Advertisement

Materials and Technologies for III-V MOSFETs

  • Serge Oktyabrsky
  • Yoshio Nishi
  • Sergei Koveshnikov
  • Wei-E Wang
  • Niti Goel
  • Wilman Tsai
Chapter

Abstract

The paper contains an overview of progress and challenges of group III-V MOSFETs. It begins with comparison of well-established high-electron mobility transistors for logic applications to MOSFET technology. Further, the results on improvement of current transport in buried modulation doped quantum well channels similar to HEMTs are presented. Next, the progress in interface passivation is reviewed, and detailed with descriptions of different technologies including atomic layer deposition with its property to self-clean a III-V surface, amorphous Si and Ge passivation, and use of in-situ high-k oxide deposition.

Keywords

Quantum Well Atomic Layer Deposition Charge Pump Interface State Density Subthreshold Slope 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors acknowledge Mark Lundstrom for stimulating comments and reading the manuscript. The authors are grateful for financial support from Intel Corporation and MSD Focus Center Research Program.

References

  1. 1.
    M. Shur, GaAs Devices and Circuits. (Plenum Press, New York, 1987).Google Scholar
  2. 2.
    L. Pfeiffer and K. W. West, “The role of MBE in recent quantum Hall effect physics discoveries,” Physica E, 20(1), 57–64 (2003).CrossRefGoogle Scholar
  3. 3.
    V. Umansky, M. Heiblum, Y. Levinson, J. Smet, J. Nubler, and M. Dolev, “MBE growth of ultra-low disorder 2DEG with mobility exceeding 35 × 106 cm2/Vs,” Journal of Crystal Growth, 311(7), 1658–1661 (2009).CrossRefGoogle Scholar
  4. 4.
    S. I. Long, “High speed digital circuit technology,” in Compound Semiconductor Electronics: the Age of Maturity, M. Shur, Ed. (World Scientific Publishing Co., 1996), pp. 247–290.Google Scholar
  5. 5.
    T. Suemitsu and M. Tokumitsu, “InP HEMT technology for high-speed logic and communications,” IEICE Trans. on Fundamentals of Electronics, Communications and Computer Sciences, E90-C(5), 917–922 (2007).Google Scholar
  6. 6.
    D. E. Grider, P. P. Ruden, J. C. Nohava, I. R. Mactaggart, J. J. Stronczer, and R. H. Tran, “0.7 micron gate length complementary Al0.75Ga0.25As/In0.25Ga0.75As/GaAs HIGFET technology for high speed/low power digital circuits,” International Electron Devices Meeting (IEDM), Technical Digest, 331–334 (1992).Google Scholar
  7. 7.
    D. E. Fulkerson and S. Baier, “Comparison of GaAs-based heterostructure n-channel transistors to Si in complementary processes,” Solid State Electronics, 43(1), 65–71 (1999).CrossRefGoogle Scholar
  8. 8.
    A. Leuther, A. Thiede, K. Kohler, T. Jakobus, G. Weimann, K. H. Ploog, G. Trankle, and G. Weimann, “Complementary HFETs on GaAs with 0.2 Îmm gate length,” Compound Semiconductors 1999, Proc. of 26th International Symposium on Compound Semiconductors (IOP Publishing, Bristol, UK, 2000), pp. 313–316.Google Scholar
  9. 9.
    T. Enoki, E. Sano, and T. Ishibashi, “Prospects of InP-based IC technologies for 100-Gbit/s-class lightwave communication systems,” in High-speed integrated circuit technology, towards 100 GHz logic, M. J. W. Rodwell, Ed. (World Scientific, Singapore, 2001), pp. 137–158.CrossRefGoogle Scholar
  10. 10.
    B. R. Nag, Physics of Quantum Well Devices, ch. 4, vol. 7. (Springer, New York, 2001).Google Scholar
  11. 11.
    W. Liu, Fundamentals of III-V Devices: HBTs, MESFETs, and HFETs/HEMTs. (John Wiley & Sons, New York, 1999).Google Scholar
  12. 12.
    J. M. Golio, Microwave MESFETs And HEMTs. (Artech House, London, 1991).Google Scholar
  13. 13.
    P. Mukhopadhyay, P. Das, S. Pathak, S. Kundu, E. Y. Chang, and D. Biswas, “A strategic review of recent progress in metamorphic quantum well based heterostructure electronic devices,” Nanotechnology 2008, 8th IEEE Conference (NANO) (Piscataway, NJ, 2008), pp. 503–506.Google Scholar
  14. 14.
    S. Datta, G. Dewey, J. M. Fastenau, M. K. Hudait, D. Loubychev, W. K. Liu, M. Radosavljevic, W. Rachmady, and R. Chau, “Ultrahigh-speed 0.5 V supply voltage quantum-well transistors on silicon substrate,” IEEE Electron Device Letters, 28(8), 685–687 (2007).CrossRefGoogle Scholar
  15. 15.
    T. Ashley, L. Buckle, S. Datta, M. T. Emeny, D. G. Hayes, K. P. Hilton, R. Jefferies, T. Martin, T. J. Phillips, D. J. Wallis, P. J. Wilding, and R. Chau, “Heterogeneous InSb quantum well transistors on silicon for ultra-high speed, low power logic applications,” Electronics Letters, 43(14), 777–779 (2007).CrossRefGoogle Scholar
  16. 16.
    Y. Jin-Delorme, A. De Lustrac, P. Crozat, K. Yazbek, R. Adde, G. Vernet, Y. Yin, B. Etienne, and H. Launois, “Electric parameter evolutions against gatelength and bias in ultrashort gate AlGaAs/GaAs HEMTs,” Electronics Letters, 29(7), 642, 643 (1993).CrossRefGoogle Scholar
  17. 17.
    I. G. Thayne, G. U. Jensen, M. C. Holland, Y. Chen, W. Li, A. Paulsen, J. H. Davies, S. P. Beaumont, and P. K. Bhattacharya, “Comparison of 80–200 nm gate length Al0.25GaAs/GaAs/(GaAs:AlAs), Al0.3GaAs/In0.15GaAs/GaAs, and In0.52AlAs/In0.65GaAs/InP HEMTs,” IEEE Transactions on Electron Devices, 42(12), 2047–2055 (1995).CrossRefGoogle Scholar
  18. 18.
    Y. Yamashita, A. Endoh, K. Shinohara, M. Higashiwaki, K. Hikosaka, T. Mimura, S. Hiyamizu, and T. Matsui, “Ultra-short 25-nm-gate lattice matched InAlAs/InGaAs HEMTs within the range of 400 GHz cutoff frequency,” IEEE Electron Device Letters, 22, 367–370 (2001).CrossRefGoogle Scholar
  19. 19.
    D.-H. Kim and J. A. del Alamo, “30-nm InAs pseudomorphic HEMTs on an InP substrate with a current-gain cutoff frequency of 628 GHz,” IEEE Electron Device Letters, 29(8), 830–833 (2008).CrossRefGoogle Scholar
  20. 20.
    S.-J. Yeon, M. Park, J. Choi, and K. Seo, “610 GHz InAlAs/In0.75GaAs metamorphic HEMTs with an ultra-short 15-nm-gate,” International Electron Devices Meeting, Technical Digest, 613–616 (2007).Google Scholar
  21. 21.
    T. Enoki, K. Arai, and Y. Ishii, “Delay Time Analysis for 0.4- to 5-mm-Gate InAlAs-InGaAs HEMT’s,” IEEE Electron Device Letters, 11(11), 502–504 (1990).CrossRefGoogle Scholar
  22. 22.
    Y. Yamashita, A. Endoh, K. Shinohara, K. Hikosaka, T. Matsui, S. Hiyamizu, and T. Mimura, “Pseudomorphic In0.52Al0.48As/In0.7Ga0.3As HEMTs with an ultrahigh fT of 562 GHz,” IEEE Electron Device Letters, 23(10), 573–575 (2002).CrossRefGoogle Scholar
  23. 23.
    S. Lee, B. Jagannathan, S. Narasimha, A. Chou, N. Zamdmer, J. Johnson, R. Williams, L. Wagner, J. Kim, J.-O. Plouchart, J. Pekarik, S. Springer, and G. Freeman, “Record RF performance of 45-nm SOI CMOS technology,” International Electron Devices Meeting, Technical Digest, 255–258 (2007).Google Scholar
  24. 24.
    A. Khakifirooz and D. A. Antoniadis, “MOSFET performance scaling. Part I. Historical trends,” IEEE Transactions on Electron Devices, 55(6), 1391–1400 (2008).CrossRefGoogle Scholar
  25. 25.
