InGaAs, Ge, and GaN Metal-Oxide-Semiconductor Devices with High-k Dielectrics for Science and Technology Beyond Si CMOS

  • M. Hong
  • J. Kwo
  • T. D. Lin
  • M. L. Huang
  • W. C. Lee
  • P. Chang


An overview is given on advances of science and devices of InGaAs, Ge, and GaN MOS capacitors and inversion-channel and depletion-mode MOSFET’s, with emphasis on the results using ultra-high vacuum (UHV) deposited Ga2O3(Gd2O3) [GGO] and atomic layer deposited (ALD) oxides as high-k dielectrics. Very importantly, no interfacial layers are employed in these MOS devices. Low interfacial densities of states (D it ) as well as low electrical leakage currents have been obtained. Moreover, thermodynamic stability was attained with GGO/InGaAs, as the hetero-structures were rapid thermal annealed to 800–900 °C. The oxide remains amorphous and the interface retains its atomic smoothness and sharpness. The oxide scalability with capacitance equivalent thickness (CET) of £1 nm has been achieved in GGO and ALD-HfO2 on InGaAs. Interfacial chemical properties and band parameters of valence band offsets, conduction band offsets, and oxide band gaps in the high-k’s/InGaAs are determined using x-ray photoelectron spectroscopy and electrical leakage transport. Inversion-channel and/or depletion mode InGaAs, GaN, and Ge MOSFET’s were fabricated; in particular, a self-aligned inversion-channel In0.53Ga0.47As MOSFET, made of Al2O3 (2 nm)/GGO (5 nm) gate oxide and TiN metal gate at 1 mm gate length, has reached a world - record drain current and transconductance.


High Resolution Transmission Electron Microscopy Atomic Layer Deposit Rapid Thermal Anneal Drain Current Gate Dielectric 



The authors wish to thank National Science Council, Ministry of Education, Taiwan, Republic of China, Intel, AOARD (U.S. Air Force), TSMC, and IBM for supporting this work. The contributions from Y. J. Lee, Y. H. Chang, Y. D. Wu, T. H. Chiang, L. K. Chu, C. A. Lin, W. H. Chang, H. C. Chiu, R. L. Chu, and Y. C. Chang are greatly appreciated.


  1. 1.
    Hong M, Liu CT, Reese H, Kwo J (1999): Semiconductor-insulator interfaces. In: Webster JG (ed), Encyclopedia of electrical and electronics engineering, John Wiley & Sons, New York, pp 87–100.Google Scholar
  2. 2.
    Hong M, Passlack M, Mannaerts JP, Kwo J, Chu SNG, Moriya N, Hou SY, Fratello VJ (1996): Low interface state density oxide-GaAs structures fabricated by in situ molecular beam epitaxy. J. Vac. Sci. Technol. B 14:2297–2300.CrossRefGoogle Scholar
  3. 3.
    Hong M, Mannaerts JP, Bower JE, Kwo J, Passlack M, Hwang W-Y, Tu LW (1997): Novel Ga2O3(Gd2O3) passivation techniques to produce low Dit oxide-GaAs interfaces. J. Cryst. Growth 175,176:422–427.Google Scholar
  4. 4.
    Hong M, Kwo J, Kortan AR, Mannaerts JP, Sergent AM (1999): Epitaxial cubic gadolinium oxide as a dielectric for gallium arsenide passivation. Science 283:1897–1900.CrossRefGoogle Scholar
  5. 5.
    Ye PD, Wilk GD, Yang B, Kwo J, Gossmann H-JL, Hong M, Ng KK, Bude J (2004): Depletion-mode InGaAs metal-oxide-semiconductor field-effect transistor with oxide gate dielectric grown by atomic-layer deposition. Appl. Phys. Lett. 84:434–436.CrossRefGoogle Scholar
  6. 6.
    Huang ML, Chang YC, Chang CH, Lee YJ, Chang P, Kwo J, Wu TB, Hong M (2005): Surface passivation of III-V compound semiconductors using atomic-layer-deposition-grown Al2O3. Appl. Phys. Lett. 87:252104.CrossRefGoogle Scholar
  7. 7.
