Modeling the Physics and Chemistry of Interfaces in Nanodielectrics



The properties of nanodielectrics can be dominated by interfacial phenomena. This chapter reviews recent work performed using ab initio density functional theory (DFT) aimed at interfacial properties pertinent to dielectrics applications. We begin by providing an overview of the predictive power of modern DFT computations, followed by specific applications of these methods that could provide insights into the role played by interface chemistry at the atomic level. The electronic structure and dielectric constant across interfaces with atomic level resolution, electron-phonon interactions, stability of interfaces, and impurity segregation to interfaces are discussed.


Density Functional Theory Electronic Wave Function Schottky Barrier Height Valence Band Maximum Conduction Band Minimum 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The authors would like to thank Dr. Steve Boggs for stimulating and useful discussions, and for a critical reading of this chapter. The authors also acknowledge financial support of their nanodielectrics research by the Office of Naval Research, the National Science Foundation, the ACS Petroleum Research Fund and the Electric Power Research Institute.


  1. Arnold D, Cartier E, DiMaria DJ (1994) Theory of high-field electron transport and impact ionization in silicon dioxide. Phys Rev B 49:10278–10297CrossRefGoogle Scholar
  2. Baik HS, Kim M, Park GS et al (2004) Interface structure and non-stoichiometry in HfO2 dielectrics. Appl Phys Lett 85:672–674CrossRefGoogle Scholar
  3. Becke AD (1986) Completely numerical calculations on diatomic molecules in the local-density approximation. Phys Rev A 33:2786–2788CrossRefGoogle Scholar
  4. Bernardini F, Fiorentini V (1998) Electronic dielectric constants of insulators calculated by the polarization method. Phys Rev B 58:15292–15295CrossRefGoogle Scholar
  5. Bernardini F, Fiorentini V, Vanderbilt D (1997) Polarization-based calculation of the dielectric tensor of polar crystals. Phys Rev Lett 79:3958–3961CrossRefGoogle Scholar
  6. Bloor D (1976) Correlation of experimental and theoretical electron band energies of polyethylene. Chem Phys Lett 40:323–325CrossRefGoogle Scholar
  7. Boggs S (2005) Very high field phenomena in dielectrics. Trans IEEE DEI-12:929–938CrossRefGoogle Scholar
  8. Boggs S (2004) A rational consideration of space charge. IEEE Electr Insul Mag 20:22–27CrossRefGoogle Scholar
  9. Botti S, Vast N, Reining L et al (2002) Ab initio calculations of the anisotropic dielectric tensor of GaAs/AlAs superlattices. Phys Rev Lett 89:216803CrossRefGoogle Scholar
  10. Bottin F, Leroux S, Knyazev A et al (2008) Large-scale ab initio calculations based on three levels of parallelization. Comput Mater Sci 42:329–336CrossRefGoogle Scholar
  11. Buchanan DA (1999) Scaling the gate dielectric: materials, integration, and reliability. IBM J Res Dev 43:245–264CrossRefGoogle Scholar
  12. Cao Y, Irwin PC, Younsi K (2004) The future of nanodielectrics in the electrical power industry. Trans IEEE DEI-11:797–807CrossRefGoogle Scholar
  13. Chang HS, Yang HD, Hwang H (2002) Measurement of the physical and electrical thickness of ultrathin gate oxides. J Vac Sci Technol B 20:1836–1842CrossRefGoogle Scholar
  14. Cho DY, Park KS, Choi BH (2005) Control of silicidation in HfO2/Si(100) interfaces. Appl Phys Lett 86:041913CrossRefGoogle Scholar