    R. Chau, S. Datta, and A. Majumdar, “Opportunities and challenges of III-V nanoelectronics for future high-speed, low-power logic applications,” IEEE Compound Semiconductor Integrated Circuit Symposium, 2005, Technical Digest, 17–20 (2005).Google Scholar
  26. 26.
    S. Datta, T. Ashley, J. Brask, L. Buckle, M. Doczy, M. Emeny, D. Hayes, K. Hilton, R. Jefferies, T. Martin, T. J. Phillips, D. Wallis, P. Wilding, and R. Chau, “85 nm gate length enhancement and depletion mode InSb quantum well transistors for ultra high speed and very low power digital logic applications,” International Electron Devices Meeting, Technical Digest, 783–786 (2005).Google Scholar
  27. 27.
    ITRS, “International Technology Roadmap for Semiconductors, 2007 Edition,” 2007.Google Scholar
  28. 28.
    A. Khakifirooz and D. A. Antoniadis, “MOSFET performance scaling-Part II: future directions,” IEEE Transactions on Electron Devices, 55(6), 1401–1408 (2008).CrossRefGoogle Scholar
  29. 29.
    G. G. Shahidi, D. A. Antoniadis, and H. I. Smith, “Electron velocity overshoot at room and liquid nitrogen temperatures in silicon inversion layers,” IEEE Electron Device Letters, 9(2), 94–96 (1988).CrossRefGoogle Scholar
  30. 30.
    M. Lundstrom, “Elementary scattering theory of the Si MOSFET,” IEEE Electron Device Letters, 18(7), 361–363 (1997).CrossRefGoogle Scholar
  31. 31.
    A. Lochtefeld, I. J. Djomehri, G. Samudra, and D. A. Antoniadis, “New insights into carrier transport in n-MOSFETs,” IBM Journal of Research and Development, 46(2), 347–357 (2002).CrossRefGoogle Scholar
  32. 32.
    G. Dewey, M. K. Hudait, K. Lee, R. Pillarisetty, W. Rachmady, M. Radosavljevic, T. Rakshit, and R. Chau, “Carrier transport in high-mobility III-V quantum-well transistors and performance impact for high-speed low-power logic applications,” IEEE Electron Device Letters, 29(10), 1094–1097 (2008).CrossRefGoogle Scholar
  33. 33.
    D.-H. Kim and J. A. del Alamo, “Scaling behavior of In0.7Ga0.3As HEMTs for logic,” International Electron Devices Meeting, Technical Digest, 1–4 (2006).Google Scholar
  34. 34.
    D.-H. Kim and J. A. del Alamo, “Logic performance of 40 nm InAs HEMTs,” International Electron Devices Meeting, Technical Digest, 629–632 (2007).Google Scholar
  35. 35.
    D.-H. Kim and J. A. del Alamo, “30 nm E-mode InAs PHEMTs for THz and future logic applications,” International Electron Devices Meeting, Technical Digest, 1–4 (2008).Google Scholar
  36. 36.
    H. C. Lin, T. Yang, H. Sharifi, S. K. Kim, Y. Xuan, T. Shen, S. Mohammadi, and P. D. Ye, “Enhancement-mode GaAs metal-oxide-semiconductor high-electron-mobility transistors with atomic layer deposited Al2O3 as gate dielectric,” Applied Physics Letter, 91(21), 212101-1-3 (2007).CrossRefGoogle Scholar
  37. 37.
    Y. Sun, E. W. Kiewra, J. P. de Souza, J. J. Bucchignano, K. E. Fogel, D. K. Sadana, and G. G. Shahidi, “Scaling of In0.7Ga0.3As buried-channel MOSFETs,” International Electron Devices Meeting, Technical Digest, 67–70 (2008).Google Scholar
  38. 38.
    K. C. Saraswat, “High mobility channel materials for future CMOS,” 2007 International Symposium on VLSI Technology Systems and Applications (VLSI-TSA) (IEEE, Piscataway, NJ, USA, 2007), pp. 116–119.Google Scholar
  39. 39.
    N. Harada, S. Kuroda, T. Katakami, K. Hikosaka, T. Mimura, and M. Abe, “Pt-based gate enhancement-mode InAlAs/InGaAs HEMTs for large-scale integration,” Indium Phosphide and Related Materials, Proc. of 3rd International Conference (IEEE, New York, 1991), pp. 377–380.Google Scholar
  40. 40.
    A. Mahajan, M. Arafa, P. Fay, C. Caneau, and I. Adesida, “160 GHz enhancement-mode InAlAs/InGaAs/InP high electron mobility transistor,” Device Research Conference, Technical Digest, 132, 133 (1996).Google Scholar
  41. 41.
    D. Moran, E. Boyd, H. McLelland, K. Elgaid, Y. Chen, D. S. Macintyre, S. Thoms, C. R. Stanley, and I. G. Thayne, “Novel technologies for the realisation of GaAs pHEMTs with 120 nm self-aligned and nanoimprinted T-gates,” Microelectronic Engineering, 67, 68, 769–774 (2003).Google Scholar
  42. 42.
    A. Cetronio, F. Giannini, and G. Leuzzi, “Self-aligned gate technology for analogue and digital GaAs integrated circuits,” Gallium Arsenide applications Symposium. 2000, Paris, 2–6 October (2000).Google Scholar
  43. 43.
    T.-W. Kim, D.-H. Kim, S.-H. Shin, S.-J. Jo, J. H. Jang, and J.-I. Song, “Characteristics of 0.2mm depletion and quasi-enhancement mode self-aligned gate capless p-HEMTs,” Electronics Letters, 42(20), 1178–1180 (2006).CrossRefGoogle Scholar
  44. 44.
    N. Waldron, D.-H. Kim, and J. A. del Alamo, “90 nm self-aligned enhancement-mode InGaAs HEMT for logic applications,” International Electron Devices Meeting, Technical Digest, 633–636 (2007).Google Scholar
  45. 45.
    I. Watanabe, A. Endoh, T. Mimura, and T. Matsui, “35-nm-gate In0.7Ga0.3As/In0.52Al0.48As HEMT with 520-GHz fT,” International Conference on Indium Phosphide and Related Materials, 28–31 (2007).Google Scholar
  46. 46.
    R. J. W. Hill, D. A. J. Moran, X. Li, H. Zhou, D. Macintyre, S. Thoms, A. Asenov, P. Zurcher, K. Rajagopalan, J. Abrokwah, R. Droopad, M. Passlack, and I. G. Thayne, “Enhancement-mode GaAs MOSFETs with an In0.3Ga0.7As channel, a mobility of over 5000 cm2/V s, and transconductance of over 475 µmS/µm,” IEEE Electron Device Letters, 28(12), 1080–1082 (2007).CrossRefGoogle Scholar
  47. 47.
    Y. Xuan, Y. Q. Wu, and P. D. Ye, “High-performance inversion-type enhancement-mode InGaAs MOSFET with maximum drain current exceeding 1 A/mm,” IEEE Electron Device Letters, 29(4), 294–296 (2008).CrossRefGoogle Scholar
  48. 48.
    S. Koveshnikov, R. Kambhampati, V. Tokranov, M. Yakimov, D. Schlom, M. Warusawithana, C. Adamo, W. Tsai, and S. Oktyabrsky, “Thermal Stability of Electrical and Structural Properties of GaAs based MOS Capacitors with Amorphous LaAlO3 Gate Oxide,” Applied Physics Letter, 93(1), 012903-1-3 (2008).Google Scholar
  49. 49.
    T. D. Lin, P. Chang, H. C. Chiu, Y. C. Chang, C. A. Lin, W. H. Chang, Y. J. Lee, Y. H. Chang, M. L. Huang, J. Kwo, and M. Hong, “Nano-electronics of high-k dielectrics on InGaAs for key technologies beyond Si CMOS,” Indium Phosphide and Related Materials, Proceedings of International Conference. (IEEE, Piscataway, NJ, 2009), pp. 94–99.Google Scholar
  50. 50.
    S. Oktyabrsky, V. Tokranov, M. Yakimov, R. Moore, S. Koveshnikov, W. Tsai, F. Zhu, and J. C. Lee, “High-k gate stack on GaAs and InGaAs using in situ passivation with amorphous silicon,” Materials Science & Engineering B, 135(3), 272–276 (2006).CrossRefGoogle Scholar
  51. 51.
