The Processing of Nanocomposites

  • F. Bellucci
  • D. Fabiani
  • G. C. Montanari
  • L. Testa


Manufacturing techniques can have a significant impact on the dielectric properties of nanostructured materials, sometimes even larger than the effect of the nanofiller itself. Indeed, the choice of the best nanofiller to improve the electric behavior of the final nanocomposite is often frustrated by residual contaminants of the matrix-nanofiller compatibilization process, moisture absorption, nanofiller aggregation, etc. Therefore manufacturing techniques should be tuned to eliminate or limit the spurious effect of defects/contaminants to obtain the desired material properties. In the following, after a comprehensive presentation of the most common nanofillers and compatibilization treatment, attention is paid to the main processing techniques and purification procedures to minimize the effect of contaminants.


Layered Double Hydroxide Filler Particle Imaginary Permittivity Dielectric Bulk Space Charge Accumulation 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Akelah A, Moet M (1996) Polymer-clay nanocomposites: free radical grafting of polystyrene on to organophilic montmorillonite interlayers. J Mater Sci 31:3589–3596Google Scholar
  2. Alexandre M, Dubois P (2000) Polymer-layered silicate nanocomposites: preparation, properties and uses of a new class of materials. Mater Sci Eng R 28:1–63CrossRefGoogle Scholar
  3. Bahr JL, Tour JM (2002) Covalent chemistry of single-wall carbon nanotubes, a review. J Mater Chem 12:1952–1958CrossRefGoogle Scholar
  4. Bauer F, Glasel HJ et al (2003) Trialkoxysilane grafting onto nanoparticles for the preparation of clear coat polyacrylate systems with excellent scratch performance. Prog Org Coatings 47:147–153CrossRefGoogle Scholar
  5. Beari F, Brand M et al (2001) Organofunctional alkoxysilanes in dilute aqueous solution: new accounts on the dynamic structural mutability. J Organomet Chem 625:208CrossRefGoogle Scholar
  6. Becker C, Kutsch B et al (1998) SAXS and TEM investigations on thermoplastic nanocomposites containing functionalized silica nanoparticles. J Sol–Gel Sci Tech 13:499–502Google Scholar
  7. Becker O, Varley R, Simon G (2002) Morphology, thermal relaxations and mechanical properties of layered silicate nanocomposites based upon high-functionality epoxy resins. Polymer 43:4365–4373CrossRefGoogle Scholar
  8. Bergaya F, Theng BKG, Lagaly G (2006) Handbook of clay science. Development in clay science, vol 1. Elsevier, UKGoogle Scholar
  9. Bergman JS, Chen H, Giannelis EP et al (1999) Synthesis and characterization of polyolefin-silicate nanocomposites: a catalyst intercalation and in situ polymerization approach. J Chem Soc Chem Commun 21:2179–2180Google Scholar
  10. Beyer G (2002) Nanocomposites: a new class of flame retardants for polymers. Plast Addit Compound 4(10):22–27CrossRefGoogle Scholar
  11. Bula K, Jesionowski T et al (2007) The effect of filler surface modification and processing conditions on distribution behaviour of silica nanofillers in polyesters. Colloid Polym Sci 285:1267–1273CrossRefGoogle Scholar
  12. Carlino S (1997) The intercalation of carboxylic acids into layered double hydroxides: a critical evaluation and review of the different methods. Solid State Ionics 98:73–81CrossRefGoogle Scholar
  13. Causin V, Marega C et al (2005) Assessing organo-clay dispersion in polymer layered silicate nanocomposites: a SAXS approach. Polymer 46:9533–9537CrossRefGoogle Scholar
  14. Cavani F, Trifiro F, Vaccari V (1991) Hydrotalcite-type anionic clays: preparation, properties and applications. Catal Today 11:173–179CrossRefGoogle Scholar
  15. Chin I-J, Thurn-Albrecht T, Kim H-C et al (2001) On exfoliation of montmorillonite in epoxy. Polymer 42:5947–5952CrossRefGoogle Scholar
