Non-linear Field Grading Materials and Carbon Nanotube Nanocomposites with Controlled Conductivity

  • L. S. Schadler
  • X. Wang
  • J. K. Nelson
  • H. Hillborg


Coincident with many applications requiring dielectric materials is the need for filled polymers with tailored conductivity and non-linear resistivity as a function of electric field. For example, in cable terminations, field grading materials are used to reduce the field concentrations at the joint. The field grading materials can be materials with high capacitance, or materials that exhibit non-linear resistivity with field. Applications requiring electromagnetic interference shielding also take advantage of filled polymers with high conductivity. This chapter focuses on the electrical properties of semiconducting nanoparticle filled polymers and carbon nanotube filled polymers with an emphasis on the effect of particle size, shape, dispersion, alignment, and percolation state on the behavior. A brief introduction to relevant applications is followed by a review of relevant percolation theory. This is followed by a discussion of the field grading literature and an introduction to the potential mechanisms leading to non-linearity. Finally, a brief review of conductivity in nanotube filled polymers with a focus on the control of conductivity is provided.


Percolation Threshold Breakdown Strength Edge Contact Tunneling Distance Thin Polymer Layer 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Balberg I (2002) A comprehensive picture of the electrical phenomena in carbon black-polymer composites. Carbon 40(2):139–143CrossRefGoogle Scholar
  2. Balberg I (2008) Electrical transport phenomena in systems of semiconductor quantum dots. J Nanosci Nanotechnol 8(2):745–758CrossRefGoogle Scholar
  3. Balberg I, Anderson CH, Alexander S et al (1984a) Excluded volume and its relation to the onset of percolation. Phys Rev B 30:3933–3943CrossRefGoogle Scholar
  4. Balberg I, Azula D, Toker D et al (2004) Percolation and tunneling in composite materials. Int J Mod Phys B 18(15):1091–2121CrossRefGoogle Scholar
  5. Balberg I, Binenbaum N, Wagner N (1984b) Percolation thresholds in the three-dimensional sticks system. Phys Rev Lett 52:1465–1468CrossRefGoogle Scholar
  6. Berhan L, Sastry AM (2007) Modeling percolation in high-aspect-ratio fiber systems. I. Soft-core versus hard-core models. Phys Rev E Stat Nonlin Soft Matter Phys 75(4):041120Google Scholar
  7. Berlyand L, Golden K (1994) Exact result for the effective conductivity of a continuum percolation model. Phys Rev B 50(4):2114CrossRefGoogle Scholar
  8. Bernasconi J, Stresler S, Knecht B (1977) Zinc oxide based varistors: a possible mechanism. Solid State Commun 21:867–870CrossRefGoogle Scholar
  9. Bhushan B, Kashyap SC, Chopra KL (1981) Electrical and dielectric behavior of zinc oxide composite. J Appl Phys 52(4):2932–2936CrossRefGoogle Scholar
  10. Blaise G (2001) Charge localization and transport in disordered dielectric materials. J Electrostat 50(2):69–89CrossRefGoogle Scholar
  11. Blythe AR (1986) Electrical properties of polymers. Cambridge University Press, Cambridge, UKGoogle Scholar
  12. Bokobza L (2007) Multiwall carbon nanotube elastomeric composites: a review. Polymer 48(17):4907–4920CrossRefGoogle Scholar
  13. Carmona F (1989) Conducting filled polymers. Phys A Stat Theor Phys 157(1):461–461MathSciNetCrossRefGoogle Scholar
  14. Celzard A, McRae E, Furdin G et al (1997) Conduction mechanisms in some graphite-polymer composites: the effect of a direct-current electric field. J Phys Condens Matter 9(10):2225–2237CrossRefGoogle Scholar
  15. Choi ES, Brooks JS, Eaton DL et al (2003) Enhancement of thermal and electrical properties of carbon nanotube polymer composites by magnetic field processing. J Appl Phys 94(9):6034–6039CrossRefGoogle Scholar
  16. Donnet JB, Bansal RL, Wang M-J (1993) Carbon black. Marcel Dekker, New YorkGoogle Scholar
  17. Donzel L, Christen T, Kessler R et al (2004) Silicone composites for HV applications based on microvaristors. Int Conf Solid Dielectr. Toulouse, France, 403–406Google Scholar
