Survival Analysis

  • Lawrence M. Friedman
  • Curt D. Furberg
  • David L. DeMets
Chapter

Abstract

This chapter reviews some of the fundamental concepts and basic methods in survival analysis. Frequently, event rates such as mortality or occurrence of nonfatal myocardial infarction are selected as primary response variables. The analysis of such event rates in two groups could employ the chi-square statistic or the equivalent normal statistic for the comparison of two proportions. However, when the length of observation is different for each participant, estimating an event rate is more complicated. Furthermore, simple comparison of event rates between two groups is not necessarily the most informative type of analysis. For example, the 5-year survival for two groups may be nearly identical, but the survival rates may be quite different at various times during the 5 years. This is illustrated by the survival curves in Fig. 15.1. This figure shows survival probability on the vertical axis and time on the horizontal axis. For Group A, the survival rate (or 1 − the mortality rate) declines steadily over the 5 years of observation. For Group B, however, the decline in the survival rate is rapid during the first year and then levels off. Obviously, the survival experience of the two groups is not the same although the mortality rate at 5 years is nearly the same. If only the 5-year survival rate is considered, Group A and Group B appear equivalent. Curves like these might reasonably be expected in a trial of surgical versus medical intervention, where surgery might carry a high initial operative mortality.

Keywords

Covariance Stratification 

References

  1. 1.
    Brown BW, Hollander M. Statistics: A Biomedical Introduction. New York: John Wiley and Sons, 1977.CrossRefGoogle Scholar
  2. 2.
    Armitage P. Statistical Methods in Medical Research. New York: John Wiley and Sons, 1977.Google Scholar
  3. 3.
    Breslow N. Comparison of survival curves. In Buyse B, Staquet M, Sylvester R (eds). The Practice of Clinical Trials in Cancer. Oxford: Oxford University Press, 1982.Google Scholar
  4. 4.
    Altman DG. Practical Statistics for Medical Research. New York: Chapman and Hall, 1991, pp. 383–392.Google Scholar
  5. 5.
    Woolson R. Statistical Methods for the Analysis of Biomedical Data. New York: John Wiley and Sons, 1987.Google Scholar
  6. 6.
    Fisher L, VanBelle G. Biostatistics: A Methodology for the Health Sciences. New York: John Wiley and Sons, 1983.Google Scholar
  7. 7.
    Crowley J, Breslow N. Statistical analysis of survival data. Annu Rev Public Health 1984;5:385–411.CrossRefGoogle Scholar
  8. 8.
    Kalbfleisch JD, Prentice RL. The Statistical Analysis of Failure Time Data. New York: John Wiley and Sons, 1980.MATHGoogle Scholar
  9. 9.
    Miller RG, Jr. Survival Analysis. New York: John Wiley and Sons, 1981.MATHGoogle Scholar
  10. 10.
    Cox DR, Oakes D. The Analysis of Survival Data. New York: Chapman and Hall, 1984.Google Scholar
  11. 11.
    Fleming T, Harrington D. Counting Processes and Survival Analysis. New York: John Wiley and Sons, 1991.Google Scholar
  12. 12.
    Kaplan E, Meier P. Nonparametric estimation from incomplete observations. J Am Stat Assoc 1958;53:457–481.CrossRefMATHMathSciNetGoogle Scholar
  13. 13.
    Cutler S, Ederer F. Maximum utilization of the lifetable method in analyzing survival. J Chronic Dis 1958;8:699–712.CrossRefGoogle Scholar
  14. 14.
    Greenwood M. The natural duration of cancer. Rep Publ Health Med Subj 1926;33:1–26.Google Scholar
  15. 15.
    Thomas DG, Breslow N, Gart J. Trend and homogeneity analysis of proportions and life table data. Comput Biomed Res 1977;10:373–381.CrossRefGoogle Scholar
  16. 16.
    Nelson W. Hazard plotting for incomplete failure data. J Qual Technol 1969;1:27–52.Google Scholar
  17. 17.
    Brookmeyer R, Crowley J. A confidence interval for the median survival time. Biometrics 1982;38:29–42.CrossRefMATHGoogle Scholar
  18. 18.
    Gehan E. A generalized Wilcoxon test for comparing arbitrarily single censored samples. Biometrika 1965;52:203–223.MATHMathSciNetGoogle Scholar
  19. 19.
    Mantel N. Evaluation of survival data and two new rank order statistics arising in its consideration. Cancer Chemother Rep 1966;50:163–170.Google Scholar
  20. 20.
    Cochran W. Some methods for strengthening the common χ 2 tests. Biometrics 1954;10:417–451.CrossRefMATHMathSciNetGoogle Scholar
  21. 21.