  15. Chu B, Zhou X, Ren K et al (2006) A dielectric polymer with high electric energy density and fast discharge speed. Science 313:334–336CrossRefGoogle Scholar
  16. Cockayne E (2007) Influence of oxygen vacancies on the dielectric properties of hafnia: first-principles calculations. Phys Rev B 75:094103CrossRefGoogle Scholar
  17. Detraux F, Ghosez Ph, Gonze X (1998) Long-range coulomb interaction in ZrO2. Phys Rev Lett 81:3297–3297CrossRefGoogle Scholar
  18. Dong YF, Feng YP, Wang SJ et al (2005) First-principles study of ZrO2/Si interfaces: energetics and band offsets. Phys Rev B 72:045327CrossRefGoogle Scholar
  19. Dudde R, Reihl B (1992) Complete electronic structure of oriented films of hexatriacontane. Chem Phys Lett 196:91–96CrossRefGoogle Scholar
  20. Finnis MW (1996) The theory of metal-ceramic interfaces. J Phys Condens Matter 8:5811–5836CrossRefGoogle Scholar
  21. Fiorentini V, Gulleri G (2002) Theoretical evaluation of zirconia and hafnia as gate oxides for Si microelectronics. Phys Rev Lett 89:266101CrossRefGoogle Scholar
  22. Fonseca LRC, Knizhnik AA (2006) First-principles calculation of the TiN effective work function on SiO2 and on HfO2. Phys Rev B 74:195304CrossRefGoogle Scholar
  23. French RH, Glass SJ, Ohuchi FS et al (1994) Experimental and theoretical determination of the electronic structure and optical properties of three phases of ZrO2. Phys Rev B 49:5133–5142CrossRefGoogle Scholar
  24. Fu H, Bellaiche L (2003) First-principles determination of electromechanical responses of solids under finite electric fields. Phys Rev Lett 91:057601CrossRefGoogle Scholar
  25. Gavrikov AV, Knizhnik AA, Bagatur’yants AA et al (2007) Oxidation of the Pt/HfO2 interface: the role of the oxygen chemical potential. J Appl Phys 101:014310CrossRefGoogle Scholar
  26. Giustino F, Pasquarello A (2005) Theory of atomic-scale dielectric permittivity at insulator interfaces. Phys Rev B 71:144104CrossRefGoogle Scholar
  27. Giustino F, Umari P, Pasquarello A (2003) Dielectric discontinuity at interfaces in the atomic-scale limit: permittivity of ultrathin oxide films on silicon. Phys Rev Lett 91:267601CrossRefGoogle Scholar
  28. Green ML, Gusev EP, Degreave R et al (2001) Ultrathin ( < 4 nm) SiO2 and Si-O-N gate dielectric layers for silicon microelectronics: understanding the processing, structure, and physical and electrical limits. J Appl Phys 90:2057–2121CrossRefGoogle Scholar
  29. Hafner J, Wolverton C, Ceder G (2006) Toward computational materials design: the impact of density functional theory on materials research. MRS Bull 31:659–665CrossRefGoogle Scholar
  30. Hohenberg P, Kohn W (1964) Inhomogeneous electron gas. Phys Rev 136:B864–B871MathSciNetCrossRefGoogle Scholar
  31. Ieda M (1984) Electrical conduction and carrier traps in polymeric materials. Trans IEEE EI-19:162–178Google Scholar
  32. Jackson JD (1998) Classical electrodynamics. Wiley, New YorkGoogle Scholar
  33. Kamran S, Chen K, Chen L (2009) Ab initio examination of ductility features of fcc metals. Phys Rev B 79:024106CrossRefGoogle Scholar
  34. Kaufhold M, Schafer K, Bauer K et al (2002) Interface phenomena in stator winding insulation – Challenges in design, diagnosis, and service experience. IEEE Electr Insul Mag 18:27–36CrossRefGoogle Scholar
  35. King-Smith RD, Vanderbilt D (1993) Theory of polarization of crystalline solids. Phys Rev B 47:1651–1654CrossRefGoogle Scholar
  36. Kingon AI, Maria JP, Streiffer SK (2000) Alternative dielectrics to silicon dioxide for memory and logic devices. Nature 406:1032–1038CrossRefGoogle Scholar
