Skip to main content

Industrial Applications Perspective of Nanodielectrics

  • Chapter
  • First Online:

Abstract

The field of nanodielectrics has had a significant impact on voltage endurance characteristics of electrical insulation. Improved time-to-breakdown behavior, resulting in reduced aging of insulation, and enhanced thermal stability are of considerable importance in industrial applications. This chapter discusses several specific aspects of nanodielectrics and their role in the future of electrical insulation and dielectric sciences.

This submission was sponsored by a contractor of the United States Government under contract DE-AC05-00OR22725 with the United States Department of Energy. The United States Government retains, and the publisher, by accepting this submission for publication, acknowledges that the United States Government retains, a nonexclusive, paid-up, irrevocable, worldwide license to publish or reproduce the published form of this submission, or allow others to do so, for United States Government purposes.

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   149.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   199.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   219.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Alapati S, Thomas MJ (2008) Electrical treeing in polymer nanocomposites. Fifteenth National Power Systems Conference (NPSC), IIT Bombay, pp 351–355

    Google Scholar 

  2. Althues H, Henle J, Kaskel S (2007) Functional inorganic nanofillers for transparent polymers. Chem Soc Rev 36:1454–1465

    Article  Google Scholar 

  3. An L, Pan YZ, Shen XW et al (2008) Rod-like attapulgite/polyimide nanocomposites with simultaneously improved strength, toughness, thermal stability and related mechanisms. J Mater Chem 18(41):4928–4941

    Article  Google Scholar 

  4. Benedetto A, Viel P, Noel S et al (2007) Carbon nanotubes/fluorinated polymers nanocomposite thin films for electrical contacts lubrication. Surf Sci 601(18):3687–3692

    Article  Google Scholar 

  5. Berberich LJ, Dakin TW (1956) Guiding principles in the thermal evaluation of electrical insulation, power apparatus and systems, Part III. Trans Am Inst Electr Eng 75(3):752–761

    Google Scholar 

  6. Cao Y, Irwin PC (2003) The electrical conduction in polyimide nanocomposites. Conf on Elect Ins and Diel Phen, 116–119

    Google Scholar 

  7. Cao Y, Irwin PC, Younsi KY (2004) The future of nanodielectrics in the electrical power industry. Trans IEEE DEI-11(5):797–807

    Google Scholar 

  8. Ciebien JF, Clay RT, Sohn BH et al (1998) Brief review of metal nanoclusters in block copolymer films. New J Chem 22:685–691

    Article  Google Scholar 

  9. Dakin TW (1978) High voltage insulation applications. Trans IEEE E1-13(4):318–326

    Google Scholar 

  10. Dale SJ, Wolf SM, Schneider TR (eds) (1990a) Energy applications on high-temperature superconductivity, vol 1. US Dept Energy and EPRI

    Google Scholar 

  11. Dale SJ, Wolf SM, Schneider TR (eds) (1990b) Energy applications on high-temperature superconductivity, vol 2. US Dept Energy and EPRI

    Google Scholar 

  12. Dang ZM, Lin YQ, Xu HP et al (2008) Fabrication and dielectric characterization of advanced BaTiO3/polyimide nanocomposite films with high thermal stability. Adv Funct Mater 18(10):1509–1517

    Article  Google Scholar 

  13. Ding H-Z, Varlow BR (2004) Effect of nano-fillers on electrical treeing in epoxy resin subjected to AC voltage. Conf on Electr Insul and Dielectr Phen: 332–335

    Google Scholar 

  14. Feenstra J, Sodano HA (2008) Enhanced active piezoelectric 0-3 nanocomposites fabricated through electrospun nanowires. J Appl Phys 103(12):124108

    Article  Google Scholar 

  15. Forsyth EB (1993) The aging of electrical insulation at cryogenic temperatures. Trans IEEE EI-28(5):845–854

    Google Scholar 

  16. Fothergill JC, Nelson JK, Fu M (2004) Dielectric properties of epoxy nanocomposites containing TiO2, Al2O3 and ZnO fillers. Conf on Elect Ins and Diel Phen: 406–409

    Google Scholar 

  17. Frormann L, Iqbal A, Abdullah SA (2008) Thermo-viscoelastic behavior of PCNF-filled polypropylene nanocomposites. J Appl Polym Sci 107(4):2695–2703

    Article  Google Scholar 

  18. Fukushima Y, Inagaki S J (1987) Synthesis of an intercalated compound of montmorillonite and 6-polyamide. J Inclusion Phenom 5:473–482

