Advertisement

Atomic-Layer Deposited High-k/III-V Metal-Oxide-Semiconductor Devices and Correlated Empirical Model

  • Peide D. Ye
  • Yi Xuan
  • Yanqing Wu
  • Min Xu
Chapter

Abstract

Si CMOS scaling is reaching its physical limit at the 15 nm technology node and beyond. III-V compound semiconductor is one of the leading candidates to replace main-stream Si as n-channel material due its much higher electron mobility. Lacking a suitable gate insulator, practical III-V metal-oxide-semiconductor field-effect transistors (MOSFETs) remain all but a dream for more than four decades. The physics and chemistry of III-V compound semiconductor surfaces or interfaces are problems so complex that even after enormous research efforts understanding is still limited. Most of the research is focused on surface pretreatments, oxide formation and dielectric materials. Less attention is given to the III-V substrate itself. In this chapter, the history and present status of III-V MOSFET research is briefly reviewed. An empirical model for high-k/III-V interfaces is proposed based on the experimental works we performed on III-V MOSFETs using ex-situ atomic-layer-deposited high-k dielectrics and also reported works in the literature using in-situ molecular beam expitaxy grown Ga2O3(Gd2O3) as gate dielectric. The results show that physics related to III-V substrates is as important as surface chemistry and gate oxide properties for realizing high-performance III-V MOSFETs. The central concept of this empirical model is that the band alignment between trap neutral level (E0) and conduction band minimum (CBM) or valence band maximum (VBM) and the magnitude of interface trap density governs the device performance of inversion-mode III-V MOSFETs.

Keywords

Rapid Thermal Anneal Gate Dielectric Valence Band Maximum Conduction Band Minimum Interface Trap 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

The authors would thank National Science Foundation, SRC FCRP MSD Focus Center, Army Research Office, and SRC CSR Program for supporting this work. The contributions from T. Shen, O. Koybasi, R. Wang, and H.C. Lin are greatly appreciated. The authors would like also to thank H. Hasegawa, J. Robertson, R.M. Wallace, G.D. Wilk, M. Hong, K.K. Ng, B. Yang, M.M. Frank, J. del Alamo, D.A. Antoniadis, A. Kummel, S. Oktyabrsky, M.S. Lundstrom, J.M. Woodall, M.A. Alam, and J.C.M. Hwang for the valuable discussions.

References

  1. 1.
    H. Becke, R. Hall, and J. White, Solid-State Electron., 8, 813 (1965).Google Scholar
  2. 2.
    H.W. Becke and J.P. White, Electronics, 40, 82 (1967).Google Scholar
  3. 3.
    L. Messick, Solid-State Electron., 22, 71 (1979).Google Scholar
  4. 4.
    K. Kamimura and Y. Sakai, Thin Solid Films, 56, 215 (1979).Google Scholar
  5. 5.
    T. Mimura and M. Fukuta, IEEE Trans. Electron Devices, 27, 1147 (1980).Google Scholar
  6. 6.
    B. Bayraktaroglu, W.M. Theis, and F.L. Schuermeyer, in 37th Device Research Conference, Abstracts, p. WP-A3, 1979.Google Scholar
  7. 7.
    H.C. Casey, Jr., A.Y. Cho, and E.H. Nicollian, Appl. Phys. Lett., 32, 678 (1978).Google Scholar
  8. 8.
    M.R. Melloch, N. Otsuka, J.M. Woodall, A.C. Warren, and J.L. Freeouf, Appl. Phys. Lett., 57, 1531 (1990).Google Scholar
  9. 9.
    W.T. Tsang, Appl. Phys. Lett., 33, 429 (1979).Google Scholar
  10. 10.
    X. Li, Y. Cao, D.C. Hall, P. Fay, B. Han, A. Wibowo, and N. Pan, IEEE Electron Device Lett., 25, 772 (2004).Google Scholar
  11. 11.
    D.N. Butcher and B.J. Sealy, Electron. Lett., 13, 558 (1977).Google Scholar
  12. 12.
