Interface Properties and Surface Erosion Resistance

  • Toshikatsu Tanaka


Interfaces between nano fillers and surrounded polymer matrices in polymer nanocomposites play a significant role in determining their dielectric and insulating properties. This is also true for outer and inner surface erosion due to electric discharges, which is the subject of this chapter. It is an experimental fact that surface erosion due to partial discharges is greatly suppressed by the inclusion of nano fillers into polymer matrices. Explanations are advanced not only for such experimental phenomena but also for possible underlying mechanisms for the substantial reduction in erosion of outer surfaces (surface degradation) and inner surfaces (treeing). Mechanisms are discussed in terms of interfacial models that are briefly explained. It is demonstrated that interfacial bonding (interaction zone), segmentation of polymer matrices by nano fillers, and pile-up of agglomerated nano fillers on the surfaces are major factors that improve the performance against partial discharge attack. Similarity in mechanisms is discussed between tree growth and outer surface erosion in nanocomposites.


Electric Double Layer Fumed Silica Surface Erosion Layered Silicate Partial Discharge 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Ajayan PM, Schadler LS, Braun PV (2004) Nanocomposite science and technology. Wiley-VCH, WeinheimGoogle Scholar
  2. Cai D, Yu J, Wen X, Lan L (2004a) Research on characterization of RTV silicone rubber/LS(layered silicate) electrical insulation nanocomposites. Proc IEEE-ICSD 7 P-1:796–799Google Scholar
  3. Cai D, Wen X, Lan L, Yu J (2004b) Study on RTV silicone rubber/SiO2 electrical insulating nanocomposites. Proc IEEE-ICSD 7 P-2:800–803Google Scholar
  4. Chujo K (2001) Advanced technology and application of polymer nanocomposites, CMC Press, TokyoGoogle Scholar
  5. El-Hag AH, Jayaram SH, Cherney EA (2004) Comparison between silicone rubber containing micro- and nano-size silica fillers. Annu Rep IEEE CEIDP 5A-12:381–384Google Scholar
  6. Fréchette MF, Trudeau ML, Alamdari HD, Boily S (2004) Introductory remarks on nanodielectrics. Trans IEEE DEI-11:808–818CrossRefGoogle Scholar
  7. Fréchette MF, Reed CW, Sedding H (2006) Progress, understanding and challenges in the field of nanodielectrics, IEEJ Trans FM 126-11:1031–1043CrossRefGoogle Scholar
  8. Fuse N, Ohki Y, Kozako M, Tanaka T (2008) Possible mechanisms of superior resistance of polyamide nanocomposite to partial discharges and plasmas. Trans IEEE DEI-15-1:161–169CrossRefGoogle Scholar
  9. Huang HH, Wilkes GL (1987) Structure-property behavior of new hybrid materials incorporating oigmeric poly(tetramethylene oxide) with inorganic silicates by a sol–gel processes. Polym Bull 18:455–462CrossRefGoogle Scholar
  10. Iizuka T, Uchida K, Tanaka T (2009) Voltage endurance characteristics of epoxy/silica nanocomposites. IEEJ Trans FM 129-3:123–129CrossRefGoogle Scholar
  11. Imai T, Sawa F, Ozaki T et al (2006) Approach by nano- micro-filler mixture toward epoxy-based nanocomposites as industrial insulating materials, IEEJ Trans FM 126-11:1136–1143CrossRefGoogle Scholar
  12. Kozako M, Fuse N, Ohki Y et al (2004) Surface degradation of polyamide nanocomposites caused by partial discharges using IEC (b) electrodes. Trans IEEE DEI-11-5:833–839CrossRefGoogle Scholar
  13. Kozako M, Ohki Y, Kohtoh M et al (2006) Preparation and various characteristics of epoxy/alumina nanocomposites. IEEJ Trans FM 126-11:1121–1127CrossRefGoogle Scholar
  14. Kurnianto R, Murakami Y, Nagao M et al (2007) Treeing breakdown in inorganic-filler/LDPE nanocomposite material. IEEJ Trans FM 127-1:29–34CrossRefGoogle Scholar
  15. Lan L, Wen X, Cai D, Liu H (2003) Study of the properties of RTV nanocomposite coatings. Proc 8th ISH:4Google Scholar
  16. Lan L, Wen X, Cai D (2004) Corona ageing tests of RTV nanocomposite materials. Proc IEEE-ICSD 7P-3:804–807Google Scholar
  17. Lewis TJ (1994) Nanometric dielectrics. Trans IEEE DEI-1-5:812–825CrossRefGoogle Scholar
  18. Lewis TJ (2004) Interfaces are the dominant feature of dielectrics at the nanometric level. Trans IEEE DEI-11-5:739–753CrossRefGoogle Scholar
  19. Lewis TJ (2006) Nanocomposite dielectrics: the dielectric nature of the nanoparticle environment. IEEJ Trans FM 126-11:1020–1030CrossRefGoogle Scholar
  20. Maity P, Basu S, Parameswaran V, Gupta N (2008a) Degradation of polymer dielectric with nanometric metal-oxide fillers due to surface discharges, Trans IEEE DEI-15-1:52–62CrossRefGoogle Scholar
  21. Maity P, Kasisomayajula SV, Parameswaran V et al (2008b) Improvement in surface degradation properties of polymer composites due to pre-processes nanometric alumina fillers. Trans IEEE DEI-15-1:63–72Google Scholar