    Article  Google Scholar 

  19. Gerhold J (1998) Properties of cryogenic insulants. Cryogenics 38:1063–1081

    Article  Google Scholar 

  20. Gerhold J (2002) Cryogenic liquids – A prospective insulation basis for future power equipment. Trans IEEE DEI-9(1):68–75

    Google Scholar 

  21. Gerhold J, Tanaka T (1998) Cryogenic electrical insulation of superconducting power transmission lines: transfer of experience learned from metal superconductors to high critical temperature superconductors. Cryogenics 38:1173–1188

    Article  Google Scholar 

  22. Gornicka B, Czolowska B, Mazurek B et al (2007) Varnishes modified with nanoparticles for use in electrical insulation. Polimery 52(5):367–370

    Google Scholar 

  23. Hayakawa N, Okubo H (2008) Lifetime characteristics of nanocomposite enameled wire under surge voltage application. IEEE Electr Insul Mag 24(2):22–27

    Article  Google Scholar 

  24. Hong JI, Schadler LS, Siegel RW et al (2003) Rescaled electrical properties of ZnO/low density polyethylene nanocomposites. Appl Phys Lett 82(12):1956–1958

    Article  Google Scholar 

  25. Huang XY, Jiang PK, Kim CN, Ke QQ (2007) Polymer nanocomposite dielectrics. Prog Chem 19(11):1776–1782

    Google Scholar 

  26. Huang XY, Jiang PK, Kim CN et al (2008) Preparation, microstructure and properties of polyethylene aluminum nanocomposite dielectrics. Compos Sci Technol 68(9):2134–2140

    Article  Google Scholar 

  27. Huang C, Zhang QM, Li JY et al (2005) Colossal dielectric and electromechanical responses in self-assembled polymeric nanocomposites. Appl Phys Lett 87(18):182901

    Article  Google Scholar 

  28. Imai T, Sawa F, Nakano T et al (2006) Effects of nano- and micro-filler mixture on electrical insulation properties of epoxy based composites. Trans IEEE DEI-13(2):319–326

    Google Scholar 

  29. Imai T, Sawa F, Nakano T et al (2005) Insulation properties of nano- and micro-filler mixture composite. Conf on Elect Ins and Diel Phen: 171–174

    Google Scholar 

  30. James DR, Sauers I (2004) Electrical insulation materials for superconducting coil applications. IEEE Power Engineering Society General Meeting, vol 2, pp 2062–2064

    Google Scholar 

  31. Jiang MJ, Dang ZM, Xu HP (2007) Enhanced electrical conductivity in chemically modified carbon nanotube/methylvinyl silicone rubber nanocomposite. Eur Polym J 43(12):4924–4930

    Article  Google Scholar 

  32. Jiaqi L, Caixia L, Zhiba Z et al (2006) Electroluminescence in both original and nanoparticle doped polyimide films. 8th International Conference on Properties and Applications of Dielectric Materials, pp 175–178

    Google Scholar 

  33. Kim P, Jones SC, Hotchkiss PJ et al (2007a) Phosphonic acid-modified barium titanate polymer nanocomposites with high permittivity and dielectric strength. Adv Mater 19(7):1001–1005

    Article  Google Scholar 

  34. Kim CH, Lim HO, Chung I et al (2007b) Actuation behavior of waterborne polyurethane/ conductive filler nanocomposite electrode. Compos Interfaces 14(5–6):477–491

    Article  Google Scholar 

  35. Kojima Y, Usuki A, Kawasumi M et al (1993) Mechanical-properties of nylon-6 clay hybrid. J Mater Res 8:1185–1189

    Article  Google Scholar 

  36. Kojima Y, Usuki A, Kawasumi M et al (1993) Synthesis of nylon 6-clay hybrid by montmorillonite intercalated with caprolactam. J Polym Sci A Polym Chem 31(4):983–986

    Article  Google Scholar 

  37. Koo JH (2006) Polymer nanocomposites: processing, characterization and applications. McGraw-Hill, New York

    Google Scholar 

  38. Kozako M, Fuse N, Ohki Y et al (2004) Surface degradation of polyamide nanocomposites caused by partial discharges using IEC(b) electrodes. Trans IEEE DEI-11(5):833–839

    Google Scholar 

  39. Kozako M, Kuge S, Imai T et al (2005) Surface erosion due to partial discharges on several kinds of epoxy nanocomposites. Conf on Elect Insul and Diel Phen: 162–165