    I. Ok, H. Kim, M. Zhang, F. Zhu, S. Park, J. Yum, S. Koveshnikov, W. Tsai, V. Tokranov, M. Yakimov, S. Oktyabrsky, and J. C. Lee, “Metal gate HfO2 metal-oxide-semiconductor structures on InGaAs substrate with varying Si interface passivation layer and postdeposition anneal condition,” Journal of Vacuum Science & Technology B, 25(4), 1491–1494 (2007).CrossRefGoogle Scholar
  52. 52.
    Y. Xuan, Y. Q. Wu, H. C. Lin, T. Shen, and P. D. Ye, “Submicrometer inversion-type enhancement-mode InGaAs MOSFET with atomic-layer-deposited as gate dielectric,” IEEE Electron Device Letters, 28(11), 935–938 (2007).CrossRefGoogle Scholar
  53. 53.
    C. P. Chen, T. D. Lin, Y. J. Lee, Y. C. Chang, M. Hong, and J. Kwo, “Self-aligned inversion n-channel In0.2Ga0.8As/GaAs metal-oxide-semiconductor field-effect-transistors with TiN gate and Ga2O3(Gd2O3) dielectric,” Solid State Electronics, 52(10), 1615–1618 (2008).CrossRefGoogle Scholar
  54. 54.
    M. Passlack, M. Hong, and J. P. Mannaerts, “Quasistatic and high frequency capacitance–voltage characterization of Ga/sub 2/O/sub 3/-GaAs structures fabricated by in situ molecular beam epitaxy,” Applied Physics Letter, 68(8), 1099–1101 (1996).CrossRefGoogle Scholar
  55. 55.
    K. Hiruma, M. Yazawa, H. Matsumoto, O. Kagaya, M. Miyazaki, and Y. Umemoto, “Selective growth of ultra-low resistance GaAs/InGaAs for high performance InGaAs FETs,” Journal of Crystal Growth, 124(1), 255–259 (1992).CrossRefGoogle Scholar
  56. 56.
    C. Liao, D. Cheng, C. Cheng, K. Y. Cheng, M. Feng, T. H. Chiang, J. Kwo, and M. Hong, “Inversion-channel enhancement-mode GaAs MOSFETs with regrown source and drain contacts,” Journal of Crystal Growth, 311(7), 1958–1961 (2009).CrossRefGoogle Scholar
  57. 57.
    U. Singisetti, M. A. Wistey, G. J. Burek, A. K. Baraskar, J. Cagnon, B. Thibeault, A. C. Gossard, S. Stemmer, M. J. W. Rodwell, E. Kim, B. Shin, P. C. McIntyre, and Y.-J. Lee, “Enhancement mode In0.53Ga0.47As MOSFET with self-aligned epitaxial source/drain regrowth,” 2009 IEEE International Conference on Indium Phosphide & Related Materials (IEEE, Piscataway, 2009), pp. 120–123.Google Scholar
  58. 58.
    J. B. Boos, B. R. Bennett, N. A. Papanicolaou, M. G. Ancona, J. G. Champlain, R. Bass, and B. V. Shanabrook, “High mobility p-channel HFETs using strained Sb-based materials,” Electronics Letters, 43(15), 834, 835 (2007).CrossRefGoogle Scholar
  59. 59.
    M. K. Hudait and R. Chau, “Integrating III-V on silicon for future nanoelectronics,” 2008 IEEE Compound Semiconductor Integrated Circuits Symposium (IEEE, Piscataway, NJ, 2008), pp. 1, 2.Google Scholar
  60. 60.
    C. L. Dohrman, K. Chilukuri, D. M. Isaacson, M. L. Lee, and E. A. Fitzgerald, “Fabrication of silicon on lattice-engineered substrate (SOLES) as a platform for monolithic integration of CMOS and optoelectronic devices,” 2006 International SiGe Technology and Device Meeting (IEEE, Piscataway, 2006), pp. 44, 45.Google Scholar
  61. 61.
    Z. Yu, R. Droopad, D. Jordan, J. Curless, Y. Liang, C. Overgaard, H. Li, A. Talin, T. Eschrich, B. Craigo, K. Eisenbeiser, R. Emrick, J. Finder, X. Hu, Y. Wei, J. Edwards, Jr., D. Convey, K. Moore, D. Marshall, and J. Ramdani, “GaAs-based heterostructures on silicon,” 2002 GaAs MANTECH Conference. Technical Digest, 276–279 (2002).Google Scholar
  62. 62.
    F. Letertre, “Formation of III-V semiconductor engineered substrates using smart Cut layer transfer technology,” AIP Conference Proceedings, 1068, 185–196 (2008).Google Scholar
  63. 63.
    J. W. Lee, Y. W. Ahn, J. H. Song, B. G. Cho, and I. H. Ahn, “AlGaAs/InGaAs PHEMT with multiple quantum wire gates,” Microelectronics Journal, 36(3), 389–391 (2005).CrossRefGoogle Scholar
  64. 64.
    S. A. Fortuna and X. Li, “GaAs MESFET with a high-mobility self-assembled planar nanowire channel,” IEEE Electron Device Letters, 30(6), 593–595 (2009).CrossRefGoogle Scholar
  65. 65.
    H. Hasegawa and M. Akazawa, “Surface passivation technology for III-V semiconductor nanoelectronics,” Applied Surface Science, 255(3), 628–632 (2008).CrossRefGoogle Scholar
  66. 66.
    S. Oktyabrsky, P. Nagaiah, V. Tokranov, S. Koveshnikov, M. Yakimov, R. Kambhampati, R. Moore, and W. Tsai, “Electron scattering in buried InGaAs MOSFET channel with HfO2 gate oxide,” MRS Proceedings, 1155, C02-3 (2009).Google Scholar
  67. 67.
    T. Matsuoka, E. Kobayashi, K. Taniguchi, C. Hamaguchi, and S. Sasa, “Temperature dependence of electron mobility in InGaAs/InAlAs heterostructures,” Japan Journal of Applied Physics Pt. 1, 29(10), 2017–2025 (1990).CrossRefGoogle Scholar
  68. 68.
    M. A. Negara, K. Cherkaoui, P. Majhi, C. D. Young, W. Tsai, D. Bauza, G. Ghibaudo, and P. K. Hurley, “The influence of HfO2 film thickness on the interface state density and low field mobility of n channel HfO2/TiN gate MOSFETs,” Microelectronic Engineering, 84(9–10), 1874–1877 (2007).CrossRefGoogle Scholar
  69. 69.
    K. Maitra, M. M. Frank, V. Narayanan, V. Misra, and E. A. Cartier, “Impact of metal gates on remote phonon scattering in titanium nitride/hafnium dioxide n-channel metal-oxide-semiconductor field effect transistors-low temperature electron mobility study,” Journal of Applied Physics, 102(11), 114507–1141 (2007).CrossRefGoogle Scholar
  70. 70.
    S. Barraud, L. Thevenod, M. Casse, O. Bonno, and M. Mouis, “Modeling of remote Coulomb scattering limited mobility in MOSFET with HfO2/SiO2 gate stacks,” Microelectronic Engineering, 84(9, 10), 2404–2407 (2007).CrossRefGoogle Scholar
  71. 71.
    P. D. Ye, G. D. Wilk, B. Yang, J. Kwo, S. N. G. Chu, S. Nakahara, H.-J. L. Gossmann, J. P. Mannaerts, M. Hong, K. K. Ng, and J. Bude, “GaAs metal-oxide-semiconductor field-effect transistor with nanometer-thin dielectric grown by atomic layer deposition,” Applied Physics Letter, 83(1), 180 (2003).CrossRefGoogle Scholar
  72. 72.
    M. L. Huang, Y. C. Chang, C. H. Chang, Y. J. Lee, P. Chang, J. Kwo, T. B. Wu, and M. Hong, “Surface passivation of III-V compound semiconductors using atomic-layer-deposition-grown Al2O3,” Applied Physics Letter, 87, 252104 (2005).Google Scholar
  73. 73.
    H. Sugahara, M. Oshima, H. Oigawa, H. Shigekawa, and Y. Nannichi, “Synchrotron radiation photoemission analysis for (NH4)2Sx-treated GaAs” Journal Applied Physics, 69 (4349) (1991).Google Scholar
  74. 74.
    N. Goel, D. Heh, S. Koveshnikov, I. Ok, S. Oktyabrsky, V. Tokranov, R. Khambapati, M. Yakimov, Y. Sun, P. Pianetta, C. K. Gaspe, M. B. Santos, J. Lee, S. Datta, P. Majhi, and W. Tsai, “Addressing The Gate Stack Challenge For High Mobility InxGa1−xAs Channels For NFETs,” IEDM Technical Digest, 363 (2008).Google Scholar
  75. 75.