  16. Cho JW, Paul DR (2001) Nylon 6 nanocomposites by melt compounding. Polymer 42:1083–1090CrossRefGoogle Scholar
  17. Chujo K (2001) Advanced technology and application of polymer nanocomposite. CMC Press, Japan, pp 1–240Google Scholar
  18. Costa FR, Leuteritz A et al (2008) Intercalation of Mg-Al layered double hydroxide by anionic surfactants: preparation and characterization. Appl Clay Sci 38:153–158CrossRefGoogle Scholar
  19. Costantino U, Montanari F et al (2007) Preparation and characterisation of hydrotalcite/carboxyadamantane intercalation compounds as fillers of polymeric nanocomposites. J Mater Chem 17:1079–1086CrossRefGoogle Scholar
  20. Davidson RS (1998) Exploring the science, technology and applications of U.V and E.B. curing. SITA Technology Ltd., London, UKGoogle Scholar
  21. Di Gianni A, Amerio E et al (2008) Preparation of polymer/clay mineral nanocomposites via dispersion of silanated montmorillonite in a UV curable epoxy matrix. Appl Clay Sci 42:116–124CrossRefGoogle Scholar
  22. Fabiani D, Montanari GC et al (2008) Effect of water adsorption on the dielectric properties of polymer nanocomposites. Proc. IEEE ISEIM 1:510–513Google Scholar
  23. Fabiani D, Montanari GC, Testa L (2009) Effect of water contamination on the electric properties of nanostructured insulating materials. IEEE T Diel Elec Ins 17Google Scholar
  24. Fleming RJ, Ammala A, Lang SB et al (2008) Conductivity and space charge in LDPE containing nano- and micro-sized ZnO particles. Trans IEEE DEI-15:118–126CrossRefGoogle Scholar
  25. Fornes TD, Yoon PJ et al (2001) Nylon 6 nanocomposites: the effect of matrix molecular weight. Polymer 42:9929–9940CrossRefGoogle Scholar
  26. Fornes TD, Yoon PJ, Hunter DL et al (2002) Effect of organoclay structure on nylon 6 nanocomposite morphology and properties. Polymer 43:5915–5933CrossRefGoogle Scholar
  27. Frache A, Monticelli O et al (2008) Preparation of nanocomposites based on PP and PA6 by direct injection molding. Polym Eng Sci 48:2373–2238CrossRefGoogle Scholar
  28. Frost RL, Mendelovici E (2006) Modification of fibrous silicates surfaces with organic derivatives: an infrared spectroscopic study. J Colloid Interface Sci 294:47–52CrossRefGoogle Scholar
  29. Gelfer MY, Song HH et al (2003) Effects of organoclays on morphology and thermal and rheological properties of polystyrene and poly(methyl methacrylate) blends. J Polym Sci Polym Phys 41:44–54CrossRefGoogle Scholar
  30. Giannelis E (1996) Polymer layered silicate nanocomposites. Adv Mater 8:29–35CrossRefGoogle Scholar
  31. Guo Z, Lei K et al (2008) Fabrication and characterization of iron oxide nanoparticles reinforced vinyl-ester resin nanocomposites. Compos Sci Tech 68:1513–1520CrossRefGoogle Scholar
  32. Hong RY, Qian JZ, Cao JX (2006) Synthesis and characterization of PMMA grafted ZnO nanoparticles. Powder Technol 163:160–168CrossRefGoogle Scholar
  33. Hussain F, Hojjati M et al (2006) Review article: polymer-matrix nanocomposites, processing, manufacturing, and application: an overview. J Compos Mater 40:1511–1575CrossRefGoogle Scholar
  34. Imai T, Sawa F, Nakano et al (2006) Effects of nano- and micro-filler mixture on electrical insulation properties of epoxy based composites. Trans IEEE DEI-13: 319–326CrossRefGoogle Scholar
  35. Incarnato L, Scarfato P et al (2004) Rheological behavior of new melt compounded copolyamide nanocomposites. Polymer 45:3487–3496CrossRefGoogle Scholar
  36. Islam MF, Rojas E et al (2003) High weight fraction surfactant solubilization of single-wall carbon nanotubes in water. Nano Lett 3:269–273CrossRefGoogle Scholar
  37. Jiankun L, Yucai K, Zongneng Q, Xiao-Su Y (2001) Study on intercalation and exfoliation behavior of organoclays in epoxy resin. J Polym Sci Polym Phys 39:115–120CrossRefGoogle Scholar