    Google Scholar 

  40. Kruisa FE, Fissana H, Peleda A (1998) Synthesis of nanoparticles in the gas phase for electronic, optical and magnetic applications – A review. J Aerosol Sci 29(5–6):511–535

    Article  Google Scholar 

  41. Lee DY, Kim KJ, Heo S et al (2006), Nakamura T, Yamashita K, Neo M (eds) Application of an equivalent circuit model for ionic polymer-metal composite (IPMC) bending actuator loaded with multiwalled carbon nanotube (M-CNT). Key Eng Mater Bioceramics 309–311:593–596

    Article  Google Scholar 

  42. Lewis TJ (1994) Nanometric dielectrics. Trans IEEE DEI-1:812–825

    Google Scholar 

  43. Lewis TJ (2006) Nano-composite dielectrics: the dielectric nature of the nanoparticle environment. IEEJ Trans Fundam Mater 126(11):1020–1030

    Article  Google Scholar 

  44. Li C, Tang AB, Zou YB et al (2005a) Preparation and dielectric properties of polyarylene ether nitriles/TiO2 nanocomposite film. Mater Lett 59(1):59–63

    Article  Google Scholar 

  45. Li L, Takahashi A, Hao JJ et al (2005b) Novel polymer-ceramic nanocomposite based on new concepts for embedded capacitor application (I). Trans IEEE CPT-28(4):754–759

    Google Scholar 

  46. Li JY, Zhang L, Ducharme S (2007) Electric energy density of dielectric nanocomposites. Appl Phys Lett 90(13):132901

    Article  Google Scholar 

  47. Lu SG, Li BR, Mak CL et al (2004) Preparation, properties and application prospects of ferroelectric nanomaterials. J Inorg Mater 19(6):1231–1239

    Google Scholar 

  48. Ma D, Hugener T, Siegel RW et al (2005a) Influence of nanoparticle surface modification on the electrical behavior of polyethylene nanocomposites. Nanotechnology 16:724–731

    Article  Google Scholar 

  49. Ma D, Akpalu YA, Li Y et al (2005b) Effect of titania nanoparticles on the morphology of low density polyethylene. J Polym Sci B Polym Phys 43(5):463–533

    Article  Google Scholar 

  50. Masayuki N (2004) Cryogenic electrical insulation and its advantage. IEEJ Trans Fundam Mater 124(9):759–762

    Article  Google Scholar 

  51. Moreschi LF, Rossi P, Agostini M et al (2003) Full scale electrical insulation coating development. 22nd symposium on fusion technology fusion engineering and design, vol 69, no 1–4, pp 303–307

    Google Scholar 

  52. Nakamura Y, Inano H, Hiroshima S et al (2008) Partial discharge resistant aging mechanism of nanocomposite enamel wires under repetitive surge voltage condition. Conf on Elect Insul and Diel Phen: 375–378

    Google Scholar 

  53. Nelson JK, Fothergill JC (2004) Internal charge behaviour of nanocomposites. Nanotechnology 15:586–595

    Article  Google Scholar 

  54. Oh J, Kozlov ME, Kim BG et al (2008) Preparation and electrochemical characterization of porous SWNT-PPy nanocomposite sheets for supercapacitor applications. Synth Met 158(15):638–64

    Article  Google Scholar 

  55. Okubo H, Hayakawa N, Montanari GC (2007a) Technical development on partial discharge measurement and electrical insulation techniques for low voltage motors driven by voltage inverters. Trans IEEE DEI-14(6):1516–1530

    Google Scholar 

  56. Okubo H, Nakamura Y, Inano H et al (2007b) Lifetime characteristics of nanocomposite enameled wire under surge voltage application. Conf on Elect Ins and Diel Phen: 13–16

    Google Scholar 

  57. Panwar V, Mehra RM (2008) Study of electrical and dielectric properties of styrene-acrylonitrile/graphite sheets composites. Eur Polym J 44(7):2367–2375

    Article  Google Scholar 

  58. Ramirez I, Jayaram S, Cherney EA et al (2009) Erosion resistance and mechanical properties of silicone nanocomposite insulation. Trans IEEE DEI-16(1):52–59

    Google Scholar 

  59. Paquette JW, Kim KJ, Nam JD et al (2003) An equivalent circuit model for ionic polymer-metal composites and their performance improvement by a clay-based polymer nanocomposite technique. J Intell Mater Syst Struct 14(10):633–642