    Mantel N, Haenszel W. Statistical aspects of the analysis of data from retrospective studies of disease. J Natl Cancer Inst 1959;22:719–748.Google Scholar
  22. 22.
    Peto R, Pike MC. Conservatism in the approximation Σ(0 − E)2/E in the logrank test for survival data or tumor incidence data. Biometrics 1973;29:579–584.CrossRefMathSciNetGoogle Scholar
  23. 23.
    Crowley J, Breslow N. Remarks on the conservatism of Σ(0 − E)2/E in survival data. Biometrics 1975;31:957–961.CrossRefMATHGoogle Scholar
  24. 24.
    Mantel N. Ranking procedures for arbitrarily restricted observations. Biometrics 1967;23:65–78.CrossRefGoogle Scholar
  25. 25.
    Breslow N. A generalized Kruskal–Wallis test for comparing K samples subject to unequal patterns of censorship. Biometrika 1970;57:579–594.CrossRefMATHGoogle Scholar
  26. 26.
    Peto R, Peto J. Asymptotically efficient rank invariant test procedures. J R Stat Soc SerA 1972;135:185–207.CrossRefGoogle Scholar
  27. 27.
    Tarone R, Ware J. On distribution-free tests for equality of survival distributions. Biometrika 1977;64:156–160.CrossRefMATHMathSciNetGoogle Scholar
  28. 28.
    Oakes D. The asymptotic information in censored survival data. Biometrika 1977;64:441–448.CrossRefMATHMathSciNetGoogle Scholar
  29. 29.
    Prentice RL. Linear rank tests with right censored data. Biometrika 1978;65:167–179.CrossRefMATHMathSciNetGoogle Scholar
  30. 30.
    Schoenfeld D. The asymptotic properties of non-parametric tests for comparing survival distributions. Biometrika 1981;68:316–319.CrossRefMathSciNetGoogle Scholar
  31. 31.
    Leurgans SL. Three classes of censored data rank tests: strengths and weaknesses under censoring. Biometrika 1983;70:651–658.CrossRefMATHMathSciNetGoogle Scholar
  32. 32.
    Harrington DP, Fleming TR. A class of rank test procedures for censored survival data. Biometrika 1982;69:553–566.CrossRefMATHMathSciNetGoogle Scholar
  33. 33.
    Simon R. Confidence intervals for reporting results of clinical trials. Ann Intern Med 1986;105:429–435.CrossRefGoogle Scholar
  34. 34.
    Cox DR. Regression models and life tables. J R Stat Soc Series B Stat Methodol 1972;34:187–202.MATHGoogle Scholar
  35. 35.
    Zelen M. Application of exponential models to problems in cancer research. J R Stat Soc Ser A 1966;129:368–398.CrossRefGoogle Scholar
  36. 36.
    Feigl P, Zelen M. Estimation of exponential survival probabilities with concomitant information. Biometrics 1965;21:826–838.CrossRefGoogle Scholar
  37. 37.
    Prentice RL, Kalbfleisch JD. Hazard rate models with covariates. Biometrics 1979;35:25–39.CrossRefMATHMathSciNetGoogle Scholar
  38. 38.
    Kalbfleisch JD, Prentice RL. Marginal likelihoods based on Cox’s regression and life model. Biometrika 1973;60:267–278.CrossRefMATHMathSciNetGoogle Scholar
  39. 39.
    Breslow N. Covariance analysis of censored survival data. Biometrics 1974;30:89–99.CrossRefGoogle Scholar
  40. 40.
    Breslow N. Analysis of survival data under the proportional hazards model. Int Stat Rev 1975;43:45–58.CrossRefMATHGoogle Scholar
  41. 41.
    Kay R. Proportional hazard regression models and the analysis of censored survival data. J R Stat Soc Ser C Appl Stat 1977;26:227–237.Google Scholar
  42. 42.
    Prentice RL, Gloeckler LA. Regression analysis of grouped survival data with application to breast cancer. Biometrics 1978;34:57–67.CrossRefMATHGoogle Scholar
  43. 43.
    Efron B. The efficiency of Cox’s likelihood function for censored data. J Am Stat Assoc 1977;72:557–565.CrossRefMATHMathSciNetGoogle Scholar
  44. 44.
    Tsiatis AA. A large sample study of Cox’s regression model. Ann Stat 1981;9:93–108.CrossRefMATHMathSciNetGoogle Scholar
  45. 45.
    Schoenfeld D. Chi-squared goodness-of-fit tests for the proportional hazards regression model. Biometrika 1980;67:145–153.CrossRefMATHMathSciNetGoogle Scholar
  46. 46.
    Storer BE, Crowley J. Diagnostics for Cox regression and general conditional likelihoods. J Am Stat Assoc 1985;80:139–147.CrossRefMathSciNetGoogle Scholar
  47. 47.
    Pocock SJ, Gore SM, Kerr GR. Long term survival analysis: the curability of breast cancer. Stat Med 1982;1:93–104.CrossRefGoogle Scholar

Copyright information

© Springer New York 2010

Authors and Affiliations

  • Lawrence M. Friedman
    • 1
  • Curt D. Furberg
    • 2
  • David L. DeMets
    • 3
  1. 1.BethesdaUSA
  2. 2.School of MedicineWake Forest UniversityWinston-SalemUSA
  3. 3.Department of Biostatistics & Medical InformaticsUniversity of WisconsinMadisonUSA

Personalised recommendations