    Huang ML, Chang YC, Chang CH, Lin TD, Kwo J, Wu TB, Hong M (2006): Energy-band parameters of atomic-layer-deposition Al2O3/InGaAs heterostructure. Appl. Phys. Lett. 89:012903.CrossRefGoogle Scholar
  8. 8.
    Chang YC, Huang ML, Lee KY, Lee YJ, Lin TD, Hong M, Kwo J, Lay TS, Liao CC, Cheng KY (2008): Atomic-layer-deposited HfO2 on In0.53Ga0.47As: Passivation and energy-band parameters. Appl. Phys. Lett. 92:072901.Google Scholar
  9. 9.
    Koveshnikov S, Tsai W, Ok I, Lee JC, Torkanov V, Yakimov M, Oktyabrsky S (2006): Metal-oxide-semiconductor capacitors on GaAs with high-k gate oxide and amorphous silicon interface passivation layer. Appl. Phys. Lett. 88:022106.CrossRefGoogle Scholar
  10. 10.
    de Souza JP, Kiewra E, Sun Y, Callegari A, Sadana DK, Shahidi G, Webb DJ, Fompeyrine J, Germann R, Rossel C, Marchiori C (2008): Inversion mode n-channel GaAs field effect transistor with high-k/metal gate. Appl. Phys. Lett. 92:153508.CrossRefGoogle Scholar
  11. 11.
    Kim H-S, Ok I, Zhang M, Lee T, Zhu F, Yu L, Lee JC, Koveshnikov S, Tsai W, Tokranov V, Yakimov M, Oktyabrsky S (2006): Depletion-mode GaAs metal-oxide-semiconductor field-effect transistor with HfO2 dielectric and germanium interfacial passivation layer. Appl. Phys. Lett. 89:222904.CrossRefGoogle Scholar
  12. 12.
    Ren F, Hong MW, Hobson WS, Kuo JM, Lothian JR, Mannaerts JP, Kwo J, Chen YK, Cho AY (1996): Enhancement-mode p-channel GaAs MOSFETs on semi-insulating substrates, IEEE International Electron Devices Meeting, San Francisco, CA, pp 943–945.Google Scholar
  13. 13.
    Ren F, Hong M, Hobson WS, Kuo JM, Lothian JR, Mannaerts JP, Kwo J, Chu SNG, Chen YK, Cho AY (1997): Demonstration of enhancement-mode p- and m-channel GaAs MOSFETs with Ga2O3(Gd2O3) as gate oxide. Solid-State Electron. 41:1751–1753.CrossRefGoogle Scholar
  14. 14.
    Ren F, Kuo JM, Hong M, Hobson WS, Lothian JR, Lin J, Tsai HS, Mannaerts JP, Kwo J, Chu SNG, Chen YK, Cho AY (1998): Ga2O3(Gd2O3)/InGaAs enhancement-mode n-channel MOSFETs. IEEE Electron Device Lett. 19:309–311.Google Scholar
  15. 15.
    Wang YC, Hong M, Kuo JM, Mannaerts JP, Kwo J, Tsai HS, Krajewski JJ, Weiner JS, Chen YK, Cho AY (1999): Advances in GaAs MOSFETs using Ga2O3(Gd2O3) as gate oxide. In: Hasegawa H, Lu ZH, Pearton SJ (ed), Mat. Res. Soc. Symp. Proc., pp 219–225.Google Scholar
  16. 16.
    Xuan Y, Wu YQ, Shen T, Yang T, Ye PD (2007): High performance submicron inversion-type enhancement-mode InGaAs MOSFETs with ALD Al2O3, HfO2, and HfAlO as gate dielectrics, IEEE International Electron Devices Meeting, Washington, DC, pp 637–640.Google Scholar
  17. 17.
    Xuan Y, Wu YQ, Ye PD (2008): High-performance inversion-type enhancement-mode InGaAs MOSFET with maximum drain current exceeding 1 A/mm. IEEE Electron Device Lett. 29:294–296.Google Scholar
  18. 18.
    Chiu HC, Lin TD, Chang YH, Chang P, Kwo J, Lin YS, Hsu SSH, Tsai W, Hong M (2009): DC and RF Characteristics of Self-aligned Inversion Channel In0.53Ga0.47As N-MOSFET with ALD-Al2O3 as a Gate Dielectric, International Symposium on VLSI Technology, Systems and Applications, (VLSI-TSA), Hsinchu, Taiwan, pp 141–142.Google Scholar
  19. 19.
    Chin HC, Zhu M, Samudra GS, Yeo YC (2008): n-channel GaAs MOSFET with TaN/HfAlO gate stack formed using in situ vacuum anneal and silane passivation. J. Electrochem. Soc. 155:H464–H468.CrossRefGoogle Scholar
  20. 20.
    Shiu KH, Chiang CH, Lee YJ, Lee WC, Chang P, Tung LT, Hong M, Kwo J, Tsai W (2008): Oxide scalability in Al2O3/Ga2O3(Gd2O3)/In0.20Ga0.80As/GaAs heterostructures. J. Vac. Sci. Technol. B 26:1132–1135.CrossRefGoogle Scholar
  21. 21.
    Shiu KH, Chiang TH, Chang P, Tung LT, Hong M, Kwo J, Tsai W (2008): 1 nm equivalent oxide thickness in Ga2O3(Gd2O3)/In0.2Ga0.8As metal-oxide-semiconductor capacitors. Appl. Phys. Lett. 92:172904.CrossRefGoogle Scholar
  22. 22.
    Lin TD, Chiu HC, Chang P, Tung LT, Chen CP, Hong M, Kwo J, Tsai W, Wang YC (2008): High-performance self-aligned inversion-channel In0.53Ga0.47As metal-oxide-semiconductor field-effect-transistor with Al2O3/Ga2O3(Gd2O3) as gate dielectrics. Appl. Phys. Lett. 93:033516.CrossRefGoogle Scholar
  23. 23.
    Hill RJW, Moran DAJ, Li X, Zhou H, Macintyre D, Thoms S, Asenov A, Zurcher P, Rajagopalan K, Abrokwah J, Droopad R, Passlack M, Thayne LG (2007): Enhancement-mode GaAs MOSFETs with an In0.3Ga0.7As channel, a mobility of over 5000 cm2/V s, and transconductance of over 475 μS/μm. IEEE Electron Device Lett. 28:1080–1082.CrossRefGoogle Scholar
  24. 24.
    Sun Y, Kiewra EW, Koester SJ, Ruiz N, Callegari A, Fogel KE, Sadana DK, Fompeyrine J, Webb DJ, Locquet JP, Sousa M, Germann R, Shiu KT, Forrest SR (2007): Enhancement-mode buried-channel In0.7Ga0.3As/In0.52Al0.48As MOSFETs with high-k gate dielectrics. IEEE Electron Device Lett. 28:473–475.Google Scholar
  25. 25.
    Kwo J, Murphy DW, Hong M, Opila RL, Mannaerts JP, Sergent AM, Masaitis RL (1999): Passivation of GaAs using. (Ga2O3)1−x(Gd2O3)x, 0 <=x <= 1.0 films. Appl. Phys. Lett. 75:1116–1118.Google Scholar
  26. 26.
    Lee CH, Lin TD, Tung LT, Huang ML, Hong M, Kwo J (2008): Molecular beam epitaxy grown Ga2O3(Gd2O3) high kappa dielectrics for germanium passivation—x-ray photoelectron spectroscopy and electrical characteristics. J. Vac. Sci. Technol. B 26:1128–1131.Google Scholar
  27. 27.
    Hong M, Kwo J, Chu SNG, Mannaerts JP, Kortan AR, Ng HM, Cho AY, Anselm KA, Lee CM, Chyi JI (2002): Single-crystal GaN/Gd2O3/GaN heterostructure. J. Vac. Sci. Technol. B 20:1274–1277.CrossRefGoogle Scholar
  28. 28.