    Article  Google Scholar 

  60. Reddy CC, Ramu TS (2008) Polymer nanocomposites as insulation for HVDC cables – Investigations on the thermal breakdown. Trans IEEE DEI-15(1):221–227

    Google Scholar 

  61. Roy M, Nelson JK, MacCrone RK et al (2007) Candidate mechanisms controlling the electrical characteristics of silica/XLPE nanodielectrics. J Mater Sci 42(11):3789–3799

    Article  Google Scholar 

  62. Roy M, Nelson JK, MacCrone RK et al (2005) Polymer nanocomposite dielectrics – The role of the interface. Trans IEEE DEI-12(4):629–643

    Google Scholar 

  63. Saeed MB, Zhan MS (2006) Adhesive and mechanical properties of nanoparticle filled thermoplastic polyimide dielectric films for microelectronics packaging. Int Conf Emerging Techn ICET ’06: 342–347

    Google Scholar 

  64. Sauers I, James DR, Ellis AR et al (2004) High voltage studies of dielectric materials for HTS power equipment. Trans IEEE DEI-9(6):922–931

    Google Scholar 

  65. Schneider TR (1991) Energy applications of superconductivity. Annu Rev Energy Environ 16:533–555

    Article  Google Scholar 

  66. Schwenterly SW, McConnell BW, Demko JA et al (1999) Performance of a 1-MVA HTS demonstration transformer. Trans IEEE AS-9(2):680–684

    Google Scholar 

  67. Schwenterly SW, Mehta SP, Walker MS et al (2002) Development of HTS power transformers for the 21st century: Waukesha Electric Systems/IGC-SuperPower/RG&E/ORNL SPI collaboration. Physica C 382(1):1–6

    Article  Google Scholar 

  68. Simoes R, Silva J, Vaia R et al (2009) Low percolation transitions in carbon nanotube networks dispersed in a polymer matrix: dielectric properties, simulations and experiments. Nanotechnology 20(3):035703

    Article  Google Scholar 

  69. Shi JL, Hua ZL, Zhang LX (2004) Nanocomposites from ordered mesoporous materials. J Mater Chem 14:795–806

    Article  Google Scholar 

  70. Smith RC, Liang C, Landry M et al (2008) The mechanisms leading to the useful electrical properties of polymer nanodielectrics. Trans IEEE DEI-15(1):187–196

    Google Scholar 

  71. Srivastava NK, Mehra RM (2008) Study of structural, electrical, and dielectric properties of polystyrene/foliated graphite nanocomposite developed via in situ polymerization. J Appl Polym Sci 109(6):3991–3999

    Article  Google Scholar 

  72. Tagami N, Okada M, Hirai N et al (2008) Dielectric properties of epoxy/clay nanocomposites – Effects of curing agent and cay dispersion method. Trans IEEE DEI-15(1):24–32

    Google Scholar 

  73. Takala M, Karttunen M, Pelto J et al (2008a) Thermal, mechanical and dielectric properties of nanostructured epoxy-polyhedral oli-gomeric silsesquioxane composites. Trans IEEE DEI-15(5):1224–1235

    Google Scholar 

  74. Takala M, Karttunen M, Salovaara, P et al (2008b) Dielectric properties of nanostructured polypropylene-polyhedral oligomeric silsesqui-oxane compounds. Trans IEEE DEI-15(1):40–51

    Google Scholar 

  75. Takezawa Y, Akatsuka M, Farren C (2003) High thermal conductive epoxy resins with controlled high order structure. Proceedings of the 7th international conference on properties and applications of dielectric materials, vol 3, pp 1146–1149

    Google Scholar 

  76. Tan Q, Irwin P, Cao Y (2006) Advanced dielectrics for capacitors. IEEJ Trans Fundam Mater 126(11):1153–1159

    Article  Google Scholar 

  77. Tanaka T, Matsuo Y, Uchida K (2008a) Partial discharge endurance of Epoxy/SiC nanocomposite. Conf on Elect Ins and Diel Phen, pp 13–16

    Google Scholar 

  78. Tanaka T, Ohki Y, Ochi M et al (2008b) Enhanced partial discharge resistance of epoxy/clay nanocomposite prepared by newly developed organic modification and solubilization methods. Trans IEEE DEI-15(1):81–89

    Google Scholar 

  79. Tomer V, Randall CA (2008) High field dielectric properties of anisotropic polymer-ceramic composites. J Appl Phys 104(7):074106

