The Chemistry and Physics of the Interface Region and Functionalization

  • C. W. Reed


A description is given of the chemistry and physics of the interface region of polymer nanodielectrics, covering the formation of the nanoparticles, their functionalization, and the selection and use of coupling agents for covalent bonding to the polymer matrix. The main focus is on spherical inorganic nanoparticles dispersed into polymer melts and on natural and synthetic clays and micas and other layered inorganics which are intercalated or exfoliated before introduction of a polymer solution in a polar solvent or from the melt. The chemistry addresses the chemical structure of the nanoparticles and polymer, the bonding that is present, and the role of coupling agents and compatibilizers. The physics addresses the morphology, glass transition temperature, and free volume of the polymer nanocomposite; and interfacial polarization, dielectric relaxation, electron paramagnetic resonance, and modulated differential scanning calorimetric effects. The views of investigators on the understanding of the interface in this burgeoning field are presented and compared.


Electron Paramagnetic Resonance Glass Transition Temperature Free Volume Coupling Agent Interface Region 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



The writer acknowledges many pleasant and productive interactions with J.K Nelson, R.A MacCrone, L.S Schadler, and several students, at the Rensselaer Polytechnic Institute, during their work on SiO2-XLPE nanocomposites, in triggering his involvement in this field; and with M.F. Frechette of IREQ in collaboration on the fundamentals of nanodielectric science.


  1. .
    Alcoutlabi M, McKenna GB (2005) Effects of confinement on material behavior at the nanometric size scale. J Phys Condens Matter 17:R461–R524CrossRefGoogle Scholar
  2. .
    Artbauer J (1996) The electric strength of polymers. J Phys D 29:446–456CrossRefGoogle Scholar
  3. .
    Bendler JT, Fontanella JJ, Ahlesinger MF et al (2003) The need to reconsider traditional free volume theory for polymer electrolytes. Electrochim Acta 48:2267–2272CrossRefGoogle Scholar
  4. Bendler JT, Fontanella JJ, Shlesinger MF et al(2005) Free-volume dynamics in glasses and supercooled liquids. Phys Rev E71:1–10Google Scholar
  5. Bendler JT, Fontanella JJ, Shlesinger MF et al(2009) The defect diffusion model and the glass transition in nanoscale and bulk films. J Comput Theor Nanosci 6:1–5CrossRefGoogle Scholar
  6. Brinker CJ, Scherer GW (1990) sol–gel science. Academic, BostonGoogle Scholar
  7. Broutman LJ, Agarwal BD (1973) SPI 28th Annu Tech Conf Reinf Plast 5-BGoogle Scholar
  8. Chen BK, Du JU, Hou CW (2008) The effects of chemical structure on the dielectric properties of polyetherimide and nanocomposites. Trans IEEE DEI-15:127–133CrossRefGoogle Scholar
  9. Consolati G, Quasso F (2007) Estimation of free volume holes in amorphous polymers by means of positron annihilation spectroscopy. Simha Symposium on Polymer Physics, October 17–18Google Scholar
  10. Crank J, Park GS (1968) Diffusion in polymers. Academic, LondonGoogle Scholar
  11. Datta S, Lohse DJ (1996) Polymeric compatabilizers: uses and benefits in polymer blends. Hanser Gardner, New York. ISBN 9781569901946Google Scholar
  12. Devins JC, Rzad SJ (1977) A new class of additives to inhibit tree growth in solid extruded cable insulation. EPRI Project RP 7851-1, Final Report: August 1977Google Scholar
  13. Fabiani D, Montanari GC, Testa L (2010) Effect of aspect ratio and water contamination on the electrical properties of nanostructured insulating materials. Trans IEEE DEI-17 In pressGoogle Scholar
  14. Fontanella JJ, Wintersgill MC, Edmondson CA et al (2009) Water-associated dielectric relaxation in oxide nanoparticles. J Phys D Appl Phys 42:1–6CrossRefGoogle Scholar
  15. Frechette MF, Larocque RY, Trudeau M et al (2008) Nanostructured polymer microcomposites: a distinct class of insulating materials. Trans IEEE DEI-15:90–105CrossRefGoogle Scholar
  16. Frubing P, Blischke D, Gerhard-Mulhaupt G et al (2001) Complete relaxation map of polyethylene: filler-induced chemical modifications as dielectric probes. J Phys D Appl Phys 34:3051–3057CrossRefGoogle Scholar
  17. Fuse N, Okada M, Ohki Y et al (2009) Photoluminescence in polyamide/mica and polyethylene/MgO nanocomposites induced by ultraviolet photons. Trans IEEE DEI-15:1215–1223CrossRefGoogle Scholar
  18. Fuse N, Sato H, Tanaka T et al (2008) Effects of mica nanofillers on the complex permittivity of polyamide nanofillers. IEEE DEIS Conf Electr Insul Dielectr Phen 6–5Google Scholar
  19. Fuse N, Sato H, Ohki Y et al (2009) Effects of nanofiller loading on the molecular motion and carrier transport in polyamide. Trans IEEE DEI-16:524–530CrossRefGoogle Scholar
  20. Gaehde J (1975) Effect of silane-modified Kaolin filler on the orientation of high density polyethylene in the interface region. Plaste Kautschuk 22:626Google Scholar
  21. Green CD, Vaughan AS, Mitchell GR et al (2008) Structure property relationships in polyethylene/montmorillonite nanodielectrics. Trans IEEE DEI-15:134–143CrossRefGoogle Scholar
  22. Green CD, Vaughan A (2008) Nanodielectrics – how much do we really understand, IEEE Electr Insul Mag 24:6–16CrossRefGoogle Scholar
  23. Hill NE, Vaughan WE, Price AH et al (1969) Dielectric properties and molecular behavior. Van Nostrand Reinhold Company, LondonGoogle Scholar
  24. Hummel DO (1966) Infrared spectra of polymer in the medium and long wavelength range. Polymer Reviews 14: Interscience Publishers, Wiley, New YorkGoogle Scholar
  25. Imai T, Hirano Y, Hirai H et al (2002) Preparation and properties of epoxy-organically modified layered silicate nanocomposites. Proc, IEEE Int Symp Electr Insul: 379–383Google Scholar
  26. Jeschke G, Panek G, Schleidt S et al (2003) Addressing the interface in polymer clay nanocomposites by electron paramagnetic resonance spectroscopy on surfactant probes. Polymer Nanocomposites 2003, International Symposium on Polymer Nanocomposites Science and Technology Paper 49Google Scholar
  27. Kahn FJ (1973) The orientation of liquid crystals on mineral surfaces treated with silane coupling agents. Appl Phys Lett 22:386CrossRefGoogle Scholar
  28. Katahira S, Yasue K, Inagaki M (1999) Intercalation of E-caprolactam ions into organic hosts. J Mater Res 14:1178–1180CrossRefGoogle Scholar
  29. Kochetov R, Andritsch T, Lafont U et al (2009) Preparation and dielectric properties of epoxy-BN and epoxy AlN nanocomposites. IEEE Electr Insul Conf: 397–400Google Scholar
  30. Kozako M, Fuse N, Ohki Y et al (2004) Surface degradation of polyamide nanocomposites caused by partial discharges using IEC(b) electrodes. Trans IEEE DEI-11:833–839CrossRefGoogle Scholar
  31. Lewis TJ (1994) Nanometric dielectrics. Trans IEEE DEI-1:812–815CrossRefGoogle Scholar
  32. Lewis TJ (2004) Interfaces are the dominant feature of dielectrics at the nanometric level. Trans IEEE DEI-11:739–753CrossRefGoogle Scholar
  33. Lewis TJ (2005) Interfaces: nanometric dielectrics. J Phys D Appl Phys 38:202–212CrossRefGoogle Scholar
  34. MacCrone RK, Nelson JK, Schadler LS et al (2007) The use of electron paramagnetic resonance (EPR) in the probing of the dielectric interface. IEEE 9th Int Conf Solid Dielectr: 428–431Google Scholar
  35. MacCrone RK, Nelson JK, Smith RC et al (2008) The use of electron paramagnetic resonance in the probing of the nano-dielectric interface. Trans IEEE DEI-15:197–204CrossRefGoogle Scholar
  36. McCrum NG, Read BA, Williams G (1967) Anelastic and dielectric effects in polymeric solids. Wiley, London. Chapters 2, 5, 8–14Google Scholar
  37. Miltner HE, Van Mele B (2005) Experimental evidence for reduced chain segment mobility in polymeric nanocomposites. International Symposium on Polymer Nanocomposites Science and Technology: Paper 7.02Google Scholar
  38. Mohapatra SR, Thakur AK, Choudhary RNP (2008) Vibrational spectroscopy analysis of ion conduction mechanism in dispersed phase polymer nanocomposites. J Polym Sci B Polym Phys 47(1):60–71CrossRefGoogle Scholar
  39. Montanari GC, Fabiani D, Palmieri F et al (2004) Modification of electrical properties and performance of EVA and PP insulation through nanostructure by organophilic silicates. Trans IEEE DEI-11:754–762CrossRefGoogle Scholar
  40. Nelson JK, Fothergill JC (2004) Internal charge behavior of nanocomposites. Nanotechnology 15:1–10CrossRefGoogle Scholar
  41. Nelson JK, Utracki LA, MacCrone RK et al (2004) Role of the interface in determining the dielectric properties of nanocomposites. IEEE DEIS Conf Electr Insul Dielectr Phen: 314–317Google Scholar
  42. Nies E, Stroeks A (1990) A modified hole theory of polymeric fluids. 1. Equation of state of pure components. Macromolecules 23:4008CrossRefGoogle Scholar
  43. Nies E, Xie H (1993) Quasi-chemical approximation for nonrandomness in the hole theory of polymeric fluids. 1. Equation of state behavior of pure components. Macromolecules 26:1683CrossRefGoogle Scholar
  44. Plueddemann EP (1982) Silane coupling agents. Plenum, New York. pp 1–235Google Scholar
  45. Ray SS, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 28:1539–1641CrossRefGoogle Scholar
  46. Reading M, Luget A, Wilson R (1994) Modulated differential calorimetry. Thermochimica Acta 238:295–307CrossRefGoogle Scholar
  47. Reed CW (1971) The influence of impurities on the dielectric losses of poly(2,6-dimethyl-1,4-phenylene ether). The dielectric properties of polymers. Plenum, New York. pp 191–199Google Scholar
  48. Reed, CW (1972) The influence of residual solvent and crystallinity on the dielectric relaxation of solvent-cast polymer films. 1971 Annual report, conference on electrical insulation and dielectrics phenomena, National Academy of Sciences Pub ISBN 0-309-02032-8, p 89Google Scholar
  49. Rogers PA (1993a) Pressure-volume-temperature relationships for polymeric liquids: a review of equations of state and their characteristic parameters of 56 polymers. J Appl Polym Sci 48:1061–1080CrossRefGoogle Scholar
  50. Rogers PA (1993b) Pressure-volume-temperature relationships for poly(vinylidene fluoride) and polyamide-11. J Appl Polym Sci 50:2075–2083CrossRefGoogle Scholar
  51. Roy M, Nelson JK, Reed CW (2005) Polymer nanocomposite dielectrics – the role of the interface. Trans IEEE DEI-12:629–643CrossRefGoogle Scholar
  52. Schamm S, Berjoan R, Barathieu P (2004) Study of the chemical and structural organization of SIPOS films at the nanometer scale by TEM-EELS and ZPS. Mater Sci Eng B107:58–65CrossRefGoogle Scholar
  53. Simha R, Somcynsky T (1969) On the statistical thermodynamics of spherical and chain molecule fluids. Macromolecules 2:342–350CrossRefGoogle Scholar
  54. Smith RC, Liang C, Landry M, et al (2008) The mechanisms leading to the useful electrical properties of polymer nanodielectrics. Trans IEEE DEI-15:187–196CrossRefGoogle Scholar
  55. Singha S, Thomas MJ (2008a) Permittivity and tan δ characteristics of epoxy nanocomposites in the frequency range of 1 MHz–1 GHz. Trans IEEE DEI-15:2–11CrossRefGoogle Scholar
  56. Singha S, Thomas MJ (2008b) Dielectric properties of epoxy nanocomposites. Trans IEEE DEI-15:12–23CrossRefGoogle Scholar
  57. Singha S, Thomas MJ (2008c) Reduction of permittivity in epoxy nanocomposites at low nanofiller loadings. IEEE DEIS Conf Electr Insul Dielectr Phen: 8–6Google Scholar
  58. Singha S, Thomas MJ (2009) Influence of filler loading on dielectric properties of epoxy-ZnO nanocomposites. Trans IEEE DEI-16:531–542CrossRefGoogle Scholar
  59. Singha S, Thomas MJ, Kulkarni A (2009) Complex permittivity of epoxy nanocomposites at low frequency. Trans IEEE DEI-17 In pressGoogle Scholar
  60. Sternstein SS, Zhu A-J (2002) Reinforcement mechanism of nanofilled polymer melts as elucidated by nonlinear viscoelastic behavior. Macromolecules 35:7262–7273CrossRefGoogle Scholar
  61. Sun Y, Zhang Z, Wong CP (2005) Influence of interphase and moisture on the dielectric spectroscopy of epoxy/silica composites. Polymer 46:2297–2305CrossRefGoogle Scholar
  62. Tabatabaei S, Shukohfar A, Aghababazadeh R et al (2006) Experimental study of the synthesis and characterization of silica nanoparticles via the sol–gel method. J Phys Conf Ser 26:371–374CrossRefGoogle Scholar
  63. Tagami N, Okada M, Hirai N et al (2008) Dielectric properties of epoxy-clay nanocomposites – effects of curing agent and clay dispersion method. Trans IEEE DEI-15:24–32CrossRefGoogle Scholar
  64. Takada T, Hayase Y, Tanaka Y et al (2008) Space charge trapping in electrical potential well caused by permanent and induced dipoles for LDPE/MgO nanocomposites. Trans IEEE DEI-15:152–160CrossRefGoogle Scholar
  65. Takala M, Kartunnen M, Salovaara P et al (2008) Dielectric properties of nanostructured polypropylene – polyhedral oligomeric silsesquioxane. Trans IEEE DEI-15:40–51CrossRefGoogle Scholar
  66. Takala M, Karttunen K, Peltro J et al (2008) Thermal, mechanical, and dielectric properties of nanostructured epoxy-polyhedral oligomeric silsesquioxane composites. Trans IEEE DEI-15:1224–1235CrossRefGoogle Scholar
  67. Tanaka T, Montanari GC, Mulhaupt R (2004) Polymer nanocomposites as dielectrics and electrical insulation: perspectives for processing technologies, material characterization, and future applications. Trans IEEE DEI-11:763–784CrossRefGoogle Scholar
  68. Tobolsky AV (1960) Properties and structure of polymers. Wiley, New York. pp 43–71Google Scholar
  69. Tuncer E, Sauers I, James DR et al (2008) Nanodielectric system for cryogenic applications: barium titanate filled polyvinyl alcohol. Trans IEEE DEI-15:236–242CrossRefGoogle Scholar
  70. Utracki LA, Simha R (2001) Analytical representation of solutions to lattice-hole theory. Macromol Theor Simul 10:17–23CrossRefGoogle Scholar
  71. Utracki LA, Simha R, Garcia-Rejon A (2003) Pressure-volume-temperature dependence of poly-E-caprolactam/clay nanocomposites. Macromolecules 36:2114–2121CrossRefGoogle Scholar
  72. Vaughan AS, Swingler SG, Zhang Y (2006) Polyethylene nanodielectrics: the influence of nanoclays on structure formation and dielectric breakdown. Trans IEE Jpn 126:1057–1063CrossRefGoogle Scholar
  73. Vo HT, Shi FG (2002) Towards model based engineering of optoelectronic packaging materials: dielectric constant modeling. Microelectr J 33:409–415CrossRefGoogle Scholar
  74. Wells AF (1950) Structural inorganic chemistry. Oxford University Press, Oxford. pp 76–78, 358–371, 567–569Google Scholar
  75. Wunderlich B, Jin YY, Boller A (1994) Mathematical-description of differential scanning calorimetry based on periodic temperature modulation. Thermochim Acta 238:277–293CrossRefGoogle Scholar
  76. Yang DQ, Meunier M, Sacher E (2005) The surface modification of nanoporous SiOx thin films with a monofunctional organosiloxane. Appl Surf Sci 252(5):1197–1201CrossRefGoogle Scholar
  77. Yang DQ, Gillet JN, Meunier M et al (2005) Room temperature oxidation kinetics of Si nanoparticles in air, determined by x-ray photoelectron spectroscopy. J Appl Phys 97:024303CrossRefGoogle Scholar
  78. Yun DS, Kim HJ, Yoo JW (2005) Preparation of silica nanospheres: effect of silicon alkoxide and alcohol on silica nanospheres. Bull Korean Chem Soc 26:1927–1928CrossRefGoogle Scholar
  79. Zhang C, Mason R, Stevens GC (2006) Preparation, characterization, and dielectric properties of epoxy and polyethylene nanocomposites. IEEJ Trans Fundam Mater 126:1105–1111CrossRefGoogle Scholar
  80. Zhang C, Stevens GC (2008) The dielectric response of polar and non-polar nanodielectrics. Trans IEEE DEI-15:606–617CrossRefGoogle Scholar
  81. Zou C, Fothergill JC, Rowe SW (2008) The effect of water absorption on the dielectric properties of epoxy nanocomposites. Trans IEEE DEI-15:106–117CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.ScotiaUSA

Personalised recommendations