  38. Jin Y-H, Park H-J, Im S-S et al (2002) Polyethylene/clay nanocomposite by in situ exfoliation of montmorillonite during Ziegler-Natta polymerization of ethylene. Macromol Rapid Commun 23:135–140CrossRefGoogle Scholar
  39. Kathi J, Rhee KY (2008) Surface modification of multi-walled carbon nanotubes using 3-aminopropyltriethoxysilane. J Mater Sci 43:33–37CrossRefGoogle Scholar
  40. Ke YC, Long CF, Qi ZN (1999) Crystallization, properties, and crystal and nanoscale morphology of PET-clay nanocomposites. J Appl Polym Sci 71:1139–1146CrossRefGoogle Scholar
  41. Khabashesku VN, Billups WE, Margrave JL (2002) Fluorination of single-wall carbon nanotubes and subsequent derivatization reactions. Acc Chem Res 35:1087–1095CrossRefGoogle Scholar
  42. Koerner H, Misra D, Tan A et al (2006) Montmorillonite-thermoset nanocomposites via cryocompounding. Polymer 47:3426–3435CrossRefGoogle Scholar
  43. Koh HC, Park JS et al (2008) Preparation and gas permeation properties of biodegradable polymer/layered silicate nanocomposite membranes. Desalination 233:201–209CrossRefGoogle Scholar
  44. Koo JH (2006) Polymer nanocomposites: processing, characterization, and applications. McGraw-Hill, New York, NYGoogle Scholar
  45. Kortaberria G, Arruti P et al (2008) Local dynamics in epoxy coatings containing iron oxide nanoparticles by dielectric relaxation spectroscopy. J Appl Polymer Sci 109:3224–3229CrossRefGoogle Scholar
  46. Krishnamoorti R, Giannelis EP (1997) Rheology of end-tethered polymer layered silicate nanocomposites. Macromolecules 30:4097–4102CrossRefGoogle Scholar
  47. Lan T, Pinnavaia TJ (1994) Clay-reinforced epoxy nanocomposites. Chem Mater 6:2216–2219CrossRefGoogle Scholar
  48. Latterini L, Nocchetti M et al (2007) Structural, photophysical, and photochemical characterization of 9-anthracenecarboxylate – Hydrotalcite nanocomposites: evidence of a reversible light-driven reaction. Langmuir 23:12337–12343CrossRefGoogle Scholar
  49. Lee KY, Kim KY, Han WY, Park DH (2008) Thermal, electrical characteristics and morphology of poly(ethylene-co-ethyl acrylate)/CNT nanocomposites. Trans IEEE DEI-15:205–213CrossRefGoogle Scholar
  50. Luque de Castro MD, Garcõa-Ayuso LE (1998) Soxhlet extraction of solid materials: an outdated technique with a promising innovative future. Anal Chim Acta 369:1–10CrossRefGoogle Scholar
  51. Ma D, Akpalu Y et al (2005) Effect of titania nanoparticles on the morphology of low density polyethylene. J Polym Sci B Polym Phys 43:488–497CrossRefGoogle Scholar
  52. Manias E, Touny A, Wu L et al (2001) Polypropylene/montmorillonite nanocomposites. Review of the synthetic routes and materials properties. Chem Mater 13:3516–3523Google Scholar
  53. Montanari GC, Cavallini A et al (2004) Microscopic and nanoscopic EVA composite investigation: electrical properties and effect of purification treatment. Proc IEEE CEIDP 1:318–321Google Scholar
  54. Montanari GC, Fabiani D et al (2004) Modification of electrical properties and performance of EVA and PP insulation through nanostructuration by organophilic silicates. Trans IEEE DEI-11:754–762CrossRefGoogle Scholar
  55. Montanari GC, Motori A et al (2005) Dielectric spectroscopy analysis of EVA-silicate nanocomposite insulating materials. Proc. of IEEE ISEIM 1:245–250Google Scholar
  56. Montanari GC, Palmieri F et al (2006) Polarization processes of nanocomposite silicate-EVA and PP materials. Trans IEEJ 126:1090–1096Google Scholar
  57. Murakami Y, Nemoto M, Okuzumi S et al (2008) DC conduction and electrical breakdown of MgO/LDPE nanocomposite. Trans IEEE DEI-15:33–39CrossRefGoogle Scholar
  58. Nakashima N, Tomonari Y, Murakami H (2002) Water-soluble single-walled carbon nanotubes via noncovalent sidewall-functionalization with a pyrene-carrying ammonium ion. Chem Lett 31:638–639CrossRefGoogle Scholar
  59. Nassar N, Utracki LA, Kamal MR (2005) Melt intercalation in montmorillonite/polystyrene nanocomposites. Int Polym Process 20(4):423–431Google Scholar
