Electrical Properties

Chapter

Abstract

The introduction of nanometric inclusions into polymeric insulation has very significant, and usually very beneficial, effects on the electrical conduction, charge accumulation and breakdown properties. This chapter introduces charge transport mechanisms in polymeric insulators and injection processes at electrodes. It speculates on the effect of the introduction of nanoparticles on these processes, showing how percolation pathways may be formed through the interaction zones that surround nanoparticles. This appears to contribute to the reduction of internal charge accumulation. Dielectric spectroscopy is introduced, principally from the engineering point of view. It is considered how nanoparticles and layered nanocomposites affect the dielectric response both at very low frequencies, which gives insights in charge transport mechanisms, and at higher frequencies, which are useful for indicating how particles facilitate and constrain molecular chain movements. Finally, electrical breakdown and endurance are considered. It is shown how both the characteristic breakdown voltage or time-to-breakdown and the distribution of breakdown values may be improved by forming nanocomposite insulation. The chapter concludes by integrating the theories of charge transport, charge accumulation, dielectric relaxation, breakdown and withstand and pointing the way forward.

Keywords

Clay TiO2 Silicate Recombination Mold 

References

  1. Balberg I (2009) Tunnelling and percolation in lattices and the continuum. J Phys D Appl Phys 42:1848–1852CrossRefGoogle Scholar
  2. Bertini GJ (2009) Diagnostic testing of stochastic cables. IEEE Electr Insul Mag 25(2):6–12CrossRefGoogle Scholar
  3. Cao Y, Irwin PC (2003) The electrical conduction in polyimide nanocomposites. IEEE Conf Electr Insul Dielectr Phenom: 116–119Google Scholar
  4. Cao Y, Irwin PC, Younsi K (2004) The future of nanodielectrics in the electrical power industry. Trans IEEE DEI-11(5):797–807CrossRefGoogle Scholar
  5. Chutia J, Barua K (1980) DC conduction phenomenon in polyvinylacetate films. J Phys D Appl Phys 13:L9–L13CrossRefGoogle Scholar
  6. Dissado L A, Hill R M (1984) Anomalous low frequency dispersion. A near DC conductivity in disordered low dimensional materials. J Chem Soc Faraday Trans II 80:291–319Google Scholar
  7. Dissado LA, Hill RM (1988) Constant-phase-angle and power-law regimes in the frequency response of a general determinate fractal circuit. Phys Rev B 37:3434–3439CrossRefGoogle Scholar
  8. Dissado LA and Fothergill JC (1992) Electrical degradation and breakdown in polymers. Peter Peregrinus Ltd. for the IEE, LondonCrossRefGoogle Scholar
  9. Elmahdy MM, Chrissopoulou K, Afratis A et al (2006) Effect of confinement on polymer segmental motion and ion mobility in PEO/layered silicate nanocomposites. Macromolecules 39(16):5170–5173CrossRefGoogle Scholar
  10. Fothergill JC (2007) Ageing, space charge and nanodielectrics: ten things we don’t know about dielectrics, IEEE Int Conf Solid Dielectr: 1–10Google Scholar
  11. Grosse C (2006) Dielectric properties of suspensions of solid particles. In: Encyclopedia of surface and colloid science. Taylor and Francis, 1688–1705Google Scholar
  12. Hayase Y, Aoyama H, Tanaka Y et al (2007) Space charge formation in LDPE/MgO nanocomposite thin film under ultra-high DC electric stress. Proc IEEE Int Conf Prop Appl Dielectr Mater: 159–162Google Scholar
  13. He D, Ekere NN (2004) Effect of particle size ratio on the conducting percolation threshold of granular conductive – insulating composites. J Phys D Appl Phys 37:1848–1852CrossRefGoogle Scholar
  14. Holé S, Sylvestre A, Gallot Lavellée O et al (2006) Space charge distribution measurement methods and particle loaded insulating materials. J Phys D Appl Phys 39:950–956CrossRefGoogle Scholar
  15. Hoyos M, Garcia N, Navarro R et al (2008) Electrical strength in ramp voltage AC tests of LDPE and its nanocomposites with silica and fibrous and laminar silicates. J Polym Sci B 46(13):1301–1311CrossRefGoogle Scholar
  16. IEEE Standard 930-2004 (2004) IEEE guide for the statistical analysis of electrical insulation breakdown data, ISBN 0-7381-4468-1 SH95269Google Scholar