    H. Hasegawa, K.E. Forward, and H.L. Hartnagel, Appl. Phys. Lett., 26, 567 (1975).Google Scholar
  13. 13.
    R.A. Logan, B. Schwartz, and W.J. Sundburg, J. Electronchem. Soc., 120, 1385 (1973).Google Scholar
  14. 14.
    O.A. Weinreich, J. Appl. Phys., 37, 2924 (1966).Google Scholar
  15. 15.
    K. Yamasaki and T. Sugano, Jap. J. Appl. Phys., 17, 321 (1978).Google Scholar
  16. 16.
    N. Yokoyama, T. Mimura, K. Odani, and M. Fukuta, Appl. Phys. Lett., 32, 58 (1978).Google Scholar
  17. 17.
    L.A. Chesler and G.Y. Robinson, Appl. Phys. Lett., 32, 60 (1978).Google Scholar
  18. 18.
    R.P.H. Chang and A.K. Sinha, Appl.Phys. Lett., 29, 56 (1976).Google Scholar
  19. 19.
    V.M. Bermudez, J. Appl. Phys., 54, 6795 (1983).Google Scholar
  20. 20.
    C.F. Yu, M.T. Schmidt, D.V. Podlesnik, E.S. Yang, and R.M. Osgood, Jr., J. Vac. Sci. Technol., A 6, 754 (1988).Google Scholar
  21. 21.
    S.D. Offsey, J.M. Woodall, A.C. Warren, P.D. Kirchner, T.I. Chappell, and G.D. Pettit, Appl. Phys. Lett., 48, 475 (1986).Google Scholar
  22. 22.
    C.W. Wilmsen, Physics and Chemistry of III-V Compound Semiconductor Interfaces. New York: Plenum, 1985.CrossRefGoogle Scholar
  23. 23.
    C.L. Hinkle, M. Milojevic, B. Brennan, A.M. Sonnet, F.S. Aguirre-Tostado, G.J. Hughes, E.M. Vogel, and R.M. Wallace, Appl. Phys. Lett., 94, 162101 (2009).Google Scholar
  24. 24.
    M. Xu, K. Xu, R. Contreras, M. Milojevic, T. Shen, O. Koybasi, Y.Q. Wu, R.M. Wallace, and P.D. Ye, in IEDM Tech. Dig., 2009 (to be published).Google Scholar
  25. 25.
    A.M. Cowley and S.M. Sze, J. Appl.Phys., 36, 3212 (1965).Google Scholar
  26. 26.
    V. Heine, Phys. Rev., 138, 1689 (1965).Google Scholar
  27. 27.
    C. Tejedor and F. Flores, J. Phys. C-Solid State Phys., 11, L19 (1978).Google Scholar
  28. 28.
    W.E. Spicer, P.W. Chye, P.R. Skeath, C.Y. Su, and I. Lindau, J. Vac. Sci. & Technol., 16, 1422 (1979).Google Scholar
  29. 29.
    H. Hasegawa and H. Ohno, J. Vac. Sci. & Technol., B 4, 1130 (1986).Google Scholar
  30. 30.
    J. Tersoff, Phys. Rev. Lett., 52, 465 (1984).Google Scholar
  31. 31.
    J. Tersoff, Phys. Rev. B, 32, 6968 (1985).Google Scholar
  32. 32.
    W.E. Spicer, I. Lindau, P. Skeath, C.Y. Su, and P. Chye, Phys. Rev. Lett., 44, 420 (1980).Google Scholar
  33. 33.
    J. Robertson, Appl. Phys. Lett., 94, 152104 (2009).Google Scholar
  34. 34.
    P.D. Ye, J. Vac. Sci. Technol., A 26, 697 (2008).Google Scholar
  35. 35.
    Y. Xuan, P.D. Ye, and T. Shen, Appl. Phys. Lett., 91, 232107 (2007).Google Scholar
  36. 36.
    M. Xu, Y.Q. Wu, O. Koybasi, T. Shen, and P.D. Ye, Appl. Phys. Lett., 94, 212104 (2009).Google Scholar
  37. 37.
    W.W. Hooper and W.I. Lehrer, Proceedings of IEEE., 55, 1237 (1967).Google Scholar
  38. 38.
    R. Dingle, H.L. Stormer, A.C. Gossard, and W. Wiegmann, Appl. Phys. Lett., 33, 665 (1978).Google Scholar
  39. 39.
    H.L. Stormer, R. Dingle, A.C. Gossard, W. Wiegmann, and M.D. Sturge, Solid State Commun., 29, 705 (1979).Google Scholar
  40. 40.
    T. Mimura, S. Hiyamizu, T. Fujii, and K. Nanbu, Jpn. J. Appl. Phys., 19, L225 (1980).Google Scholar
  41. 41.
    D. Delagebeaudeuf, P. Delescluse, P. Etienne, M. Laviron, J. Chaplart, and N.T. Linh, Electron. Lett., 16, 667 (1980).Google Scholar
  42. 42.
    B.J. Skromme, C.J. Sandroff, E. Yablonovitch, and T. Gmitter, Appl. Phys. Lett., 51, 2022 (1987).Google Scholar
  43. 43.
    E. Yablonovitch, C.J. Sandroff, R. Bhat, and T. Gmitter, Appl. Phys. Lett., 51, 439 (1987).Google Scholar
  44. 44.
    A. Callegari, P.D. Hoh, D.A. Buchanan, and D. Lacey, Appl. Phys. Lett., 54, 332 (1989).Google Scholar
  45. 45.
    H. Hasegawa, M. Akazawa, K.I. Matsuzaki, H. Ishii, and H. Ohno, Jpn. J. Appl. Phys., Part 2 L27, L2265 (1988).Google Scholar
  46. 46.
    S. Tiwari, S.L. Wright, and J. Batey, IEEE Electron Device Lett., 9, 488 (1988).Google Scholar
  47. 47.
    G.G. Fountain, S.V. Hattangady, D.J. Vitkavage, R.A. Rudder, and R.J. Markunas, Electron. Lett., 24, 1134 (1988).Google Scholar
  48. 48.
    G.G. Fountain, R.A. Rudder, S.V. Hattangady, R.J. Markunas, and J.A. Hutchby, in IEDM Tech. Dig., Dec. 1989, pp. 887–889.Google Scholar
  49. 49.
    M. Akazawa, H. Ishii, and H. Hasegawa, Jpn. J. Appl. Phys., 30, 3744 (1991).Google Scholar
  50. 50.
    D.S.L. Mui, H. Liaw, A.L. Demirel, S. Strite, and H. Morkoc, Appl. Phys. Lett., 59, 2847 (1991).Google Scholar
  51. 51.
    A. Callegari, D.K. Sadana, D.A. Buchanan, A. Paccagnella, E.D. Marshall, M.A. Tischler, and M. Norcott, Appl. Phys. Lett., 58, 2540 (1991).Google Scholar
  52. 52.
    S. Koveshnikov, W. Tsai, I. Ok, J.C. Lee, V. Torkanov, M. Yakimov, and S. Oktyabrsky, Appl. Phys. Lett., 88, 022106 (2006).Google Scholar
  53. 53.
    I.J. Ok, H.S. Kim, M.H. Zhang, C.Y. Kang, S.J. Rhee, C.W. Choi, S.A. Krishnan, T. Lee, F. Zhu, G. Thareja, and J.C. Lee, IEEE Electron Device Lett., 27, 145 (2006).Google Scholar
  54. 54.
    S.J. Koester, E.W. Kiewra, Y. Sun, D.A. Neumayer, J.A. Ott, M. Copel, D.K. Sadana, D.J. Webb, J. Fompeyrine, J.-P. Locquet, C. Marchiori, M. Sousa, and R. Germann, Appl. Phys. Lett., 89, 042104 (2006).Google Scholar
  55. 55.
    D. Shahrjerdi, M.M. Oye, A.L. Holmes, and S.K. Banerjee, Appl. Phys. Lett., 89, 043501 (2006).Google Scholar
  56. 56.
    J.P. de Souza E. Kiewra, Y. Sun, A. Callegari, D.K. Sadana, G. Shahidi, D.J. Webb, J. Fompeyrine, R. Germann, C. Rossel, and C. Marchiori, Appl. Phys. Lett., 92, 153508 (2008).Google Scholar
  57. 57.
    H.C. Chin, M. Zhu, C.H. Tung, G.S. Samudra, and Y.C. Yeo, IEEE Electron Device Lett., 29, 553 (2008).Google Scholar
  58. 58.
    M. Passlack, M. Hong, and J.P. Mannaerts, Appl. Phys. Lett., 68, 1099 (1996).Google Scholar
  59. 59.
    M. Passlack, M. Hong, J.P. Mannaerts, R.L. Opila, S.N.G. Chu, N. Moriya, F. Ren, and J.R. Kwo, IEEE Electron Device Lett., 44, 214 (1997).Google Scholar
  60. 60.
    M. Hong, J. Kwo, A.R. Kortan, J.P. Mannaerts, and A.M. Sergent, Science, 283, 1897 (1999).Google Scholar
  61. 61.
    F. Ren, M. Hong, W.S. Hobson, J.M. Kuo, J.R. Lothian, J.P. Mannaerts, J. Kwo, S.N.G. Chu, Y.K. Chen, and A.Y. Cho, Solid-State Electron., 41, 1751 (1997).Google Scholar
  62. 62.
    Y.C. Wang, M. Hong, J.M. Kuo, J.P. Mannaerts, J. Kwo, H.S. Tsai, J.J. Krajewski, Y.K. Chen, and A.Y. Cho, IEEE Electron Devices Lett., 20, 457 (1999).Google Scholar
  63. 63.
    F. Ren, J.M. Kuo, M. Hong, W.S. Hobson, J.R. Lothian, J. Lin, H.S. Tsai, J.P. Mannaerts, J. Kwo, S.N.G. Chu, Y.K. Chen, and A.Y. Cho, IEEE Electron Device Lett., 19, 309 (1998).Google Scholar
  64. 64.
    M. Hong, J.N. Bailargeon, J. Kwo, J.P. Mannaerts, and A.Y. Cho, in Proceeding of IEEE 27th International Symposium on Compound Semiconductors, pp. 345–350, (2000).Google Scholar
  65. 65.
    Y.C. Wang, M. Hong, J.M. Kuo, J.P. Mannaerts, H.S. Tsai, J. Kwo, J. J. Krajewski, Y. K. Chen, and A. Y. Cho, Electron. Lett., 35, 667 (1999).Google Scholar
  66. 66.
    B. Yang, P.D. Ye, J. Kwo, M.R. Frei, H.J.L. Gossmann, J.P. Mannaerts, M. Sergent, M. Hong, and K.N.J. Bude, J. Cryst. Growth., 251, 837 (2003).Google Scholar
  67. 67.
    T.D. Lin, H.C. Chiu, P. Chang, L.T. Tung, C.P. Chen, M. Hong, J. Kwo, W. Tsai, and Y.C. Wang, Appl. Phys. Lett., 93, 033516 (2008).Google Scholar
  68. 68.
    M. Passlack, N. Medendorp, R. Gregory, and D. Braddock, Appl. Phys. Lett., 83, 5262 (2003).Google Scholar
  69. 69.
    K. Rajagopalan, J. Abrokwah, R. Droopad, and M. Passlack, IEEE Electron Device Lett., 27, 959 (2006).Google Scholar
  70. 70.
    R.J.W. Hill, D.A.J. Moran, X. Li, H. Zhou, D. Macintyre, S. Thoms, A. Asenov, P. Zurcher, K. Rajagopalan, J. Abrokwah, R. Droopad, M. Passlack, and L.G. Thayne, IEEE Electron Device Lett., 28, 1080 (2007).Google Scholar
  71. 71.
    M.J. Hale, S.I. Yi, J.Z. Sexton, A.C. Kummel, and M. Passlack, J. Chem. Phys., 119, 6719 (2003).Google Scholar
  72. 72.
    P.D. Ye, G.D. Wilk, J. Kwo, B. Yang, H.-J.L. Gossmann, M. Frei, S.N.G. Chu, J.P. Mannaerts, M. Sergent, M. Hong, K.K. Ng, and J. Bude, IEEE Electron Device Lett., 24, 209 (2003).Google Scholar
  73. 73.
    P.D. Ye, G.D. Wilk, B. Yang, J. Kwo, S.N.G. Chu, S. Nakahara, H.-J.L. Gossmann, J.P. Mannaerts, M. Hong, K.K. Ng, and J. Bude, Appl. Phys. Lett., 83, 180 (2003).Google Scholar
  74. 74.
    P.D. Ye, G.D. Wilk, B. Yang, J. Kwo, H.-J.L. Gossmann, M. Hong, K.K. Ng, and J. Bude, Appl. Phys. Lett., 84, 434 (2004).Google Scholar
  75. 75.
    P. D. Ye, G.D. Wilk, B. Yang, S.N.G. Chu, K.K. Ng, and J. Bude, Solid-State Electron., 49, 790 (2005).Google Scholar
  76. 76.
    P.D. Ye, B. Yang, K.K. Ng, J. Bude, G.D. Wilk, S. Halder, and J.C.M. Hwang, Appl.Phys. Lett., 86, 063501 (2005).Google Scholar
  77. 77.
    Y. Xuan, H.C. Lin, P.D. Ye, and G.D. Wilk, Appl. Phys. Lett., 89, 132103 (2006).Google Scholar
  78. 78.
    Y. Xuan, H.C. Lin, and P.D. Ye, ECS Transactions, 3, 59 (2006).Google Scholar
  79. 79.
    Y. Xuan, H.C. Lin, and P.D. Ye, IEEE Trans. Electron Devices, 54, 1811 (2007).Google Scholar
  80. 80.
    Y.Q. Wu, T. Shen, P.D. Ye, and G.D. Wilk, Appl. Phys. Lett., 90, 143504 (2007).Google Scholar
  81. 81.
    T. Yang, Y. Xuan, D. Zemlyanov, T. Shen, Y.Q. Wu, J.M. Woodall, P.D. Ye, F.S. Aguirre-Tostado, M. Milojevic, S. McDonnell, and R.M. Wallace, Appl. Phys. Lett., 91, 142122 (2007).Google Scholar
  82. 82.
    T. Yang, Y. Liu, P.D. Ye, Y. Xuan, H. Pal, and M.S. Lundstrom, Appl. Phys. Lett., 92, 252105 (2008).Google Scholar
  83. 83.
    M.M. Frank, G.D. Wilk, D. Starodub, T. Gustafsson, E. Garfunkel, Y.J. Chabal, J. Grazul, and D.A. Muller, Appl. Phys. Lett., 86, 152904 (2005).Google Scholar
  84. 84.
    M.L. Huang, Y.C. Chang, C.H. Chang, Y.J. Lee and P. Chang, J. Kwo, T.B. Wu, and M. Hong, Appl. Phys. Lett., 87, 252104 (2005).Google Scholar
  85. 85.
    C.H. Chang, Y.K. Chiou, Y.C. Chang, K.Y. Lee, T.D. Lin, T.B. Wu, M. Hong, and J. Kwo, Appl. Phys. Lett., 89, 242911 (2006).Google Scholar
  86. 86.
    C.L. Hinkle, A.M. Sonnet, E.M. Vogel, S. McDonnell, G.J. Hughes, M. Milojevic, B. Lee, F.S. Aguirre-Tostado, K.J. Choi, H.C. Kim, J. Kim, and R.M. Wallace, Appl. Phys. Lett., 92, 071901 (2008).Google Scholar
  87. 87.
    Y. Xuan, Y.Q. Wu, H.C. Lin, T. Shen, and P.D. Ye, in Proceeding of 65th Device Research Conference, Notre Dame, USA, 2007.Google Scholar
  88. 88.
    Y. Xuan, Y.Q. Wu, H.C. Lin, T. Shen, and P.D. Ye, IEEE Electron Devices Lett., 28, 935 (2007).Google Scholar
  89. 89.