  60. Niyogi S, Hamon MA et al (2002) Chemistry of single-walled carbon nanotubes. Acc Chem Res 35:1105–1111CrossRefGoogle Scholar
  61. Nobile MR, Simon GP et al (2007) Rheological and structure investigation of melt mixed multi-walled carbon nanotube/PE composites. Macromol Symp 247:78–87CrossRefGoogle Scholar
  62. Okada A, Usuki A (2006) Twenty years of polymer-clay nanocomposites. Macromol Mater Eng 291:1449–1476CrossRefGoogle Scholar
  63. Okamoto M, Morita S, Kotaka T (2001) Dispersed structure and ionic conductivity of smectic clay/polymer nanocomposites. Polymer 42:2685–2688CrossRefGoogle Scholar
  64. Paul DR, Robeson LM (2008) Polymer nanotechnology: nanocomposites. Polymer 49:3187–3204CrossRefGoogle Scholar
  65. Pavan PC, Crepaldi EL et al (1999) Adsorption of sodium dodecylsulfate on a hydrotalcite-like compound. Effect of temperature, pH and ionic strength. Colloids Surf A154:399–411Google Scholar
  66. Pourabas B, Raeesi V (2005) Preparation of ABS/montmorillonite nanocomposite using a solvent/non-solvent method. Polymer 46:5533–5540CrossRefGoogle Scholar
  67. Pavlidou S, Papaspyridesb CD (2008) A review on polymer-layered silicate nanocomposites. Prog Polym Sci 33:1119–1198CrossRefGoogle Scholar
  68. Prevot V, Forano C, Besse JP (2001) Hybrid derivatives of layered double hydroxides. Appl Clay Sci 18:3–15CrossRefGoogle Scholar
  69. Qian D, Dickey EC, Andrews R, Rantell T (2000) Load transfer and deformation mechanisms in carbon nanotube-polystyrene composites. Appl Phys Lett 76:2868–2680CrossRefGoogle Scholar
  70. Ray SS, Bousima M (2005) Biodegradable polymers and their layered silicate nanocomposites: in greening the 21st century materials world. Prog Mater Sci 50:962–1079CrossRefGoogle Scholar
  71. Rong MZ, Zhang MQ, Ruan WH (2006) Surface modification of nanoscale fillers for improving properties of polymer nanocomposites: a review. Mater Sci Technol 22:787–796CrossRefGoogle Scholar
  72. Sangermano M, Bongiovanni R, Malucelli G, Priola A (2006) New developments in cationic photopolymerization: process and properties. In: Bregg RK (ed) Horizons in polymer research. Nova Science Publisher Inc., New YorkGoogle Scholar
  73. Sepehr M, Utracki LA, Zheng X, Wilkie CA (2005) Polystyrenes with macro-intercalated organoclay. Part I. Compounding and characterization. Polymer 46:11557–11568Google Scholar
  74. Shaffer MSP, Windle AH (1999) Fabrication and characterization of carbon nanotube/poly(vinyl alcohol) composites. Adv Mater 11:937–947CrossRefGoogle Scholar
  75. Shi X, Hudson JL et al (2005) Rheological behaviour and mechanical characterization of injectable poly(propylene fumarate)/single-walled carbon nanotube composites for bone tissue engineering. Nanotechnology 16:S531–S538CrossRefGoogle Scholar
  76. Sinha Ray S, Okamoto M (2003) Polymer/layered silicate nanocomposites: a review from preparation to processing. Prog Polym Sci 28:1539–1641CrossRefGoogle Scholar
  77. Solomon MJ, Almusallam AS, Seefeldt KF et al (2001) Rheology of polypropylene/clay hybrid materials. Macromolecules 34:1864–1872CrossRefGoogle Scholar
  78. Stéphan C, Nguyen TP et al (2000) Characterization of singlewalled carbon nanotubes-PMMA composites. Synth Met 108:139–149CrossRefGoogle Scholar
  79. Sun T, Garces JM (2002) High-performance polypropylene-clay nanocomposites by in situ polymerization with metallocene/clay catalysts. Adv Mater 14:128–130CrossRefGoogle Scholar
  80. Tanaka T, Montanari GC, Mulhaupt R (2004) Polymer nanocomposites as dielectrics and electrical insulation-perspectives for processing technologies, material characterization and future applications. Trans IEEE DEI-11:763–784Google Scholar
  81. Tartaglione G, Tabuani D, Camino G (2008) Thermal and morphological characterisation of organically modified sepiolite. Microporous Mesoporous Mater 107:161–168CrossRefGoogle Scholar