  22. Meyer LH, Jayaram SH, Cherney EA (2005) A novel technique to evaluate the erosion resistance of silicone rubber composites for high voltage outdoor insulation using infrared laser erosion. Trans IEEE DEI-12-6:1201–1208Google Scholar
  23. Meyer LH, Cabral SHL, Araujo E et al (2006) Use of nano-silica in silicone rubber for ceramic insulators coatings in coastal areas. Conf Rec IEEE ISEI 2006:474–477Google Scholar
  24. Nakao K (ed) (2004) Composite materials and fillers. CMC Press, Tokyo (in Japanese)Google Scholar
  25. Nelson JK, Hu Y (2004) The impact of nanocomposite formulations on electrical voltage endurance. Proc IEEE-ICSD 7 P-10:832–835Google Scholar
  26. Njuguna J, Pielichowski K (2004) Polymer nanocomposites for aerospace applications: fabrication. Adv Eng Mater 6–4:193–203CrossRefGoogle Scholar
  27. Preetha P, Alapati S, Singha S et al(2008) Electrical discharge resistant characteristics of epoxy nanocomposites. 2008 Annu Rep CEIDP 8-4:718–721Google Scholar
  28. Rätzke S, Kindersberger J (2005) Erosion behavior of nano filled silicone elastomer. Proc XIVth Int Symp High Voltage Eng C-09:4Google Scholar
  29. Rätzke S, Kindersberger J (2006) The effects of interphase structures in nanodielectrics. IEEJ Trans FM 126-11:1044–1049CrossRefGoogle Scholar
  30. Rätzke S, Ohki Y, Imai T et al (2008) Enhanced performance of tree initiation V-t characteristics of epoxy/clay nanocomposite in comparison with neat epoxy resin. Annu Rep IEEE CEIDP 6-2:528–531Google Scholar
  31. Rittingstein P, Priestley RD, Broadbelt LJ, Torkelson JM (2007) Model polymer nanocomposites provide an understanding of confinement effects in real nanocomposites. Nat Mater 6-4: 278–282CrossRefGoogle Scholar
  32. Ramirez I, Cherney EA, Jararam S, Gauthier M (2008) Nanofilled silicone dielectric prepared with surfactant for outdoor insulation applications. Trans IEEE DEI-15-1:228–235Google Scholar
  33. Ramirez I, Jararam S, Cherney EA, Gauthier M, Simon L (2009) Erosion resistance and mechanical properties of silicone nanocomposite insulation. Trans IEEE DEI-16-1:52–59Google Scholar
  34. Ray SS, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 28:1539–1641CrossRefGoogle Scholar
  35. Takala T, Sallinen T, Nevalainen P et al (2008) Surface degradation of nanostructured polypropylene compounds caused by partial discharges. Proc IEEE Int Symp Electr Insul No. S3:205–209Google Scholar
  36. Tanaka T (2001) Space charge injected via interfaces and tree initiation in polymers. Trans IEEE DEI-8-5:733–743Google Scholar
  37. Tanaka T, Montanari GC, Mülhaupt R (2004) Polymer nanocomposites as dielectrics and electrical insulation – perspectives for processing technologies, material characterization and future applications. Trans IEEE DEI-11-5:763–784Google Scholar
  38. Tanaka T, Kozako M, Fuse N, Ohki Y (2005) Proposal of a multi-core model for polymer nanocomposite dielectrics. Trans IEEE DEI-12-4:669–681Google Scholar
  39. Tanaka T (2005) Dielectrics nanocomposites with insulating properties. Trans IEEE DEI-12-5:914–928Google Scholar
  40. Tanaka T, Matsunawa A, Ohki Y et al (2006a) Treeing phenomena in epoxy/alumina nanocomposite and interpretation by a multi-core model. IEEJ Trans FM 126-11:1128–1135CrossRefGoogle Scholar
  41. Tanaka T (2006) Emerging nanocomposite dielectrics. CIGRE Electra 226:24–32Google Scholar
  42. Tanaka T, Ohki Y, Shimizu T, Okabe S (2006b) Superiority in partial discharge resistance of several polymer nanocomposites. CIGRE 2006 Paper D1-303:8Google Scholar
  43. Tanaka T, Nose A, Ohki Y, Murata Y (2006c) PD resistance evaluation of LDPE/MgO nanocomposite by a rod-to-plane electrode system. Proc ICPADM:319–322Google Scholar
  44. Tanaka T, Kuge S, Kozako M (2008a) Nano effects on PD endurance of epoxy nanocomposites. Proc ICEE ME1-01:4Google Scholar
  45. Tanaka T, Matsuo Y, Uchida K (2008b) Partial discharge endurance of epoxy/SiC nanocomposite. Annu Rep CEIDP 1-1:13–16Google Scholar
  46. Toray R (2002) Technological trend in nano-controlled composite materials. Toray Research Center Library:1–471 (in Japanese)Google Scholar
  47. Vogelsang R (2004) Time to breakdown of high voltage winding insulations with respect to microscopic properties and manufacturing qualities. PhD Dissertation ETH No. 15656Google Scholar
  48. Yang L, Hu Y, Lu H, Song L (2006) Morphology, thermal, and mechanical properties of flame-retardant silicone rubber/montmorillonite nanocomposites. J Appl Polym Sci 99-6:3275–3280CrossRefGoogle Scholar
  49. Zeng R., Rong MZ, Zhang MQ et al (2002) Laser ablation of polymer-based silver nanocomposites. App Surf Sci 187:239–247CrossRefGoogle Scholar
  50. Zou C, Fothergill JC, Rowe SW (2008) The effect of water absorption on the dielectric properties of epoxy nanocomposites. Trans IEEE DEI-15-1:106–117Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Waseda UniversityTokyoJapan

Personalised recommendations