    K. Majumdar, Private Communications, Unpublished (2008).Google Scholar
  76. 76.
    S. Uno, S. H. Abebe, and E. Cumberbatch, “Analytical formulae of quantum-mechanical electron density in inversion layer in planar MOSFETs,” IWCM p. 25 (2006).Google Scholar
  77. 77.
    C. A. Richter et al., “Differences between quantum-mechanical capacitance–voltage simulators,” Simulation of Semiconductor Processes and Devices: Sispad p. 340 (2001).Google Scholar
  78. 78.
    S. M. Sze, “Physics of Semiconductor Devices 2nd” p. 447 (1985).Google Scholar
  79. 79.
    S. Koveshnikov, N. Goel, P. Majhi, H. Wen, M. B. Santos, S. Oktyabrsky, V. Tokranov, R. Kambhampati, R. Moore, F. Zhu, J. Lee, and W. Tsai, “In0.53Ga0.47As based metal oxide semiconductor capacitors with atomic layer deposition ZrO2 gate oxide demonstrating low gate leakage current and equivalent oxide thickness less than 1 nm,” Applied Physics Letter, 92, p. 222904 (2008).CrossRefGoogle Scholar
  80. 80.
    W. Tsai, N. Goel, S. Koveshnikov, P. Majhi, and W.-E Wang, “Challenges of integration of high-k dielectric with III-V materials,” Microelectronic Engineering, 86, 1540 (2009).Google Scholar
  81. 81.
    R. Chau et al., “Devices: Opportunities and Challenges for Future High-Performance and Low-Power Computational Applications” in: Proceedings of Technical Papers, IEEE VLSI-TSA International Symposium on VLSI Technology, Hsinchu, Taiwan, April 2005, pp. 13–16.Google Scholar
  82. 82.
    K. H. Shiu, T. H. Chiang, P. Chang, L. T. Tung, M. Hong, J. Kwo, and W. Tsai, “1 nm equivalent oxide thickness in Ga2O3(Gd2O3)/In0.2Ga0.8As metal-oxide-semiconductor capacitors,” Applied Physics Letter, 92, 172904 (2008).Google Scholar
  83. 83.
    M. Passlack, M. Hong, and J. P. Mannaerts, “Quasistatic and high frequency capacitance–voltage characterization of Ga2O3–GaAs structures fabricated by in situ molecular beam epitaxy,” Applied Physics Letter, 68, 1099 (1996).Google Scholar
  84. 84.
    S. Oktyabrsky, M. Yakimov, V. Tokranov, R. Kambhampati, H. Bakhru, S. Koveshnikov, W. Tsai, F. Zhu, and J. Lee, “Challenges and progress in III-V MOSFETs for CMOS circuits,” International Journal of High Speed Electronics and Systems 18, 761–772 (2008).Google Scholar
  85. 85.
    K. Y. Lee, Y. J. Lee, P. Chang, M. L. Huang, Y. C. Chang, M. Hong, and J. Kwo, “Achieving 1 nm capacitive effective thickness in atomic layer deposited HfO2 on In0.53Ga0.47As,” Applied Physics Letter, 92, 252908 (2008).Google Scholar
  86. 86.
    N. Goel, P. Majhi, W. Tsai, M. Warusawithana, D. G. Schlom, M. B. Santos, J. S. Harris, and Y. Nishi, “High-indium-content InGaAs metal-oxide-semiconductor capacitor with amorphous LaAlO3 gate dielectric,” Applied Physics Letter, 91, 093509 (2007).Google Scholar
  87. 87.
    S. Koveshnikov, R. Kambhampati, V. Tokranov, M. Yakimov, D. Schlom, M. Warusawithana, C. Adamo, W. Tsai, and S. Oktyabrsky, “Thermal Stability of Electrical and Structural Properties of GaAs based MOS Capacitors with Amorphous LaAlO3 Gate Oxide,” Applied Physics Letter, 93(1), 012903-1-3 (2008).Google Scholar
  88. 88.
    P. C. McIntyre, Y. Oshima, E. Kim, and K. C. Saraswat, “Interface studies of ALD-grown metal oxide insulators on Ge and III–V semiconductors,” Microelectronic Engineering, 86, 1536–1539 (2009).CrossRefGoogle Scholar
  89. 89.
    InJo Ok, H. Kim, M. Zhang, F. Zhu, S. Park, J. Yum, H. Zhao, Domingo Garcia, Prashant Majhi, N. Goel, W. Tsai, C. K. Gaspe, M. B. Santos, and Jack C. Lee, “Self-aligned n-channel metal-oxide-semiconductor field effect transistor on high-indium-content In0.53Ga0.47As and InP using physical vapor deposition HfO2 and silicon interface passivation layer,” Applied Physics Letter, 92, 202903, (2008).Google Scholar
  90. 90.
    Hyoung-Sub Kim, Injo Ok, Feng Zhu, M. Zhang, S. Park, J. Yum, H. Zhao, Prashant Majhi, Domingo I. Garcia-Gutierrez, Niti Goel, W. Tsai, C. K. Gaspe, M. B. Santos, and Jack C. Lee, “High mobility HfO2-based In0.53Ga0.47As n-channel metal-oxide-semiconductor field effect transistors using a germanium interfacial passivation layer,” Applied Physics Letter, 93, 132902 (2008).Google Scholar
  91. 91.
    M. J. Hale, S. I. Yi, J. Z. Sexton, A. C. Kummel, and M. Passlack, “Scanning tunneling microscopy and spectroscopy of gallium oxide deposition and oxidation on GaAs(001)-c(2´8)/(2´4),” Journal of Chemical Physics, 119, 6719–6728 (2003).CrossRefGoogle Scholar
  92. 92.
    D. Shahrjerdi, M. M. Oye, A. L. Holmes, Jr., and S. K. Banerjee, “Unpinned metal gate/high-k GaAs capacitors: fabrication and characterization,” Applied Physics Letter, 89, 43501–431 (2006).CrossRefGoogle Scholar
  93. 93.
    Y. Xuan, H.-C. Lin, and P. D. Ye, “Simplified surface preparation for GaAs passivation using atomic layer-deposited high-kappa dielectrics,” IEEE Transactions on Electron Devices, 54, 1811–1817, 2007.CrossRefGoogle Scholar
  94. 94.
    S. Oktyabrsky, S. Koveshnikov, V. Tokranov, M. Yakimov, R. Kambhampati, H. Bakhru, F. Zhu, J. Lee, and W. Tsai, “InGaAs and GaAs/InGaAs channel enhancement mode n-MOSFETs with HfO2 gate oxide and a-Si interface passivation layer,” Digest, Device Research Conference, p. 203 (2007).Google Scholar
  95. 95.
    S. Koveshnikov, W. Tsai, I. Ok, J. Lee, V. Torkanov, M. Yakimov, and S. Oktyabrsky, “Metal-Oxide-Semiconductor Capacitors on GaAs with High-k Gate Oxide and Amorphous Silicon Interface Passivation Layer,” Applied Physics Letter, 88, 022106-8, 2006.CrossRefGoogle Scholar
  96. 96.
    R. Kambhampati, S. Koveshnikov, V. Tokranov, M. Yakimov, R. Moore, W. Tsai, and S. Oktyabrsky, “In-Situ Deposition of High-k Gate Stack on InGaAs and GaAs for Metal-Oxide-Semiconductor Devices with Low Equivalent Oxide Thickness,” ECS Transactions, 11, 431–439, 2007.CrossRefGoogle Scholar
  97. 97.
    S. Oktyabrsky, V. Tokranov, M. Yakimov, R. Moore, S. Koveshnikov, W. Tsai, F. Zhu, and J. C. Lee, “High-k gate stack on GaAs and InGaAs using in-situ passivation with amorphous silicon,” Materials Science & Engineering B (Solid-State Materials for Advanced Technology), 135, 272–276 (2006).CrossRefGoogle Scholar
  98. 98.
    H.-S. Kim, I. Ok, M. Zhang, T. Lee, F. Zhu, L. Yu, J. C. Lee, S. Koveshnikov, W. Tsai, V. Tokranov, M. Yakimov, and S. Oktyabrsky, “Depletion-mode GaAs metal-oxide-semiconductor field-effect transistor with HfO2 dielectric and germanium interfacial passivation layer,” Applied Physics Letters, 89, 222904–2221 (2006).Google Scholar
  99. 99.