  82. Tasis D, Tagmatarchis N et al (2006) Chemistry of carbon nanotube. Chem Rev 106:1105–1115CrossRefGoogle Scholar
  83. Thostenson ET, Ren Z, Chou TW (2001) Advances in the science and technology of carbon nanotubes and their composites: a review. Compos Sci Technol 61:1899–1912CrossRefGoogle Scholar
  84. Tudor J, Willington L, O’Hare D, Royan B (1996) Intercalation of catalytically active metal complexes in phyllosilicates and their application as propene polymerization catalyst. Chem Commun 17:2031–2032CrossRefGoogle Scholar
  85. Usuki A, Kawasumi M, Kojima Y et al (1993) Swelling behavior of montmorillonite cation exchanged for ω-amino acid by ε-caprolactam. J Mater Res 8:1174–1178CrossRefGoogle Scholar
  86. Utracki LA (2008) Polymeric nanocomposites: compounding and performance. J Nanosci Nanotechnol 8:1582–1596CrossRefGoogle Scholar
  87. Vaia RA, Liu W, Koerner H (2003) Analysis of small-angle scattering of suspensions of organically modified montmorillonite: implications to phase behavior of polymer. J Polym Sci Polym Phys 41:3214–3236CrossRefGoogle Scholar
  88. Valentini L, Puglia D et al (2008) Use of plasma fluorinated single-walled carbon nanotubes for the preparation of nanocomposites with epoxy matrix. Compos Sci Tech 68:1008–1014CrossRefGoogle Scholar
  89. Valentino O, Sarno M et al (2008) Influence of the polymer structure and nanotube concentration on the conductivity and rheological properties of polyethylene/CNT composites. Phys E: Low-Dim Sys Nanostruct 40:2440–2445CrossRefGoogle Scholar
  90. Vermogen A, Masenelli-Varlot K et al (2005) Evaluation of the structure and dispersion in polymer-layered silicate nanocomposites. Macromolecules 38:9661–9669CrossRefGoogle Scholar
  91. Wagener R, Reisinger TJG (2003) A rheological method to compare the degree of exfoliation of nanocomposites. Polymer 44:7513–7518CrossRefGoogle Scholar
  92. Wang B, Zhang H et al (2005) Surface modification of layered double hydroxides and incorporation of hydrophobic organic compounds. Mater Chem Phys 92:190–196CrossRefGoogle Scholar
  93. Wang K, Liang S et al (2004) The interplay of thermodynamics and shear on the dispersion of polymer nanocomposites. Polymer 45:7953–7960CrossRefGoogle Scholar
  94. Yoonessi M, Toghiani H et al (2005) Clay delamination in clay/poly(dicyclopentadiene) nanocomposites quantified by small angle neutron scattering and high-resolution transmission electron microscopy. Macromolecules 38:818–831CrossRefGoogle Scholar
  95. You Y, Zhao H, Vance GF (2002) Hybrid organic-inorganic derivatives of layered double hydroxides and dodecylbenzenesulfonate: preparation and adsorption characteristics. J Mater Chem 12:907–912CrossRefGoogle Scholar
  96. Zanetti M, Camino G et al (2001) Synthesis and thermal behaviour of layered silicate – EVA nanocomposites. Polymer 42:4501–4507CrossRefGoogle Scholar
  97. Zhang F, Fuqiang Z et al (2005) Synthesis and properties of sepiolite/poly (acrylic acid-co-acrylamide) nanocomposites. Polym Bull 55:419–428CrossRefGoogle Scholar
  98. Zhao J, Morgan AB, Harris JD (2005) Rheological characterization of polystyrene-clay nanocomposites to compare the degree of exfoliation and dispersion. Polymer 46:8641–8660CrossRefGoogle Scholar
  99. Zhu J, Yuan P et al (2008) In situ synthesis of surfactant/silane-modified hydrotalcites. J Colloid Interface Sci 319:498–504CrossRefGoogle Scholar
  100. Zou C, Fothergill JC, Rowe SW (2008) The effect of water absorption on the dielectric properties of epoxy nanocomposites. Trans IEEE DEI-15:106–117CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • F. Bellucci
    • 1
  • D. Fabiani
    • 2
  • G. C. Montanari
    • 2
  • L. Testa
    • 3
  1. 1.Politecnico di TorinoTorinoItaly
  2. 2.Università di BolognaBolognaItaly
  3. 3.Techimp Systems SrlZola PredosaItaly

Personalised recommendations