  18. Du F, Fischer JE, Winey KL (2005) Effect of nanotube alignment on percolation conductivity in carbon nanotube/polymer composites. Phys Rev B 72:121404CrossRefGoogle Scholar
  19. Gojny FH, Wichmann MHG, Fiedler B et al (2006) Evaluation and identification of electrical and thermal conduction mechanisms in carbon nanotube/epoxy composites. Polymer 47(6):2036–2045CrossRefGoogle Scholar
  20. Grimaldi C, Balberg I (2006) Tunneling and nonuniversality in continuum percolation systems. Phys Rev Lett 96(6):066602CrossRefGoogle Scholar
  21. Grossiord N, Loos J, Coning CE (2005) Strategies for dispersing carbon nanotubes in highly viscous polymers. J Mater Chem 15(24):2349–2352CrossRefGoogle Scholar
  22. Grossiord N, Loos J, Van Laake L et al (2008) High-conductivity polymer nanocomposites obtained by tailoring the characteristics of carbon nanotube fillers. Adv Funct Mater 18(20):3226–3234CrossRefGoogle Scholar
  23. Grunlan JC, Kim YS, Ziaee S et al (2006) Thermal and mechanical behavior of carbon-nanotube-filled latex. Macromol Mater Eng 291(9):1035–1043CrossRefGoogle Scholar
  24. Grunlan JC, Mehrabi AR, Bannon MV et al (2004) Water-based single-walled-nanotube-filled polymer composite with an exceptionally low percolation threshold. Adv Mater 16(2): 150–153CrossRefGoogle Scholar
  25. Gu H, Swager TM (2008) Fabrication of free-standing, conductive, and transparent carbon nanotube films. Adv Mater 20(23):4433–4437CrossRefGoogle Scholar
  26. Hagen SH (1971) Conduction mechanism in silicon carbide voltage-dependent resistors. Philips Res Rep 26(6):486–518Google Scholar
  27. Hesamzadeh MR, Hosseinzadeh N, Wolf P (2008) An advanced optimal approach for high voltage AC bushing design. Trans IEEE DEI-15(2):461–466CrossRefGoogle Scholar
  28. Hong JI, Schadler LS et al (2003) Rescaled electrical properties of ZnO/low density polyethylene nanocomposites. Appl Phys Lett 82(12):1956–1958CrossRefGoogle Scholar
  29. Hong JI, Schadler LS, Siegel RW et al (2006) Electrical behavior of low density polyethylene containing an inhomogeneous distribution of ZnO nanoparticles. J Mater Sci 41(18):5810–5814CrossRefGoogle Scholar
  30. Hong JI, Winberg P, Schadler LS et al (2005) Dielectric properties of zinc oxide/low density polyethylene nanocomposites. Mater Lett 59(4):473–476CrossRefGoogle Scholar
  31. Ku CC, Liepins R (1987) Electrical properties of polymers. Hanser, MunichGoogle Scholar
  32. Kyrylyuk AV, van der Schoot P (2008) Continuum percolation of carbon nanotubes in polymeric and colloidal media. Proc Natl Acad Sci USA 105(24):8221–8226CrossRefGoogle Scholar
  33. Liang GD, Tjong SC (2008) Electrical properties of percolative polystyrene/carbon nanofiber composites. Trans IEEE DEI-15(1):214–220CrossRefGoogle Scholar
  34. Mårtensson E (2003) Modeling electrical properties of composite materials. Royal Institute of Technology. Department of Electrial Engineering. Stockholm, Sweden, Swedish for Royal Institute of Technology, Ph.D. ThesisGoogle Scholar
  35. Mårtensson E, Gäfvert U (2004) A three-dimensional network model describing a non-linear composite material. J Phys D Appl Phys 37(1):112–119CrossRefGoogle Scholar
  36. Mårtensson E, Nettelblad B, Gäfvert U et al (1998). Electrical properties of field grading materials with silicon carbide and carbon black. Int Conf Cond Breakdown in Solid Dielectrics. Västerås, Sweden, 548–552Google Scholar
  37. Moniruzzaman M, Winey KI (2006) Polymer nanocomposites containing carbon nanotubes. Macromolecules 39(16):5194–5205CrossRefGoogle Scholar
  38. Mu M, Walker AM, Torkelson JM (2008) Cellular structures of carbon nanotubes in a polymer matrix improve properties relative to composites with dispersed nanotubes. Polymer 49(5):1332–1337CrossRefGoogle Scholar
  39. Nakamura S, Saito K, Sawa G et al (1997) Percolation threshold of carbon black – Polyethylene composites. Jpn J Appl Phys 36:5163CrossRefGoogle Scholar