    P. D. Ye, G. D. Wilk, B. Yang, J. Kwo, S. N. G. Chu, S. Nakahara, H. J. L. Gossmann, J. P. Mannaerts, M. Hong, K. K. Ng, and J. Bude, “GaAs metal-oxide-semiconductor field-effect transistor with nanometer-thin dielectric grown by atomic layer deposition,” Applied Physics Letters, 83, 180–182 (2003).CrossRefGoogle Scholar
  100. 100.
    P. D. Ye, G. D. Wilk, B. Yang, J. Kwo, H.-J. L. Gossmann, M. Hong, K. K. Ng, and J. Bude, “Depletion-mode InGaAs metal-oxide-semiconductor field-effect transistor with oxide gate dielectric grown by atomic-layer deposition,” Applied Physics Letters, 84, 434–436 (2004).CrossRefGoogle Scholar
  101. 101.
    D. Shahrjerdi, E. Tutuc, and S. K. Banerjee, “Impact of surface chemical treatment on capacitance–voltage characteristics of GaAs metal-oxide-semiconductor capacitors with Al2O3 gate dielectric,” Applied Physics Letter, 91, 063501–063503 (2007).CrossRefGoogle Scholar
  102. 102.
    M. Passlack, M. Hong, and J. P. Mannaerts, “Quasistatic and high frequency capacitance–voltage characterization of Ga2/O3-GaAs structures fabricated by in-situ molecular beam epitaxy,” Applied Physics Letters, vol. 68, pp. 1099–1101 (1996).CrossRefGoogle Scholar
  103. 103.
    F. Ren, M. Hong, W. S. Hobson, J. M. Kuo, J. R. Lothian, J. P. Mannaerts, J. Kwo, S. N. G. Chu, Y. K. Chen, and A. Y. Cho, “Demonstration of enhancement-mode p- and n-channel GaAs MOSFETs with Ga2O3/(Gd2/O3) as gate oxide,” Solid-State Electronics, pp. 1751–1753 (1997).Google Scholar
  104. 104.
    M. Hong, F. Ren, W. S. Hobson, J. M. Kuo, J. Kwo, J. P. Mannaerts, J. R. Lothian, M. A. Marcus, C. T. Liu, A. M. Sergent, T. S. Lay, Y. K. Chen, M. Melloch, and M. A. Reed, “Growth of Ga2O3/(Gd2O3) using molecular beam epitaxy technique-key to first demonstration of GaAs MOSFETs,” in Compound Semiconductors 1997. Proceedings of the IEEE Twenty-Fourth International Symposium on Compound Semiconductors, M. Melloch and M. A. Reed, Eds. (IEEE, USA New York, 1998), pp. 319–324.Google Scholar
  105. 105.
    M. Passlack, J. K. Abrokwah, R. Droopad, Z. Yu, C. Overgaard, S. I. Yi, M. Hale, J. Sexton, and A. C. Kummel, “Self-aligned GaAs p-channel enhancement mode MOS heterostructure field-effect transistor,” IEEE Electron Device Letters, 23, pp. 508–510 (2002).CrossRefGoogle Scholar
  106. 106.
    R. J. W. Hill, D. A. J. Moran, X. Li, H. Zhou, D. Macintyre, S. Thoms, R. Droopad, M. Passlack, and I. G. Thayne, “180 nm metal gate, high-k dielectric, implant-free III-V MOSFETs with transconductance of over 425 µS/µm,” Electronics Letters, 43, pp. 543–545 (2007).CrossRefGoogle Scholar
  107. 107.
    S. Tiwari, S. L. Wright, and J. Batey, “Unpinned GaAs MOS capacitors and transistors,” IEEE Electron Device Letters, 9, pp. 488–490 (1988).CrossRefGoogle Scholar
  108. 108.
    Z. Wang, M. E. Lin, D. Biswas, B. Mazhari, N. Teraguchi, Z. Fan, X. Gui, and H. Morkoc, “Si/sub 3/N/sub 4//Si/n-GaAs capacitor with minimum interface density in the 10/sup 10/ eV/sup -1/ cm/sup -2/range,” Applied Physics Letters, 62, pp. 2977–2979 (1993).CrossRefGoogle Scholar
  109. 109.
    H. Hasegawa, “MBE growth and applications of silicon interface control layers,” presented at Thin Solid Films Third International Workshop on Molecular Beam Epitaxy-Growth Physics and Technology (MBE-GPT), Switzerland Warsaw, Poland (2000).Google Scholar
  110. 110.
    Y. Wada and K. Wada, “GaAs surface passivation by deposition of an ultrathin InP-related layer,” Applied Physics Letters, 63, 379 (1993).CrossRefGoogle Scholar
  111. 111.
    Y. Wada and K. Wada, “Nearly ideal characteristics of GaAs metal-insulator-semiconductor diodes by atomic layer passivation,” Journal of Vacuum Science & Technology B (Microelectronics and Nanometer Structures), 12, pp. 3084–3089 (1994).Google Scholar
  112. 112.
    E. J. Tarsa, X. H. Wu, J. P. Ibbetson, J. S. Speck, and J. J. Zinck, “Growth of epitaxial MgO films on Sb-passivated (001)GaAs: Properties of the MgO/GaAs interface,” Applied Physics Letters, 66, pp. 3588–3590 (1995).CrossRefGoogle Scholar
  113. 113.
    S. Lodha, D. B. Janes, and N.-P. Chen, “Unpinned interface Fermi-level in Schottky contacts to n-GaAs capped with low-temperature-grown GaAs; experiments and modeling using defect state distributions,” Journal of Applied Physics, 93, pp. 2772–2779 (2003).CrossRefGoogle Scholar
  114. 114.
    B. J. Skromme, C. J. Sandroff, E. Yablonovitch, and T. Gmitter, “Effects of passivating ionic films on the photoluminescence properties of GaAs,” Applied Physics Letters, 51, pp. 2022–2024 (1987).CrossRefGoogle Scholar
  115. 115.
    A. Callegari, P. D. Hoh, D. A. Buchanan, and D. Lacey, “Unpinned gallium oxide/GaAs interface by hydrogen and nitrogen surface plasma treatment,” Applied Physics Letters, 54, pp. 332–334 (1989).CrossRefGoogle Scholar
  116. 116.
    A. Paccagnella and A. Callegari, “GaAs surface plasma treatments for Schottky contacts,” Solid-State Electronics, 34, pp. 1409–1414 (1991).CrossRefGoogle Scholar
  117. 117.
    P. D. Ye, G. D. Wilk, B. Yang, J. Kwo, H.-J. L. Gossmann, M. Hong, K. K. Ng, and J. Bude, “Depletion-mode InGaAs metal-oxide-semiconductor field-effect transistor with oxide gate dielectric grown by atomic-layer deposition,” Applied Physics Letters, 84, p. 434 (2004).CrossRefGoogle Scholar
  118. 118.
    M. K. Hudait, G. Dewey, S. Datta, J. M. Fastenau, J. Kavalieros, W. K. Liu, D. Lubyshev, R. Pillarisetty, W. Rachmady, M. Radosavljevic, T. Rakshit, and R. Chau, “Heterogeneous integration of enhancement mode In0.7Ga0.3As quantum well transistor on silicon substrate using thin (<2 mm) composite buffer architecture for high-speed and low-voltage (0.5 V) logic applications,” Technical Digest – International Electron Devices Meet. 625 (2007).Google Scholar
  119. 119.
    C.-H. Chang, Y.-K. Chiou, Y.-C. Chang, K.-Y. Lee, T.-D. Lin, T.-B. Wu, and M. Hong, “Interfacial self-cleaning in atomic layer deposition of HfO2 gate dielectric on In0.15Ga0.85As,” Applied Physics Letters 89, p. 242911 (2006).CrossRefGoogle Scholar
  120. 120.
    M. M. Frank, G. D. Wilk, D. Starodub, T. Gustafsson, E. Garfunkel, Y. J. Chabal, J. Grazul, and D. A. Muller, “HfO2 and Al2O3 gate dielectrics on GaAs grown by atomic layer deposition,” Applied Physics Letters, 86, p. 152904 (2005).CrossRefGoogle Scholar
  121. 121.
    G. Hollinger, R. Skheyta-Kabbani, and M. Gendry, “Oxides on GaAs and InAs surfaces: An x-ray-photoelectron-spectroscopy study of reference compounds and thin oxide layers,” Physics Review B, 49 (11159) (1994).Google Scholar
  122. 122.
    C. L. Hinkle, A. M. Sonnet, E. M. Vogel, S. McDonnell, G. J. Hughes, M. Milojevic, B. Lee, F. S. Aguirre-Tostado, K. J. Choi, H. C. Kim, J. Kim, and R. M. Wallace, “GaAs interfacial self-cleaning by atomic layer deposition,” Applied Physics Letters, 92, p. 071901 (2008).CrossRefGoogle Scholar
  123. 123.
    M. Kobayashi, P. T. Chen, Y. Sun, N. Goel, P. Majhi, M. Garner, W. Tsai, P. Pianetta, and Y. Nishi, “Synchrotron radiation photoemission spectroscopic study of band offsets and interface self-cleaning by atomic layer deposited HfO2 on In0.53Ga0.47As and In0.52Al0.48As,” Applied Physics Letters, 93, p. 182103 (2008).CrossRefGoogle Scholar
  124. 124.
    Y. Sun, P. Pianetta, P.-T. Chen, M. Kobayashi, Y. Nishi, N. Goel, M. Garner, and W. Tsai, “Arsenic-dominated chemistry in the acid cleaning of InGaAs and InAlAs surfaces,” Applied Physics Letters, 93, p. 194103 (2008).CrossRefGoogle Scholar
  125. 125.
    M. Passlack, Z. Yu, R. Droopad, J. K. Abrokwah, D. Braddock, S.-I. Yi, M. Hale, J. Sexton, A. C. Kummel, “Gallium oxide on gallium arsenide: Atomic structure, materials, and devices,” III-V semiconductor heterostructures: physics and devices, edited by W. Z. Cai, Research Signpost, pp. 327–355 (2003).Google Scholar
  126. 126.
    H. Sugahara, M. Oshima, H. Oigawa, H. Shigekawa, Y. Nannichi, “Synchrotron radiation photoemission analysis for (NH4)2Sx-treated GaAs,” Journal of Applied Physics, 69, p. 4349 (1991).CrossRefGoogle Scholar
  127. 127.
    N. Goel, P. Majhi, C. O. Chui, W. Tsai, D. Choi and J. S. Harris, “InGaAs metal-oxide-semiconductor capacitors with HfO2 gate dielectric grown by atomic-layer deposition,” Applied Physics Letters, 89, p. 163517 (2006).CrossRefGoogle Scholar
  128. 128.
    N. Goel, W. Tsai, C. M. Garner, Y. Sun, P. Pianetta, M. Warusawithana, D. G. Schlom, H. Wen, C. Gaspe, J. C. Keay, M. B. Santos, L. V. Goncharova, E. Garfunkel, and T. Gustafsson, “Band offsets between amorphous LaAlO3 and In0.53Ga0.47As,” Applied Physics Letters, 91, p. 113515 (2007).CrossRefGoogle Scholar
  129. 129.
    P. T. Chen, Y. Sun, E. Kim, P. C. McIntyre, W. Tsai, M. Garner, P. Pianetta, Y. Nishi, and C. O. Chui, “HfO2 gate dielectric on (NH4)2S passivated (100) GaAs grown by atomic layer deposition,” Journal of Applied Physics, 103, 034106 (2008).CrossRefGoogle Scholar
  130. 130.
    E. A. Kraut, R. W. Grant, J. R. Waldrop, and S. P. Kowalczyk, “Precise determination of the valence-band edge in x-ray photoemission spectra: application to measurement of semiconductor interface potentials,” Physics Review Letter, 44, 1620 (1980).CrossRefGoogle Scholar
  131. 131.
    E. A. Kraut, R. W. Grant, J. R. Waldrop, and S. P. Kowalczyk, “Semiconductor core-level to valence-band maximum binding-energy differences: Precise determination by x-ray photoelectron spectroscopy,” Physics Review B, 28, 1965 (1983).Google Scholar
  132. 132.
    Z. Liu, Y. Sun, F. Machuca, P. Pianetta, W. E. Spicer, and R. F. W. Pease, “Optimization and characterization of III–V surface cleaning,” Journal of Vacuum Science Technology B, 21, 1953 (2003).Google Scholar
  133. 133.
    S. A. Chambers, Y. Liang, Z. Yu, R. Droopad, J. Ramdani, and K. Eisenbeiser, “Band discontinuities at epitaxial SrTiO3/Si(001) heterojunctions,” Applied Physics Letters, 77, p. 1662 (2000).Google Scholar
  134. 134.
    S. A. Chambers, Y. Liang, Z. Yu, R. Droopad, and J. Ramdani, “Band offset and structure of SrTiO3 ÕSi.001. heterojunctions,” Journal Vacuum Science Technology, A 19, 934 (2001).Google Scholar
  135. 135.
    Miyazaki, “Photoemission study of energy-band alignments and gap-state density distributions for high-k gate dielectrics,” Journal Vacuum Science Technology, B 19, 2212 (2001); S. A. Chambers, T. Droubay, T. C. Kaspar, and M. Gutowski, ibid, 22, 2205 (2004).Google Scholar
  136. 136.
    J. Robertson, and B. Falabretti, “Band offsets of high K gate oxides on high mobility semiconductors,” Materilas Science Engineering, 135, 267 (2006).CrossRefGoogle Scholar
  137. 137.
    K. L. Wang, and A. O. Evwaraye, “Determination of interface and bulk trap states of IGFET’s using deep-level transient spectroscopy,” JAP, 47, 4574 (1976).Google Scholar
  138. 138.
    F. M. Klassen, “Characterization of low 1/f noise in MOS transistors,” IEEE Transactions on Electron Devices, ED-18, 887 (1971).Google Scholar
  139. 139.
    G. Groeseneken, H. E. Maes, N. Beltran, and R. F. de Keersmaecker, A reliable approach to charge pumping measurements in MOS transistors, IEEE Transactions on Electron Devices, ED-31, 42 (1984).Google Scholar
  140. 140.
    G. V den Bosch, G. V. Groeseneken, P. Heremans, and H. E. Maes, “Spectroscopic charge pumping: A new procedure for measuring interface trap distributions on MOS transistors,” IEEE Transactions on Electron Devices, 38, 1820 (1991).CrossRefGoogle Scholar
  141. 141.
    D. Heh, et. al, “A novel bias temperature instability characterization methodology for high-k nMOSFETs,” IEEE Elect. Development Letter, 27, pp. 849–851, 2006; “Experimental evidence of the fast and slow charge trapping/detrapping processes in high-k dielectrics subjected to PBTI stress,” 29, 180–182 (2008).Google Scholar
  142. 142.
    M. Sonnet, C. L. Hinkle, M. N. Jivani, R. A. Chapman, G. P. Pollack, R. M. Wallace, and E. M. Vogel, “Performance enhancement of n-channel inversion type InGaAs metal oxide semiconductor field effect transistor using ex-situ deposited thin film amorphous silicon layer,” Applied Physics Letter, 93, 122109 (2008).CrossRefGoogle Scholar
  143. 143.
    M. H. White and J. R. Cricchi, “Characterization of thin-oxide MNOS transistors,” IEEE TED, 19 (12), 1280–1288 (1972).CrossRefGoogle Scholar
  144. 144.
    R. Castagne and A. Vapaille, “Description of the SiO2—Si interface properties by means of very low frequency MOS capacitance measurements,” Surface Sceince, 28, 157–193 (1971).CrossRefGoogle Scholar
  145. 145.
    M. Shulz, “Interface states at the SiO2-Si interface,” Surface Science, 132, 422–455 (1983).CrossRefGoogle Scholar
  146. 146.
    W. E. Spicer, T. Kendelewicz, N. Newman, K. K. Chin, and I. Lindau, “The mechanisms of Schottky barrier pinning in III-V semiconductors: Criteria developed from microscopic (atomic level) and macroscopic experiments,” Surface Science, 168, 240–259 (1986).CrossRefGoogle Scholar
  147. 147.
    W. E. Spicer, Z. Liliental-Weber, E. Weber, N. Newman, T. Kendelewicz, R. Cao, C. McCants, P. Mahowald, K. Miyano, and I. Lindau, “The advanced unified defect model for Schottky barrier formation,” Journal of Vacuum Science Technology B, 6 (4), 1245–1251 (1988).CrossRefGoogle Scholar
  148. 148.
    G. Brammertz, H.-C. Lin, K. Martens, D. Mercier, S. Sioncke, A. Delabie, W.-E Wang, M. Caymax, M. Meuris and M. Heyns, “Capacitance–voltage characterization of GaAs-Al2O3 interfaces,” Applied Physics Letter, 93, 183504-1-3 (2008).Google Scholar
  149. 149.
    G. Brammertz, H. C. Lin, K. Martens, A. Alian, C. Merckling, J. Penaud, D. Kohen, W.-E Wang, S. Sioncke, A. Delabie, M. Meuris, M. Caymax, and M. Heyns, “Electrical properties of III-V/oxide interfaces,” Electrical Chemical Society spring meetings, pp. 375–383 (2009).Google Scholar
  150. 150.
    H.-C. Lin, W.-E Wang, G. Brammertz, M. Meuris, and M. Heyns, “Inversion behavior on n and p type ALD—Al2O3/In0.53Ga0.47As MOS capacitors,” IEEE Semiconductor Interface Specialists Conference, San Diego, CA, December (2008).Google Scholar
  151. 151.
    G. Brammertz, K. Martens, S. Sioncke, A. Delabie, M. Caymax, M. Meuris, and M. Heyns, “Characteristic trapping lifetime and capacitance–voltage measurements of GaAs metal-oxide-semiconductor structures,” Applied Physics Letter, 91, 133510 (2007).CrossRefGoogle Scholar
  152. 152.
    Y. Tsividis, in Operation and Modeling of the MOS Transistor, McGraw-Hill, New York (2003).Google Scholar
  153. 153.
    H.-C. Lin, G. Brammertz, K. Martens, G. de Valicourt, L. Negre, W.-E Wang, W. Tsai, M. Meuris, and M. Heyns, “Application of Fermi Level Efficiency Method to the analysis of high interface trap density oxide-semiconductor interfaces,” Applied Physics Letter, 94, 153508-1-3 (2009).Google Scholar
  154. 154.
    K. Martens, C. O. Chui, G. Brammertz, B. De Jaeger, D. Kuzum, M. Meuris, M. M. Heyns, T. Krishnamohan, K. Saraswat, H. E. Maes, and G. Groeseneken, “On the correct extraction of interface trap density of MOS devices with high-mobility semiconductor,” IEEE Transaction on Electron Devices, 55(2), 547–549 (2008).CrossRefGoogle Scholar
  155. 155.
    D. K. Schroder, Semiconductor Material and device characterization, Wiley-Interscience publication, Second Edition, p. 541 (1998).Google Scholar
  156. 156.
    C. L. Hinkle, A. M. Sonnet, R. A. Chapman, E. M. Vogel, Extraction of the Effective Mobility of In0.53Ga0.47As MOSFETs, IEEE Electron Device Letters, 30, pp. 316–318 (2009).CrossRefGoogle Scholar
  157. 157.
    A. Callegari, D. K. Sadana, D. A. Buchanan, A. Paccagnella, E. D. Marshall, M. A. Tischler, and M. Norcott, “Properties of SiO2/Si/GaAs structures formed by solid phase epitaxy of amorphous Si on GaAs,” Applied Physics Letter, 58, 2540 (1991).CrossRefGoogle Scholar
  158. 158.
    C. G. Van de Walle and J. Neugebauer, “Universal alignment of hydrogen levels in semiconductors, insulators, and solutions,” Nature, 423, 626 (2003).CrossRefGoogle Scholar
  159. 159.
    S. J. Pearton, J. W. Corbett, and T. S. Shi, “Hydrogen in crystalline semiconductors,” Applied Physics A, 43, 153 (1987).CrossRefGoogle Scholar
  160. 160.
    Y. C. Cheng, “Electronic states at the silicon-silicon dioxide interfaces,” Progress in Surface Science, 8, 181–218 (1977).CrossRefGoogle Scholar
  161. 161.
    M. Chuskey and E. E. Haller, “Hydrogen on III-V and II-V semiconductors,” in Hydrogen in Semiconductor II, vol. 61, edited by N. H. Nickel, Academic Press, NY, pp. 273–440 (1999).Google Scholar
  162. 162.
    L. Pavesi, in Properties of Aluminium Gallium Arsenide, edited by S. Adachi, IET (1993).Google Scholar
  163. 163.
    S. J. Pearton, “Hydrogen passivation of a bulk donor defect (EC-0.36 eV) in GaAs,” Journal of Applied Physics, 53, p. 4509–4511 (1982).CrossRefGoogle Scholar
  164. 164.
    A. Jaouad and V. Aimez, “Passivation of air-exposed AlGaAs using low frequency plsma-enhance chemical vapour deposition of silicon nitride,” Applied Physics Letter, 89, 092125-1-3 (2001).Google Scholar
  165. 165.
    W. P. Li, X. M. Wang, Y. X. Liu, S. I. Shim, and T. P. Ma, “Demonstration of unpinned GaAs surface and surface inversion with gate dielectric made of Si3N4,” Applied Physics Letter, 90, 193503-1-3 (2001).Google Scholar
  166. 166.
    M. Passlack, R. Droopad, K. Rajagopalan, J. Abrokwah, and P. Zurcher, “High mobility III-V MOSFET technology,” CS MANTECH conference, May 14–17, Austin, Texas, pp. 235–238 (2007).Google Scholar
  167. 167.
    M. Renaud, P. Boher, J. Barrier, J. Scheider, and J. P. Chane, “Multiple plasma treatments of In0.53Ga0.47As surface for MIS devices application,” Proceedings of ESSDERC, 17, 129–133 (1987).Google Scholar
  168. 168.
    H.-C. Lin, W.-E Wang, G. Brammertz, M. Meuris, and M. Heyns, “Inversion behavior on n and p type ALD—Al2O3/In0.53Ga0.47As MOS capacitors,” IEEE Semiconductor Interface Specialists Conference, San Diego, CA, December (2008).Google Scholar
  169. 169.
    H.-C. Lin, G. Brammertz , K. Martens, G. de Valicourt, L. Negre, W.-E Wang, W. Tsai, M. Meuris, and M. Heyns, “Application of Fermi Level Efficiency Method to the analysis of high interface trap density oxide-semiconductor interfaces,” Applied Physics Letter, 94, 153508 (2009).Google Scholar
  170. 170.
    A. Y. Polyakov, A. V. Pakhomov, M. V. Tishkin, and E. M. Omeljanovsky, “Hydrogen passivation: Relevance to semi-insulating III-V materials,” 6th Conference on Semi-insulating III-V Materials, Toronto, Canada, pp. 247–256 (1990).Google Scholar
  171. 171.
    C. H. Seager, “Hydrogenation methods,” in Hydrogen in semiconductor, semiconductors and semimetals, 34, edited by J. I. Pankove and N. M. Johnson, Academic Press, NY, pp. 17–31 (1991).Google Scholar
  172. 172.
    I. Lundstrom, “Hydrogen sensitive MOS-structures, Part 1: principals and applications,” Sensors and Actuators, 1, 403–426 (1981).Google Scholar
  173. 173.
    Ryzhikov, F. Robaut, M. Labeau, and A. Gaskov, “New gas sensitive MIS structure Pt/Al2O3 (M=Pt/Ru)/Si with a granular dielectric layer,” Sensors and Actuators B, 133, 613–616 (2008).CrossRefGoogle Scholar
  174. 174.
    K. Martens, C. O. Chui, G. Brammertz, B. De Jaeger, D. Kuzum, M. Meuris, M. M. Heyns, T. Krishnamohan, K. Saraswat, H. E. Maes, and G. Groeseneken, “On the correct extraction of interface trap density of MOS devices with high-mobility semiconductor,” IEEE Transaction on Electron Devices, 55(2), 547–549 (2008).CrossRefGoogle Scholar
  175. 175.
    E. H. Nicollian, and J. R. Brews, in MOS (Metal Oxide Semiconductor) Physics and Technology, Wiley, NY, 1981.Google Scholar
  176. 176.
    Y. Taur and T. K. Ning, Fundamentals of modern VLSI devices, Cambridge University Press, New York, 1998.Google Scholar
  177. 177.
    http://www.ioffe.rssi.ru/SVA/NSM/Google Scholar
  178. 178.
    P. Batude, X. Garros, L. Clavelier, C. Le Royer, J. M. Hartmann, V. Loup, P. Besson, L. Vandroux, Y. Capidelli, S. Deleonibus, and F. Boulanger,”Insights on fundamental mechanisms impacting Ge metal oxide semiconductor capacitors with high-k/metal gate stacks,” Journal of Applied Physics, 102, 034514-1-8 (2007).Google Scholar
  179. 179.
    Y. Fukuda, Y. Otani, Y. Itayama, and T. Ono, “Electrical analyses of germanium MIS structure and spectroscopic measurement of the interface trap density in an insulator/germanium interface at room temperature,” IEEE Transaction on Electron Devices, 54, 2878–2883 (2007).CrossRefGoogle Scholar
  180. 180.
    C.-C. Cheng, C.-H. Chien, G.-L. Luo, Y.-T. Ling, R.-D. Chang, C.-C. Kei, C.-N. Hsiao, J.-C. Liu, and C.-Y. Chang, “Effect of minority-carrier response behaviour on Ge MOS capacitor characteristics: experimental measurements and theoretical simulations,” IEEE Transaction on Electron Devices, 56, 1118–1127 (2009).CrossRefGoogle Scholar
  181. 181.
    W.-E Wang, H.-C. Lin, G. Brammertz, J. Miatrd, A. Delabie, S. Sioncke, C. Merckling, J. Penaud, R. Yang, E. Simoen, W. Tsai, M. Caymax, M. Meuris, and M. Heyns, “Minority carrier response of hydrogen annealed In0.53Ga0.47As/Al2O3/Pd capacitors at room temperature,” Applied Physics Letter, to be submitted; W.-E Wang, H.-C. Lin, G. Brammertz, A. Delabie, E. Simoen, M. Caymax, M. Meuris, and M. Heyns, “Catalytic-forming gas anneal on III-V/Ge MOS systems,” Invited Paper for MRS Fall Meeting (2009, submitted).Google Scholar
  182. 182.
    J. Lin, S. Lee, H.-J. Oh, W. Yang, G. Q. Lo, D. L. Kwong, and D. Z. Chi, “Inversion-mode self-aligned In0.53Ga0.47As N-channel metal-oxide-semiconductor field-effect transistor with HfAlO gate dielectric and TaN metal gate,” IEEE Electron Device Letter, 29, 977 (2008).CrossRefGoogle Scholar
  183. 183.
    H. Zhao, Y. Chen, J. Yum, Y. Wang, and J. C. Lee, “HfO2-based In0.53Ga0.47As MOSFETs (EOT~10Å) using various interfacial dielectric layers,” DRC Device Conference June 2009.Google Scholar
  184. 184.
    E. Chagarov, A. C. Kummel, “Density-Functional Theory Molecular Dynamics Simulations of a-Al2O3/Ge(100)(2´1), a-Al2O3/In0.5Ga0.5As, a-Al2O3/In0.5Al0.5As/In0.5Ga0.5As,” AVS meeting 2008.Google Scholar
  185. 185.
    I. Ok, H.-S. Kim, M. Zhang, C.-Y. Kang, S. J. Rhee, C. Choi, S. A. Krishnan, T. Lee, F. Zhu, G. Thareja, and J. C. Lee, “Metal gate-HfO2 MOS structures on GaAs substrate with and without Si interlayer,” IEEE Electron Device Letter, 27, 145 (2006).CrossRefGoogle Scholar
  186. 186.
    S. J. Koester, E. W. Kiewra, Yanning Sun, D. A. Neumayer, J. A. Ott, M. Copel, D. K. Sadana, D. J. Webb, J. Fompeyrine, J.-P. Locquet, C. Marchiori, M. Sousa, and R. Germann, “Evidence of electron and hole inversion in GaAs metal-oxide-semiconductor capacitors with HfO2 gate dielectrics and a-Si/SiO2 interlayers,” Applied Physics Letter, 89, 042104 (2006).Google Scholar
  187. 187.
    H.-S. Kim, I. Ok, M. Zhang, T. Lee, F. Zhu, L. Yu, and J. C. Lee, “Metal gate-HfO2 metal-oxide-semiconductor capacitors on n-GaAs substrate with silicon/germanium interfacial passivation layers,” Applied Physics Letter, 89, 222903-1-3 (2006).Google Scholar
  188. 188.
    M. V. Fischetti, D. A. Neumayer and E. A. Cartier, “Effective electron mobility in Si inversion layers in metal–oxide–semiconductor systems with a high-k insulator: The role of remote phonon scattering,” Journal Applied Physics, 90, 4587 (2001).CrossRefGoogle Scholar
  189. 189.
    M. V. Fischetti, S. E. Laux, “Monte Carlo study of electron transport in silicon inversion layers,” Physics Review B, 48, 2244 (1993).CrossRefGoogle Scholar
  190. 190.
    H. Zhao, Y.-T. Chen, J. H. Yum, Y. Wang, N. Goel, and J. C. Lee, “High performance In0.7Ga0.3As metal-oxide-semiconductor transistors with mobility >4400 cm2/V s using InP barrier layer,” Applied Physics Letters, 94, 193502 (2009).CrossRefGoogle Scholar
  191. 191.
    D. H. Kim et al., “30 nm E-mode InAs PHEMTs for THz and future logic applications,” D. H. Kim et al., IEDM Technical Digest, 719 (2008).Google Scholar
  192. 192.
    R. Droopad, K. Rajagopalan, J. Abrokwah, P. Zurcher, and M. Passlack, “Compound semiconductor MOSFETs,” Microelectronic Engineering, 84, 2138–2141 (2007).CrossRefGoogle Scholar
  193. 193.
    F. Ren, M. Hong, J. M. Kuo, W. S. Hobson, J. R. Lothian, H. S. Tsai, J. Lin, J. P. Mannaerts, J. Kwo, S. N. G. Chu, Y. K. Chen, and A. Y. Cho, “III-V compound semiconductor MOSFETs using Ga2O3(Gd2O3) as gate dielectric,” 19th Annual Technical Digest, Gallium Arsenide Integrated Circuit (GaAs IC) Symposium, 1997.Google Scholar
  194. 194.
    C. P. Chen, T. D. Lin, Y. J. Lee, Y. C. Chang, M. Hong, and J. Kwo, “Self aligned inversion n-channel In0.2Ga0.8As/GaAs metal-oxide-semiconductor field effect transistors with TiN gate and Ga2O3(Gd2O3) dielectric,” Solid State Electronics, 52, 1615–1618 (2008).CrossRefGoogle Scholar
  195. 195.
    R. J. W. Hill, R. Droopad, D. A. J. Moran, X. Li, H. Zhou, D. Macintyre, S. Thoms, O. Ignatova, A. Asenov, K. Rajagopalan, P. Fejes, I. G. Thayne, and M. Passlack, “1 mm gate length, In0.75Ga0.25As channel, thin body n-MOSFET on InP substrate with transconductance of 737 mS/mm,” Electronics Letter, 44 (2008).Google Scholar
  196. 196.
    K. Kalna, et al.: ‘Monte Carlo simulations of InGaAs nano-MOSFETs’, Microelectron. Engineering, 84(9, 10), 2150–2153 (2007).CrossRefGoogle Scholar
  197. 197.
    J. D. Zimmerman and A. C. Gossard, S. R. Bank, “Low resistance, nonalloyed Ohmic contacts to InGaAs,” Applied Physics Letter, 91, 192114 (2007).Google Scholar
  198. 198.
    C.-W. Cheng, E. A. Fitzgerald, “In situ metal-organic chemical vapor deposition atomic-layer deposition of aluminum oxide on GaAs using trimethyaluminum and isopropanol precursors,” Applied Physics Letter, 93, 031902 (2008).Google Scholar
  199. 199.
    Y. Hwang, M. A. Wistey, J. Cagnon, R. Engel-Herbert, and S. Stemmer, “Metal-oxide-semiconductor capacitors with erbium oxide dielectrics on In0.53Ga0.47As channels,” Applied Physics Letter, 94, 122907 (2009).CrossRefGoogle Scholar
  200. 200.
    S. Stemmer, Y. Hwang, R. Engel-Herbert, J. Cagnon, and N. Goel, “Atomic scale control of high-k/InGaAs interfaces and correlation with interface trap densities,” MRS Fall meeting (2009).Google Scholar
  201. 201.
    M. Tao, A. E. Botchkarev, D. Park, J. Reed, S. J. Chey, J. E. Van Nostrand, D. G. Cahill, and H. Morkoc, “Improved Si3N4/Si/GaAs metal-insulator-semiconductor interfaces by in situ anneal of the as-deposited Si,” Journal of Applied Physics, 77 4113 (1995).CrossRefGoogle Scholar
  202. 202.
    Z. Chen, S. N. Mohammad, D.-G. Park, D. M. Diatezua, H. Morkoc, and Y. C. Chang, “Band structure and confined energy levels of the Si3N4/Si/GaAs system,” Journal of Applied Physics Letter, 82, 275 (1997).CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Serge Oktyabrsky
  • Yoshio Nishi
  • Sergei Koveshnikov
  • Wei-E Wang
  • Niti Goel
  • Wilman Tsai
    • 1
  1. 1.International SEMATECHAustinUSA

Personalised recommendations