  17. Jonscher AK (1983) Dielectric relaxation in solids. Chelsea Dielectric Press, London, Section 5.6Google Scholar
  18. Lampert MA, Mark P (eds) (1970) Current injection in solids, Academic, New York p 24Google Scholar
  19. Lewis TJ (1954) The work function of irregular metal surfaces. Proc Phys Soc B 67(3):187–200MATHCrossRefGoogle Scholar
  20. Lewis TJ (1994) Nanometric dielectrics. Trans IEEE DEI-1(5):812–825CrossRefGoogle Scholar
  21. Lewis TJ (2004) Interfaces are the dominant feature of dielectrics at the nanometric level. Trans IEEE DEI-11(5):739–753CrossRefGoogle Scholar
  22. Ma D, Hugener TA, Siegel RW et al (2005) Influence of nanoparticle surface modification on the electrical behavior of polyethylene nanocomposites. Nanotechnology 16(6):724–731CrossRefGoogle Scholar
  23. Montanani GC, Ciani F, Testa L et al (2005) Electric strength, space charge and surface discharge characterization of nanostructured epoxy-silicate insulating materials. Int Symp Electr Insul Mater 206–209Google Scholar
  24. Mott MF and Gurney RW (1940) Electronic processes in ionic crystals. Oxford University Press, LondonMATHGoogle Scholar
  25. Mott MF (1967) Electrons in disordered structures. Adv Phys 16(61):49–144CrossRefGoogle Scholar
  26. Murata Y, Goshowaki M, Reddy CC (2008) Investigation of space charge distribution and volume resistivity of XLPE/MgO nanocomposite material under DC voltage application. IEEE Int Symp Electr Insul Mater: 502–505Google Scholar
  27. Nelson JK, Fothergill JC, Dissado LA, Peasgood W (2002) Towards an understanding of nanometric dielectrics. IEEE Conf Electr Insul Dielectr Phenom: 295–298Google Scholar
  28. Nelson JK, Hu Y, Thiticharoenpong J (2003) Electrical properties of TiO2 nanocomposites. IEEE Conf Electr Insul Dielectr Phenom: 295–298Google Scholar
  29. Nelson JK, Fothergill JC (2004) Internal charge behavior of nanocomposites. Nanotechnology 15:1–10CrossRefGoogle Scholar
  30. Peacock A (2000) Handbook of polyethylene structures, properties and applications. CRC, Boca Raton, FLGoogle Scholar
  31. Roy M, Nelson JK, MacCrone RK, Schadler LS (2007) Candidate mechanisms controlling the electrical characteristics of silica/XLPE nanodielectrics. J Mater Sci 42:3789–3799CrossRefGoogle Scholar
  32. Teyssedre G, Laurent C, Montanari GC et al (2001) Charge distribution and electroluminescence in cross-linked polyethylene under dc field. J Phys D 34(18):2830–2844CrossRefGoogle Scholar
  33. Tanaka T, Montanari GC, Mülhaupt RM (2004) Polymer Nanocomposites as dielectrics and electrical insulation – Perspectives for processing technologies, material characterization and future applications. Trans IEEE DEI-11(5):763–784CrossRefGoogle Scholar
  34. Tuncer E, Duckworth RC, Sauers I (2007) Dielectric properties of polyvinyl alcohol filled with nanometer size barium titanate particles. IEEE Conf Electr Insul Dielectr Phenom: 225–227Google Scholar
  35. Vaughan AS, Swingler SG, Zhang Y (2006) Polyethylene nanodielectrics: the influence of nanoclays on structure formation and dielectric breakdown. IEEJ Trans Fundam Mater 126(11):1057–1063CrossRefGoogle Scholar
  36. Wang L, Xu M, Feng J, Cao X (2006) Study on AC breakdown property of nanoAg/epoxy resin composite. IEEE Int Conf Prop Appl Dielectr Mater 163–166Google Scholar
  37. Wintle HJ (1983) Conduction processes in polymers. In: Bartnikas R, Eichorn RM (eds). Engineering dielectrics. Vol IIA, Electrical properties of solid insulating materials: molecular structure and electrical behaviour. ASTM Special Technical Publication 783, Philadelphia, PA 239–354Google Scholar
  38. Zilg C, Kaempfer D, Thotnann R (2003) Electrical properties of polymer nanocomposites based upon organophilic layered silicates. IEEE Conf Electr Insul Dielectr Phenom: 546–550Google Scholar
  39. Zhang P, Li G, Gai L, Lei Q (2006) Conduction current characteristics of nanoinorganic composite polyimide films. Proc IEEE Int Conf Prop Appl Dielectr Mater: 755–758Google Scholar
  40. Zou C, Fothergill JC, Rowe SW (2008) The effect of water absorption on the dielectric properties of epoxy nanocomposites. Trans IEEE DEI-15(1):106–117CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.University of LeicesterLeicesterUK

Personalised recommendations