  40. Nelson PN, Hervig HC (1984) High dielectric constant materials for primary voltage cable terminations. Trans IEEE PAS-103(11):3211–3216Google Scholar
  41. Nettelblad B, Mårtensson E, Önneby C et al (2003) Two percolation thresholds due to geometrical effects: experimental and simulated results. J Phys D Appl Phys 36(4):399–405CrossRefGoogle Scholar
  42. Nikolajeic S, Pekaric-Nad N, Dimitrijevic RM (1997) Optimization of cable terminations. Trans IEEE PD-12(2):527–532Google Scholar
  43. Önneby C, Mårtensson E, Gäfvert U et al (2001) Electrical properties of field grading materials influenced by the silicon carbide grain size. Int Conf Solid Dielectrics. Eindhoven, the Netherlands, 43–45Google Scholar
  44. Peng H, Sun X (2009) Highly aligned carbon nanotube/polymer composites with much improved electrical conductivities. Chem Phys Lett 471(1–3):103–105CrossRefGoogle Scholar
  45. Ramasubramaniam R, Chen J, Liu H (2003) Homogeneous carbon nanotube/polymer composites for electrical applications. Appl Phys Lett 83(14):2928–2930CrossRefGoogle Scholar
  46. Reboul JP, Moussalli G (1976) About some DC conduction processes in carbon black filled polymers. Int J Polym Mater 5(2):133–146CrossRefGoogle Scholar
  47. Rivenc J, Leby T (1999) An overview of electrical properties for stress grading optimization. Trans IEEE DEI-6(3):309–318CrossRefGoogle Scholar
  48. Roberts A (1995) Stress grading for high voltage motor and generator coils. IEEE Electr Insul Mag 11(4):26–31CrossRefGoogle Scholar
  49. Sahimi M (1994) Applications of percolation theory. Taylor and Francis, LondonGoogle Scholar
  50. Shen Y, Lin Y, Nan C-W (2007) Interfacial effect on dielectric properties of polymer nanocomposites filled with core/shell-structured particles. Adv Funct Mater 17(14):2405–2410CrossRefGoogle Scholar
  51. Sheng P, Kohn RV (1982) Geometric effects in continuous-media percolation. Phys Rev B 26(3):1331CrossRefGoogle Scholar
  52. Shugg WT (1995) Handbook of electrical and electronic insulating materials. IEEE Press, New YorkCrossRefGoogle Scholar
  53. Strumpler R, Rhyner J, Greuter F et al (1995) Nonlinear dielectric composites. Smart Mater Struct 4(3):215–222CrossRefGoogle Scholar
  54. Tanaka T, Greenwood AN (1983) Advanced power cable technology, vol 1. CRC, Boca Raton, FLGoogle Scholar
  55. Tavernier K, Auckland DW, Varlow BR (1998) Improvement in the electrical performance of electrical insulation by non-linear fillers. Int Conf Cond Breakdown in Solid Dielectrics. Västerås, Sweden, pp 533–538Google Scholar
  56. Tucci V, Vitelli M (2000) On the effect of anisotropy in nonlinear composite materials for stress grading applications. Trans IEEE DEI-7(3):387–393Google Scholar
  57. Wang X, Herth S, Hugener T et al (2006) Nonlinear electrical behavior of treated ZnO-EPDM nanocomposites. Annual Report Conference on Electrical Insulation and Dielectric Phenomena (CEIDP), pp 421–424Google Scholar
  58. Wang X, Nelson JK, Schadler LS et al (2009) Hopping conduction based high field nonlinear I-V mechanism for field grading nano-SiC/silicone rubber composite. J Appl Phys In PreparationGoogle Scholar
  59. White SI, DiDonna BA, Mu M et al (2009) Simulations and electrical conductivity of percolated networks of finite rods with various degrees of axial alignment. Phys Rev B 79(2):024301–024306CrossRefGoogle Scholar
  60. Winey KI, Kashiwagi T, Mu M (2007) Improving electrical conductivity and thermal properties of polymers by the addition of carbon nanotubes as fillers. MRS Bull 32(4): 348–353CrossRefGoogle Scholar
  61. Xu J, Wong CP (2005) Low-loss percolative dielectric composite. Appl Phys Lett 87(8):1–3Google Scholar
  62. Yang C, Lin Y, Nan CW (2009) Modified carbon nanotube composites with high dielectric constant, low dielectric loss and large energy density. Carbon 47(4):1096–1101CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • L. S. Schadler
    • 1
  • X. Wang
    • 1
  • J. K. Nelson
    • 1
  • H. Hillborg
    • 2
  1. 1.Rensselaer Polytechnic InstituteTroyUSA
  2. 2.ABB AB, Corporate ResearchVästeråsSweden

Personalised recommendations