    Article  Google Scholar 

  80. Tuncer E, Gubanski SM (2000) Electrical properties of silicone rubber. J Phys Condens Matter 12(8):1873–1897

    Article  Google Scholar 

  81. Tuncer E, Sauers I, James DR et al (2007a) Electrical properties of epoxy resin based nanocomposites. Nanotechnology 18(2):025703

    Article  Google Scholar 

  82. Tuncer E, Rondinone AJ, Woodward J et al (2009) Cobalt iron-oxide nanoparticle modified poly(methyl methacrylate) nanodielectrics. Appl Phys A 94(4):843–852

    Article  Google Scholar 

  83. Tuncer E, Sauers I, James DR et al (2007b) Enhancement of dielectric strength in nanocomposites. Nanotechnology 18(32):325704

    Article  Google Scholar 

  84. Tuncer E, Sauers I, James DR et al (2008) Nanodielectric system for cryogenic applications: barium titanate filled polyvinyl alcohol. Trans IEEE DEI-15(1):236–242

    Google Scholar 

  85. Ul Haq S, Jayaram SH, Cherney EA (2007a) Evaluation of medium voltage enameled wire exposed to fast repetitive voltage pulses. Trans IEEE DEI-14(1):194–203

    Google Scholar 

  86. Ul Haq S, Jayaram SH, Cherney EA (2007b) Performance of nanofillers in medium voltage magnet wire insulation under high frequency applications. Trans IEEE DEI-14(2):417–426

    Google Scholar 

  87. Usuki A, Koiwai A, Kojima Y et al (1995) Interaction of nylon-6 clay surface and mechanical-properties of nylon-6 clay hybrid. J Appl Polym Sci 55:119–123

    Article  Google Scholar 

  88. Usuki A, Kojima Y, Kawasumi M et al (1993a) Synthesis of nylon-6 clay hybrid. J Mater Res 8:1179–1184

    Article  Google Scholar 

  89. Usuki A, Kawasumi M, Kojima Y et al (1993b) Swelling behavior of montmorillonite cation exchanged for ω-amino acids by ε-caprolactam. J Mater Res 8(5):1174–1178

    Article  Google Scholar 

  90. Wang JW, Wang Y, Wang F et al (2009) A large enhancement in dielectric properties of poly(vinylidene fluoride) based all-organic nanocomposite. Polymer 50(2):679–684

    Article  Google Scholar 

  91. Wang CC, Song JF, Bao HM et al (2008) Enhancement of electrical properties of ferroelectric polymers by polyaniline nanofibers with controllable conductivities. Adv Funct Mater 18(8):1299–1306

    Article  Google Scholar 

  92. Weber CS, Reis CT, Hazelton DW et al (2005) Design and operational testing of a 5/10-MVA HTS utility power transformer. Trans IEEE AS-15(2):2210–2213

    Google Scholar 

  93. Winey KI, Vaia RA (2007) Polymer nanocomposites. MRS Bull 32:315–319

    Google Scholar 

  94. Xie W, Xie R, Pan WP et al (2002) Thermal stability of quaternary phosphonium modified montmorillonite. Chem Mater 14(11):4837–4845

    Article  Google Scholar 

  95. Xiong J, Liu Y, Yang X et al (2004) Thermal and mechanical properties of polyurethane/ montmorillonite nanocomposites based on a novel reactive modifier. Polym Degrad Stab 86(3):549–555

    Article  Google Scholar 

  96. Xiong J, Zheng Z, Jiang H et al (2007) Reinforcement of polyurethane composites with an organically modified montmorillonite. Compos A Appl Sci Manuf 38(1):132–137

    Article  Google Scholar 

  97. Zhang MY, Zeng SJ, Dong TQ et al (2007) Synthesis and characterization of polyimide/silica nanocomposite films. IEEE International Conference on Solid Dielectrics ICSD’07, pp 357–359

    Google Scholar 

  98. Zhou H, Fan Y, Lei Q (2006) Synthesis and characterization of corona-resistant polyimide/alumina hybrid films. 8th international conference on properties and applications of dielectric materials, pp 736–738

    Google Scholar 

Download references

Acknowledgment

The valuable assistance of Mrs. Julia Wignall is highly appreciated in preparation of this manuscript.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Enis Tuncer .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Tuncer, E., Sauers, I. (2010). Industrial Applications Perspective of Nanodielectrics. In: Nelson, J. (eds) Dielectric Polymer Nanocomposites. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-1591-7_11

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-1591-7_11

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-1590-0

  • Online ISBN: 978-1-4419-1591-7

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics