martino MU, Charmandari E et al. HIV-l accessory protein Vpr inhibits the effect of insulin on the Foxo subfamily of forkhead transcription factors by interfering with their binding to 14–3–3 proteins: potential clinical implications regarding the insulin resistance of HIV-l-infected patients. Diabetes 2005; 54(1):23–31.PubMedCrossRefGoogle Scholar
  91. 91.
    Martinez-Gac L, Marques M, Garcia Z et al. Control of cyclin G2 mRNA expression by forkhead transcription factors: novel mechanism for cell cycle control by phosphoinositide 3-kinase and forkhead. Mol Cell Biol 2004; 24(5):2181–2189.PubMedCrossRefGoogle Scholar
  92. 92.
    Tran H, Brunet A, Grenier JM et al. DNA repair pathway stimulated by the forkhead transcription factor FOX03a through the Gadd45 protein. Science 2002; 296(5567):530–534.PubMedCrossRefGoogle Scholar
  93. 93.
    Delpuech O, Griffiths B, East P et al. Induction of Mxi1-SR alpha by FOX03a contributes to repression of Myc-dependent gene expression. Mol Cell Biol 2007; 27(13):4917–4930.PubMedCrossRefGoogle Scholar
  94. 94.
    Dabrowska A, Kim N, Aldovini A. Tat-induced FOX03a is a key mediator of apoptosis in HIV-l-infected human CD4+ T-lymphocytes. J Immunol 2008; 181(12):8460–8477.PubMedGoogle Scholar
  95. 95.
    Frankel AD, Pabo CO. Cellular uptake of the tat protein from human immunodeficiency virus. Cell 1988; 55(6):1189–1193.PubMedCrossRefGoogle Scholar
  96. 96.
    Li CJ, Wang C, Friedman DJ et al. Reciprocal modulations between p53 and Tat of human immunodeficiency virus type 1. Proc Natl Acad Sci USA 1995; 92(12):5461–5464.PubMedCrossRefGoogle Scholar
  97. 97.
    Riou C, Yassine-Diab B, Van grevenynghe J et al. Convergence of TCR and cytokine signaling leads to FOX03a phosphorylation and drives the survival of CD4+ central memory T-cells. J Exp Med 2007; 204(1):79–91.PubMedCrossRefGoogle Scholar
  98. 98.
    van Grevenynghe J, Procopio FA, He Z et al. Transcription factor FOX03a controls the persistence of memory CD4(+) T-cells during HIV infection. Nat Med 2008; 14(3):266–274.PubMedCrossRefGoogle Scholar
  99. 99.
    Carter CA, Ehrlich LS. Cell biology of HIV-l infection of macrophages. Annu Rev Microbiol 2008; 62:425–443.PubMedCrossRefGoogle Scholar
  100. 100.
    Vazquez N, Greenwell-Wild T, Marinos NJ et al. Human immunodeficiency virus type l-induced macrophage gene expression includes the p21 gene, a target for viral regulation. J Virol 2005; 79(7):4479–4491.PubMedCrossRefGoogle Scholar
  101. 101.
    Bren GD, Whitman J, Cummins N et al. Infected cell killing by HIV-l protease promotes NF-kappaB dependent HIV-l replication. PLoS ONE 2008; 3(5):e2112.PubMedCrossRefGoogle Scholar
  102. 102.
    Francois F, Klotman ME. Phosphatidylinositol 3-kinase regulates human immunodeficiency virus type 1 replication following viral entry in primary CD4+ T-lymphocytes and macrophages. J Virol 2003; 77(4):2539–2549.PubMedCrossRefGoogle Scholar
  103. 103.
    Chugh P, Bradel-Tretheway B, Monteiro-Filho CM et al. Akt inhibitors as an HIV-l infected macrophage-specific anti-viral therapy. Retrovirology 2008; 5:11.PubMedCrossRefGoogle Scholar
  104. 104.
    Deregibus MC, Cantaluppi V, Doublier S et al. HIV-I-Tat protein activates phosphatidylinositol 3-kinase/AKT-dependent survival pathways in Kaposi’s sarcoma cells. J Biol Chem 2002; 277(28):25195–25202.PubMedCrossRefGoogle Scholar
  105. 105.
    Wolf D, Witte V, Laffert B et al. HIV-l Nef associated PAK and PI3-kinases stimulate Akt-independent Bad-phosphorylation to induce anti-apoptotic signals. Nat Med 2001; 7(11):1217–1224.PubMedCrossRefGoogle Scholar
  106. 106.
    Borgatti P, Zauli G, Colamussi ML et al. Extracellular HIV-l Tat protein activates phosphatidylinositol 3-and Akt/PKB kinases in CD4+ T-lymphoblastoid Jurkat cells. Eur J Immunol 1997; 27(11):2805–2811.PubMedCrossRefGoogle Scholar
  107. 107.
    Huang Y, Erdmann N, Peng H et al. TRAIL-mediated apoptosis in HIV-l-infected macrophages is dependent on the inhibition of Akt-l phosphorylation. J Immunol 2006; 177(4):2304–2313.PubMedGoogle Scholar
  108. 108.
    Cui M, Huang Y, Zhao Y et al. Transcription factor FOX03a mediates apoptosis in HIV-l-infected macrophages. J Immunol 2008; 180(2):898–906.PubMedGoogle Scholar
  109. 109.
    Boisse L, Gill MJ, Power C. HIV infection of the central nervous system: clinical features and neuropathogenesis. Neurol Clin 2008; 26(3):799–819, x Review.PubMedCrossRefGoogle Scholar
  110. 110.
    Gonzalez-Duarte A, Robinson-Papp J, Simpson DM. Diagnosis and management of HIV-associated neuropathy. Neurol Clin 2008; 26(3):821–832, x Review.PubMedCrossRefGoogle Scholar