    Chen CP, Lee YJ, Chang YC, Yang ZK, Hong M, Kwo J, Lee HY, Lay TS (2006): Structural and electrical characteristics of Ga2O3(Gd2O3)/GaAs under high temperature annealing. J. Appl. Phys. 100:104502.CrossRefGoogle Scholar
  29. 29.
    Lin CA, Lin TD, Chiang TH, Chiu HC, Chang P, Hong M, Kwo J (2009): Depletion-mode In0.2Ga0.8As/GaAs MOSFET with molecular beam epitaxy grown Al2O3/Ga2O3(Gd2O3) as gate dielectrics. J. Cryst. Growth 311:1954–1957.CrossRefGoogle Scholar
  30. 30.
    Chu LK, Lee WC, Huang ML, Chang YH, Tung LT, Chang CC, Lee YJ, Kwo J, Hong M (2009): Metal-oxide-semiconductor devices with molecular beam epitaxy-grown Y2O3 on Ge. J. Cryst. Growth 311:2195–2198.CrossRefGoogle Scholar
  31. 31.
    Chang YC, Chang WH, Chiu HC, Tung LT, Lee CH, Shiu KH, Hong M, Kwo J, Hong JM, Tsai CC (2008): Inversion-channel GaN metal-oxide-semiconductor field-effect transistor with atomic-layer-deposited Al2O3 as gate dielectric. Appl. Phy. Lett. 93:053504.CrossRefGoogle Scholar
  32. 32.
    Lee KY, Lee YJ, Chang P, Huang ML, Chang YC, Hong M, Kwo J (2008): Achieving 1 nm capacitive effective thickness in atomic layer deposited HfO2 on In0.53Ga0.47As. Appl. Phys. Lett. 92:252908.CrossRefGoogle Scholar
  33. 33.
    Hong MW, Kwo JR, Tsai PC, Chang YC, Huang ML, Chen CP, Lin TD (2007): III-V metal-oxide-semiconductor field-effect transistors with high kappa dielectrics. Jpn. J. Appl. Phys. 46:3167–3180.CrossRefGoogle Scholar
  34. 34.
    Wang YC, Hong M, Kuo JM, Mannaerts JP, Kwo J, Tsai HS, Krajewski JJ, Chen YK, Cho AY (1999): Demonstration of submicron depletion-mode GaAs MOSFETs with negligible drain current drift and hysteresis. IEEE Electron Device Lett. 20:457–459.CrossRefGoogle Scholar
  35. 35.
    Tsai PJ, Chu LK, Chen YW, Chiu YN, Yang HP, Chang P, Kwo J, Chi J, Hong M (2007): Depletion-mode GaAs-based MOSFET with Ga2O3(Gd2O3) as a gate dielectric. J. Cryst. Growth 301, 302:1013–1016.Google Scholar
  36. 36.
    Zhu F, Koveshnikov S, Ok I, Kim HS, Zhang M, Lee T, Thareja G, Yu L, Lee JC, Tsai W, Tokranov V, Yakimov M, Oktyabrsky S (2007): Depletion-mode GaAs metal-oxide-semiconductor field-effect transistor with amorphous silicon interface passivation layer and thin HfO2 gate oxide. Appl. Phys. Lett. 91:043507.CrossRefGoogle Scholar
  37. 37.
    Currie MT, Leitz CW, Langdo TA, Taraschi G, Fitzgerald EA, Antoniadis DA (2001): Carrier mobilities and process stability of strained Si n- and p-MOSFETs on SiGe virtual substrates. J. Vac. Sci. Technol. B 19:2268–2279.CrossRefGoogle Scholar
  38. 38.
    Kai C, Wann HC, Ko PK, Chenming H (1996): The impact of device scaling and power supply change on CMOS gate performance. IEEE Electron Device Lett. 17:202–204.CrossRefGoogle Scholar
  39. 39.
    Ritenour A, Khakifirooz A, Antoniadis DA, Lei RZ, Tsai W, Dimoulas A, Mavrou G, Panayiotatos Y (2006): Subnanometer-equivalent-oxide-thickness germanium p-metal-oxide-semiconductor field effect transistors fabricated using molecular-beam-deposited high-k/metal gate stack. Appl. Phy. Lett. 88:132107.CrossRefGoogle Scholar
  40. 40.
    Nicholas G, De Jaeger B, Brunco DP, Zimmerman P, Eneman G, Martens K, Meuris M, Heyns MM (2007): High-performance deep submicron Ge pMOSFETs with halo implants. IEEE Trans. Electron Devices 54:2503–2511.CrossRefGoogle Scholar
  41. 41.
    Chu LK, Lin TD, Huang ML, Chu RL, Chang CC, Kwo J, Hong M (2009): Ga2O3 (Gd2O3) on Ge without interfacial layers—energy band parameters and metal oxide semiconductor devices.  Appl. Phys. Lett. 94:202108.Google Scholar
  42. 42.
    Irokawa Y, Nakano Y, Ishiko M, Kachi T, Kim J, Ren F, Gila BP, Onstine AH, Abernathy CR, Pearton SJ, Pan CC, Chen GT, Chyi JI (2004): MgO/p-GaN enhancement mode metal-oxide semiconductor field-effect transistors. Appl. Phys. Lett. 84:2919–2921.CrossRefGoogle Scholar
  43. 43.
    Saripalli YN, Pei L, Biggerstaff T, Ramachandran S, Duscher GJ, Johnson MAL, Zeng C, Dandu K, Jin Y, Barlage DW (2007): Transmission electron microscopy studies of regrown GaN Ohmic contacts on patterned substrates for metal oxide semiconductor field effect transistor applications. Appl. Phys. Lett. 90:204106.CrossRefGoogle Scholar
  44. 44.
    Kwo J, Hong M, Mannaerts JP, Wu YD, Lee QY, Yang B, Gustafsson T (2004): Fundamental study and oxide reliability of the MBE grown Ga2−xGdxO3 dielectrics for compound semiconductor MOSFETs. In: D Kumar RKS, Ramesh R, Guha S, Koinuma H (ed), Mat. Res. Soc. Symp. Proc., Warrendale, PA: Materials Research Society, pp. E1.12.1–E1.12.6.Google Scholar
  45. 45.
    Hong M, Lu ZH, Kwo J, Kortan AR, Mannaerts JP, Krajewski JJ, Hsieh KC, Chou LJ, Cheng KY (2000): Initial growth of Ga2O3(Gd2O3) on GaAs: Key to the attainment of a low interfacial density of states. Appl. Phys. Lett. 76:312–314.CrossRefGoogle Scholar
  46. 46.
    Jin H, Oh SK, Kang HJ, Tougaard S (2006): Electronic properties of ultrathin HfO2, Al2O3, and Hf-Al-O dielectric films on Si(100) studied by quantitative analysis of reflection electron energy loss spectra. J. Appl. Phys. 100:083713.CrossRefGoogle Scholar
  47. 47.
    Huang ML, Chang YC, Chang YH, Lin TD, Kwo J, Hong M (2009): Energy-band parameters of atomic layer deposited Al2O3 and HfO2 on InxGa1−xAs. Appl. Phys. Lett. 94:052106.CrossRefGoogle Scholar
  48. 48.
    Kraut EA, Grant RW, Waldrop JR, Kowalczyk SP (1980): Precise determination of the valence-band edge in x-ray photoemission spectra: Application to measurement of semiconductor interface potentials. Phys. Rev. Lett. 44:1620–1623.CrossRefGoogle Scholar
  49. 49.
    Lay TS, Hong M, Kwo J, Mannaerts JP, Hung WH, Huang DJ (2001): Energy-band parameters at the GaAs—and GaN-Ga2O3(Gd2O3) interfaces. Solid-State Electron. 45:1679–1682.CrossRefGoogle Scholar
  50. 50.
    Singh J (1993): In: Weiss BL (ed), Properties of lattice-matched and strained Indium Gallium Arsenide. INSPECS, London, p 61.Google Scholar
  51. 51.