  37. Knizhnik AA, Gavrikov AV, Safonov AA et al (2006a) Segregation trends of the metal alloys Mo-Re and Mo-Pt on HfO2: a first-principles study. J Appl Phys 100:013506CrossRefGoogle Scholar
  38. Knizhnik AA, Safonov AA, Iskandarova IM et al (2006b) First-principles investigation of the WC/HfO2 interface properties. J Appl Phys 99:084104CrossRefGoogle Scholar
  39. Kobayashi K (2001) First-principles study of the electronic properties of transition metal nitride surfaces. Surf Sci 493:665–670CrossRefGoogle Scholar
  40. Kohn W, Sham LJ (1965) Self-consistent equations including exchange and correlation effects. Phys Rev 140:A1133–A1138MathSciNetCrossRefGoogle Scholar
  41. Kunc K, Resta R (1983) External fields in the self-consistent theory of electronic states: a new method for direct evaluation of macroscopic and microscopic dielectric response. Phys Rev Lett 51:686–689CrossRefGoogle Scholar
  42. Lee JC, Oh SJ, Cho MJ et al (2004) Chemical structure of the interface in ultrathin HfO2/Si films. Appl Phys Lett 84:1305–1307CrossRefGoogle Scholar
  43. Levien L, Prewitt CT, Weidner DJ (1980) Structure and elastic properties of quartz at pressure. Am Miner 65:920–930Google Scholar
  44. Lewis TJ (1994) Nanometric dielectrics. Trans IEEE DEI-1:812–825CrossRefGoogle Scholar
  45. Lewis TJ (2004) Interfaces are the dominant feature of dielectrics at the nanometric level. Trans IEEE DEI-11:739–753CrossRefGoogle Scholar
  46. Lombardo S, Stathis JH, Linder BP et al (2005) Dielectric breakdown mechanisms in gate oxides. J Appl Phys 98:121301CrossRefGoogle Scholar
  47. Manna L, Scher EC, Alivisatos AP (2002) Shape control of colloidal semiconductor nanocrystals. J Cluster Sci 13:521–532CrossRefGoogle Scholar
  48. Manna L, Wang LW, Cingolani R et al (2005) First-principles modeling of unpassivated and surfactant-passivated bulk facets of wurtzite CdSe: a model system for studying the anisotropic rowth of CdSe nanocrystals. J Phys Chem B 109:6183–6192CrossRefGoogle Scholar
  49. Marder MP (2000) Condensed matter physics. Wiley, New YorkGoogle Scholar
  50. Martin R (2004) Electronic structure: basic theory and practical methods. Cambridge University Press, CambridgeMATHCrossRefGoogle Scholar
  51. McPherson JW, Kim J, Shanware A et al (2003) Trends in the ultimate breakdown strength of high dielectric constant materials. Trans IEEE ED-50:1771–1778CrossRefGoogle Scholar
  52. Meunier M, Quirke N (2000) Molecular modeling of electron trapping in polymer insulators. J Chem Phys 113:369–376CrossRefGoogle Scholar
  53. Meunier M, Quirke N, Aslanides A (2001) Molecular modeling of electron traps in polymer insulators: chemical defects and impurities. J Chem Phys 115:2876–2881CrossRefGoogle Scholar
  54. Miao MS, Van Camp PE, Van Doren VE et al (1996) Conformation and electronic structure of polyethylene: a density-functional approach. Phys Rev B 54:10430–10435CrossRefGoogle Scholar
  55. Mikkelsen JC (1982) Diffusivity of oxygen in silicon during steam oxidation. Appl Phys Lett 40:336–337CrossRefGoogle Scholar
  56. Mitáš L, Martin RM (1994) Quantum monte carlo of nitrogen: atom, dimmer, atomic, and molecular solids. Phys Rev Lett 72:2438–2441CrossRefGoogle Scholar
  57. Montanari B, Jones RO (1997) Density functional study of crystalline polyethylene. Chem Phys Lett 272:347–352CrossRefGoogle Scholar
  58. Murugaraj P, Mainwaring D, Mora-Huertas N (2005) Dielectric enhancement in polymer-nanoparticle composites through interphase polarizability. J Appl Phys 98:054304CrossRefGoogle Scholar
  59. Munoz MC, Gallego S, Beltran JI et al (2006) Adhesion at metal-ZrO2 interfaces. Surf Sci Rep 61:303–344CrossRefGoogle Scholar
  60. Nahar RK, Singh V, Sharma A (2007) Study of electrical and microstructure properties of high dielectric hafnium oxide thin film for MOS devices. J Mater Sci Mater Electron 18:615–619CrossRefGoogle Scholar
  61. Nelson JK (2006) The promise of dielectric nanocomposites. IEEE Int Symp Electr Insul (ISEI): 452–457Google Scholar
  62. O’Brian S, Brus L, Murray CB (2001) Synthesis of monodisperse nanoparticles of barium titanate: toward a generalized strategy of oxide nanoparticle synthesis. J Am Chem Soc 123:12085–12086CrossRefGoogle Scholar
  63. O’Dwyer JJ (1973) Theory of electrical conduction and breakdown in solid dielectrics (Monographs on the physics and chemistry of materials). Oxford University Press, LondonGoogle Scholar
  64. Oshima M, Toyoda S, Okumura T (2003) Chemistry and band offsets of HfO2 thin films for gate insulators. Appl Phys Lett 83:2172–2174CrossRefGoogle Scholar
  65. Paulus B (2006) The method of increments – a wavefunction-based ab initio correlation method for solids. Phys Rep 428:1–52CrossRefGoogle Scholar
  66. Peacock PW, Robertson J (2002) Band offsets and Schottky barrier heights of high dielectric constant oxides. J Appl Phys 92:4712–4721CrossRefGoogle Scholar
  67. Peacock PW, Robertson J (2004) Bonding, energies, and band offsets of Si-ZrO2 and HfO2 gate oxide interfaces. Phys Rev Lett 92:057601CrossRefGoogle Scholar
  68. Peacock PW, Xiong K, Tse K et al (2006) Bonding and interface states of Si : HfO2 and Si : ZrO2 interfaces. Phys Rev B 73:075328CrossRefGoogle Scholar
  69. Pignedoli CA, Curioni A, Andreoni W (2007) Anomalous behavior of the dielectric constant of hafnium silicates: a first principles study. Phys Rev Lett 98:037602CrossRefGoogle Scholar
  70. Pilania G, Sadowski T, Ramprasad R (2009) Oxygen adsorption on CdSe surfaces: case study of asymmetric anisotropic growth through ab initio computations. J Phys Chem C 113:1863–1871CrossRefGoogle Scholar
  71. Puthenkovilakam R, Chang JP (2004) An accurate determination of barrier heights at the HfO2/Si interfaces. J Appl Phys 96:2701–2707CrossRefGoogle Scholar
  72. Puthenkovilakam R, Carter EA, Chang JP (2004) First-principles exploration of alternative gate dielectrics: electronic structure of ZrO2/Si and ZrSiO4/Si interfaces. Phys Rev B 69:155329CrossRefGoogle Scholar
  73. Qiu XY, Liu HW, Fang F (2006) Phase separation and interfacial reaction of high-k HfAlOx films prepared by pulsed-laser deposition in oxygen-deficient ambient. Appl Phys Lett 88:072906CrossRefGoogle Scholar
  74. Ramos LE, Furthmuller J, Bechstedt F (2004) Quasiparticle band structures and optical spectra of β-cristobalite SiO2. Phys Rev B 69:085102CrossRefGoogle Scholar
  75. Ramprasad R, Glassford KM, Adams JB et al (1996) CO on Pd(110): determination of the optimal adsorption site. Surf Sci 360:31–42CrossRefGoogle Scholar
  76. Ramprasad R, Shi N (2005) Dielectric properties of nanoscale HfO2 slabs. Phys Rev B 72:052107CrossRefGoogle Scholar
  77. Ranjan V, Yu L, Nardelli MB et al (2007) Phase equilibria in high energy density PVDF-based polymers. Phys Rev Lett 99:047801CrossRefGoogle Scholar
  78. Rao Y, Wong CP (2004) Material characterization of a high-dielectric constant polymer-ceramic composite for embedded capacitor for RF applications. J Appl Polym Sci 92:2228–2231CrossRefGoogle Scholar
  79. Ray SS, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 28:1539–1641CrossRefGoogle Scholar
  80. Rempel JY, Trout BL, Bawendi MG et al (2006) Density functional theory study of ligand binding on CdSe (0001), (000–1), and (11–20) single crystal relaxed and reconstructed surfaces: implications for nanocrystalline growth. J Phys Chem B 110:18007–18016CrossRefGoogle Scholar
  81. Renault O, Barrett NT, Samour D (2004) Electronics of SiO2∕HfO2 interface by soft x-ray photoemission spectroscopy. Surf Sci 566:526–531CrossRefGoogle Scholar
  82. Resta R (1994) Macroscopic polarization in crystalline dielectrics: the geometric phase approach. Rev Mod Phys 66:899–915CrossRefGoogle Scholar
  83. Righi MC, Scandolo S, Serra S et al (2001) Surface states and negative electron affinity in polyethylene. Phys Rev Lett 87:076802CrossRefGoogle Scholar
  84. Rignanese GM, Detraux F, Gonze X et al (2001) First-principles study of dynamical and dielectric properties of tetragonal zirconia. Phys Rev B 64:134301CrossRefGoogle Scholar
  85. Rignanese GM, Gonze X, Jun G et al (2004) First-principles investigation of high-k dielectrics: comparison between the silicates and oxides of hafnium and zirconium. Phys Rev B 69:184301CrossRefGoogle Scholar
  86. Robertson J, Falabretti B (2006) Band offsets of high K gate oxides on III–V semiconductors. J Appl Phys 100:014111CrossRefGoogle Scholar
  87. Robertson J, Xiong K, Clark SJ (2006) Band gaps and defect levels in functional oxides. Thin Solid Films 496:1–7CrossRefGoogle Scholar
  88. Robertson J, Sharia O, Demkov AA (2007) Fermi level pinning by defects in HfO2-metal gate stacks. Appl Phys Lett 91:132912CrossRefGoogle Scholar
  89. Roy M, Nelson JK, MacCrone RK et al (2005) Polymer nanocomposite dielectrics – the role of the interface. Trans IEEE DEI-12:629–643CrossRefGoogle Scholar
  90. Rusu PC, Brocks G (2006) Work functions of self-assembled monolayers on metal surfaces by first-principles calculations. Phys Rev B 74:073414CrossRefGoogle Scholar
  91. Sayan S, Emge T, Garfunkel E et al (2004) Band alignment issues related to HfO2∕SiO2/p-Si gate stacks. J Appl Phys 96:7485–7491CrossRefGoogle Scholar
  92. Serra S, Tosatti E, Iarlori S et al (2000) Interchain electron states in polyethylene. Phys Rev B 62:4389–4393CrossRefGoogle Scholar
  93. Shevlin SA, Curioni A, Andreoni W (2005) Ab initio design of high-k dielectrics: LaxY1 − xAlO3. Phys Rev Lett 94:146401CrossRefGoogle Scholar
  94. Shi N (2008) Properties of nanoscale dielectrics from first principles computations. PhD thesis, University of Connecticut, StorrsGoogle Scholar
  95. Shi N, Ramprasad R (2005) Dielectric properties of ultrathin SiO2 slabs. Appl Phys Lett 87:262102CrossRefGoogle Scholar
  96. Shi N, Ramprasad R (2006) Atomic-scale dielectric permittivity profiles in slabs and multilayers. Phys Rev B 74:045318CrossRefGoogle Scholar
  97. Shi N, Ramprasad R (2007) Local dielectric permittivity of HfO2 based slabs and stacks: a first principles study. Appl Phys Lett 91:242906CrossRefGoogle Scholar
  98. Shi N, Ramprasad R (2008a) Local properties at interfaces in nanodielectrics: an ab initio computational study. Trans IEEE DEI-15:170–177CrossRefGoogle Scholar
  99. Shi N, Ramprasad R (2008b) Program on technology innovation: computational investigation of XLPE with SiO2 nanofillers. EPRI Technical UpdateGoogle Scholar
  100. Shishkin M, Marsman M, Kresse G (2007) Accurate quasiparticle spectra from self-consistent GW calculations with vertex corrections. Phys Rev Lett 99:246403CrossRefGoogle Scholar