  111. 111.
    Masliah E, Ge N, Mucke L. Pathogenesis of HIV-l associated neurodegeneration. Crit Rev Neurobiol 1996; 10(1):57–67.PubMedGoogle Scholar
  112. 112.
    Wolkow CA, Kimura KD, Lee MS et al. Regulation of C. elegans life-span by insulinlike signaling in the nervous system. Science 2000; 290(5489):147–150.PubMedCrossRefGoogle Scholar
  113. 113.
    Miyamoto K, Araki KY, Naka K et al. Foxoda is essential for maintenance of the hematopoietic stem cell pool. Cell Stem Cell 2007; 1(1):101–112.PubMedCrossRefGoogle Scholar
  114. 114.
    Tothova Z, Kollipara R, Huntly BJ et al. FoxOs are critical mediators of hematopoietic stem cell resistance to physiologic oxidative stress. Cell 2007; 128(2):325–339.PubMedCrossRefGoogle Scholar
  115. 115.
    Wang L, Zhang ZG, Gregg SR et al. The Sonic hedgehog pathway mediates carbamylated erythropoietin-enhanced proliferation and differentiation of adult neural progenitor cells. J Biol Chem 2007; 282(44):32462–32470.PubMedCrossRefGoogle Scholar
  116. 116.
    Bakker WJ, van Dijk TB, Parren-van Amelsvoort M et al. Differential regulation of Foxo3a target genes in erythropoiesis. Mol Cell Biol 2007; 27(10):3839–3854.PubMedCrossRefGoogle Scholar
  117. 117.
    Sathyanarayana P, Dev A, Fang J et al. EPO receptor circuits for primary erythroblast survival. Blood 2008; 111(11):5390–5399.PubMedCrossRefGoogle Scholar
  118. 118.
    Behl C, Davis JB, Lesley R et al. Hydrogen peroxide mediates amyloid beta protein toxicity. Cell 1994; 77(6):817–827.PubMedCrossRefGoogle Scholar
  119. 119.
    Wu Y, Wu Z, Butko P et al. Amyloid-beta-induced pathological behaviors are suppressed by Ginkgo biloba extract EGb 761 and ginkgolides in transgenic Caenorhabditis elegans. J Neurosci 2006; 26(50):13102–13113.PubMedCrossRefGoogle Scholar
  120. 120.
    Jiang H, Wu YC, Nakamura M et al. Parkinson’s disease genetic mutations increase cell susceptibility to stress: mutant alpha-synuclein enhances H202-and Sin-l-induced cell death. Neurobiol Aging 2007; 28(11):1709–1717.PubMedCrossRefGoogle Scholar
  121. 121.
    Davila D, Torres-Aleman I. Neuronal death by oxidative stress involves activation of FOX03 through a two-arm pathway that activates stress kinases and attenuates insulin-like growth factor I signaling. Mol Biol Cell 2008; 19(5):2014–2025.PubMedCrossRefGoogle Scholar
  122. 122.
    Shinoda S, Schindler CK, Meller R et al. Bim regulation may determine hippocampal vulnerability after injurious seizures and in temporal lobe epilepsy. J Clin Invest 2004; 113(7):1059–1068.PubMedGoogle Scholar
  123. 123.
    Gilley J, Coffer PJ, Ham J. FOXO transcription factors directly activate bim gene expressionand promote apoptosis in sympathetic neurons. J Cell Biol 2003; 162(4):613–622.PubMedCrossRefGoogle Scholar
  124. 124.
    Sanderson TH, Kumar R, Murariu-Dobrin AC et al. Insulin activates the PI3K-Akt survival pathway in vulnerable neurons following global brain ischemia. Neurol Res 2009; Epub ahead of print.Google Scholar
  125. 125.
    Obexer P, Geiger K, Ambros PF et al. FKHRLl-mediated expression of Noxa and Bim induces apoptosis via the mitochondria in neuroblastoma cells. Cell Death Differ 2007; 14(3):534–547.PubMedCrossRefGoogle Scholar
  126. 126.
    Zhu Z, Zhang Q, Yu Z et al. Inhibiting cell cycle progression reduces reactive astrogliosis initiated by scratch injury in vitro and by cerebral ischemia in vivo. Glia 2007; 55(5):546–558.PubMedCrossRefGoogle Scholar
  127. 127.
    Di Giovanni S, Movsesyan V, Ahmed F et al. Cell cycle inhibition provides neuroprotection and reduces glial proliferation and scar formation after traumatic brain injury. Proc Natl Acad Sci USA 2005; 102(23):8333–8338.PubMedCrossRefGoogle Scholar
  128. 128.
    Franke H, Sauer C, Rudolph C et al. P2 receptor-mediated stimulation of the PI3-K/Akt-pathway in vivo. Glia 2008; Epub ahead of print.Google Scholar

Copyright information

© Landes Bioscience and Springer+Business Media 2009

Authors and Affiliations

  • Min Cui
    • 1
  • Yunlong Huang
    • 1
  • Yong Zhao
    • 2
  • Jialin Zheng
    • 1
    • 3
  1. 1.Department of Pharmacology and Experimental NeuroscienceUniversity of Nebraska Medical CenterOmahaUSA
  2. 2.Transplantation Biology Research Division State Key Laboratory of Biomembrane and Membrane Biotechnology, Institute of ZoologyChinese Academy of SciencesBeijingChina
  3. 3.Department of Pathology and MicrobiologyUniversity of Nebraska Medical CenterOmahaUSA

Personalised recommendations