    Kwo J, Hong M, Busch B, Muller DA, Chabal YJ, Kortan AR, Mannaerts JP, Yang B, Ye P, Gossmann H, Sergent AM, Ng KK, Bude J, Schulte WH, Garfunkel E, Gustafsson T (2003): Advances in high kappa gate dielectrics for Si and III-V semiconductors. J. Cryst. Growth 251:645–650.CrossRefGoogle Scholar
  52. 52.
    Ye PD, Wilk GD, Yang B, Kwo J, Chu SNG, Nakahara S, Gossmann HJL, Mannaerts JP, Hong M, Ng KK, Bude J (2003): GaAs metal-oxide-semiconductor field-effect transistor with nanometer-thin dielectric grown by atomic layer deposition. Appl. Phys. Lett. 83:180–182.CrossRefGoogle Scholar
  53. 53.
    Huang YL, Chang P, Yang ZK, Lee YJ, Lee HY, Liu HJ, Kwo J, Mannaerts JP, Hong M (2005): Thermodynamic stability of Ga2O3(Gd2O3)/GaAs interface. Appl. Phys. Lett. 86:191905.CrossRefGoogle Scholar
  54. 54.
    Chiu HC, Tung LT, Chang YH, Lee YJ, Chang CC, Kwo J, Hong M (2008): Achieving a low interfacial density of states in atomic layer deposited Al2O3 on In0.53Ga0.47As. Appl. Phys. Lett. 93:202903.CrossRefGoogle Scholar
  55. 55.
    Martens K, Chi On C, Brammertz G, De Jaeger B, Kuzum D, Meuris M, Heyns M, Krishnamohan T, Saraswat K, Maes HE, Groeseneken G (2008): On the correct extraction of interface trap density of MOS devices with high-mobility semiconductor substrates. IEEE Trans. Electron Devices 55:547–556.CrossRefGoogle Scholar
  56. 56.
    Martens K, Kaczer B, Maes H, Groeseneken G (2008): Electrical interface characterization of non-si based MOSFETs: Challenges and solutions, International SiGe Technology and Device Meeting, pp 82–83.Google Scholar
  57. 57.
    Groeseneken G, Maes HE, Beltran N, De Keersmaecker RF (1984): A reliable approach to charge-pumping measurements in MOS transistors. IEEE Trans. Electron Devices 31:42–53.CrossRefGoogle Scholar
  58. 58.
    Bauza D, Maneglia Y (1997): In-depth exploration of Si-SiO2 interface traps in MOS transistors using the charge pumping technique. IEEE Trans. Electron Devices 44:2262–2266.CrossRefGoogle Scholar
  59. 59.
    Jakschik S, Avellan A, Schroeder U, Bartha JW (2004): Influence of Al2O3 dielectrics on the trap-depth profiles in MOS devices investigated by the charge-pumping method. IEEE Trans. Electron Devices 51:2252–2255.CrossRefGoogle Scholar
  60. 60.
    Chiang TH, Lee WC, Lin TD, Lin D, Shiu KH, Kwo J, Wang WE, Tsai W, Hong M (2008): Approaching fermi level unpinning in oxide-In0.2Ga0.8As, IEEE International Electron Devices Meeting, San Francisco, CA, pp 375–378.Google Scholar
  61. 61.
    Brammertz G, Martens K, Sioncke S, Delabie A, Caymax M, Meuris M, Heyns M (2007): Characteristic trapping lifetime and capacitance-voltage measurements of GaAs metal-oxide-semiconductor structures. Appl. Phys. Lett. 91:133510.CrossRefGoogle Scholar
  62. 62.
    Hong M, Kwo J, Lin TD, Huang ML (2009): InGaAs metal-oxide-semiconductor devices with Ga2O3 (Gd2O3) high k dielectrics for science and technology beyond Si CMOS. MRS Bull. 34:514–521.CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • M. Hong
    • 1
  • J. Kwo
  • T. D. Lin
  • M. L. Huang
  • W. C. Lee
  • P. Chang
  1. 1.Department of Materials Science and EngineeringNational Tsing Hua UniversityHsinchuTaiwan

Personalised recommendations