  101. Smelyansky VI, Tse JS (1995) Theoretical study on the high-pressure phase transformation in ZnSe. Phys Rev B 52:4658–4661CrossRefGoogle Scholar
  102. Springborg M, Lev M (1989) Electronic structures of polyethylene and polytetrafluoroethylene. Phys Rev B 40:3333–3339CrossRefGoogle Scholar
  103. Sun G, Kürti J, Rajczy P et al (2003) Performance of the Vienna ab initio simulation package (VASP) in chemical applications. J Mol Struct (Theochem) 624:37–45CrossRefGoogle Scholar
  104. Tang C, Ramprasad R (2007) Ab initio study of oxygen interstitial diffusion near Si : HfO2 interfaces. Phys Rev B 75:241302CrossRefGoogle Scholar
  105. Tang C, Ramprasad R (2008a) A study of Hf vacancies at Si : HfO2 heterojunctions. Appl Phys Lett 92:152911CrossRefGoogle Scholar
  106. Tang C, Ramprasad R (2008b) Oxygen defect accumulation at Si : HfO2 interfaces. Appl Phys Lett 92:182908CrossRefGoogle Scholar
  107. Tang C, Tuttle B, Ramprasad R (2007) Diffusion of O vacancies near Si : HfO2 interfaces: an ab initio investigation. Phys Rev B 76:073306CrossRefGoogle Scholar
  108. Teyssedre G, Laurent C (2005) Charge transport modeling in insulating polymers: from molecular to macroscopic scale. Trans IEEE DEI-12:857–875CrossRefGoogle Scholar
  109. Tuttle BR, Tang C, Ramprasad R (2007) First-principles study of the valence band offset between silicon and hafnia. Phys Rev B 75:235324CrossRefGoogle Scholar
  110. Ueno N, Sugita K, Seki K et al (1986) Low-energy electron transmission and secondary-electron emission experiments on crystalline and molten long-chain alkanes. Phys Rev B 34:6386–6393CrossRefGoogle Scholar
  111. Umari P, Pasquarello A (2002) Ab initio molecular dynamics in a finite homogeneous electric field. Phys Rev Lett 89:157602CrossRefGoogle Scholar
  112. Van de Walle CG, Martin RM (1987) Theoretical study of band offsets at semiconductor interfaces. Phys Rev B 35:8154–8165CrossRefGoogle Scholar
  113. Wagmare UV, Rabe KM (2005) Dielectric properties of simple and complex oxides from first-principles. In: Demkov AA, Navrotsky A (eds) Materials fundamentals of gate dielectrics. Springer, New YorkGoogle Scholar
  114. Wallace RM, Wilk GD (2003) High-kappa dielectric materials for microelectronics. Crit Rev Solid State Mater Sci 28:231–285CrossRefGoogle Scholar
  115. Wilk GD, Wallace RM, Anthony JM (2001) High-k gate dielectrics: current status and materials properties considerations. J Appl Phys 89:5243–5275CrossRefGoogle Scholar
  116. Williamson AJ, Hood RQ, Needs RJ et al (1998) Diffusion quantum Monte Carlo calculations of the excited states of silicon. Phys Rev B 57:12140–12144CrossRefGoogle Scholar
  117. Wolf WL, Stanley SB, McCarthy KA (1963) American institute of physics handbook. McGraw-Hill, New YorkGoogle Scholar
  118. Zhao X, Vanderbilt D (2002a) First-principles study of structural, vibrational, and lattice dielectric properties of hafnium oxide. Phys Rev B 65:233106CrossRefGoogle Scholar
  119. Zhao X, Vanderbilt D (2002b) Phonons and lattice dielectric properties of zirconia. Phys Rev B 65:075105CrossRefGoogle Scholar
  120. Zheng Z, Boggs S (2005) Defect tolerance of solid dielectric transmission class cable. IEEE Electr Insul Mag 21:35–41CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Chemical, Materials and Biomolecular Engineering, Institute of Materials ScienceUniversity of ConnecticutStorrsUSA
  2. 2.Shocking Technologies, Inc.San JoseUSA

Personalised recommendations