    Y. Xuan, Y.Q. Wu, T. Shen, T. Yang, and P.D. Ye, in IEDM Tech. Dig., Dec. 2007, pp. 637–640.Google Scholar
  90. 90.
    Y. Xuan, Y.Q. Wu, and P.D. Ye, IEEE Electron Device Lett., 29, 294 (2008).Google Scholar
  91. 91.
    Y. Xuan, T. Shen, M. Xu, Y.Q. Wu, and P.D. Ye, in IEDM Tech. Dig., Dec. 2008, pp. 371–374.Google Scholar
  92. 92.
    Y.Q. Wu, W.K. Wang, O. Koybasi, D.N. Zakharov, E.A. Stach, S. Nakahara, J.C.M. Hwang, and P.D. Ye, IEEE Electron Device Lett., 30, 700 (2009).Google Scholar
  93. 93.
    Y.Q. Wu, M. Xu, R. Wang, O. Koybasi, and P.D. Ye, in IEDM Tech. Dig., Dec. 2009, to be published.Google Scholar
  94. 94.
    Y.Q. Wu, R. Wang, T. Shen, J.J. Gu, and P.D. Ye, in IEDM Tech. Dig., Dec. 2009, to be published.Google Scholar
  95. 95.
    M. Zhu, C. H. Tung, and Y. C. Yeo, Appl. Phys. Lett., 89, 202903 (2006).Google Scholar
  96. 96.
    H.L. Lu, L. Sun, S.J. Ding, M. Xu, D.W. Zhang, and L.K. Wang, Appl. Phys. Lett., 89, 152910 (2006).Google Scholar
  97. 97.
    G.K. Dalapati, Y. Tong, W.Y. Loh, H.K. Mun, and B.J. Cho, IEEE Trans. Electron Devices, 54, 1831 (2007).Google Scholar
  98. 98.
    D. Shahrjerdi, E. Tutuc, and S. Banerjee, Appl. Phys. Lett., 91, 063501 (2007).Google Scholar
  99. 99.
    A.M. Sonnet, C.L. Hinkle, M.N. Jivani, R.A. Chapman, G.P. Pollack, R.M. Wallace, and E.M. Vogel, Appl. Phys. Lett., 93, 122109 (2008).Google Scholar
  100. 100.
    U. Singisetti, M.A. Wistey, G.J. Burek, A.K. Baraskar, J. Cagnon, B.J. Thibeault, S. Stemmer, A.C. Gossard, M.J.W. Rodwell, E. Kim, B. Shin, P.C. McIntyre, and Y.J. Lee, in Proceeding of IEEE 67th Devcie Research Conference, 2009, pp. 253–354.Google Scholar
  101. 101.
    R. Chau, S. Datta, and A. Majumdar, in Proc. IEEE CSIC Dig., 2005, pp. 17–20.Google Scholar
  102. 102.
    S. Datta, T. Ashley, J. Brask, L. Buckle, M. Doczy, M. Emeny, D. Hayes, K. Hilton, R. Jefferies, T. Martin, T.J. Phillips, D. Wallis, P. Wilding, and R. Chau, in IEDM Tech. Dig., 2005, pp. 783–786.Google Scholar
  103. 103.
    M. Radosvljevic, T. Ashley, A. Andreev, S.D. Coomber, G. Dewey, M.T. Emeny, M. Fearn, D.G. Hayes, K.P. Hilton, M.K. Hudait, R. Jefferies, T. Martin, R. Pillarisetty, W. Rachmady, T. Rakshit, S.J. Smith, M.J. Uren, D.J. Wallis, P.J. Wilding, and R. Chau, in IEDM Tech. Dig., pp. 727–730, Dec. 2008.Google Scholar
  104. 104.
    D. H. Kim, J. A. del Alamo, J. H. Lee, and K. S. Seo, IEEE Trans. Electron Devices, 54, 2606 (2007).Google Scholar
  105. 105.
    D. H. Kim, and J. A. del Alamo, IEEE Electron Device Lett., 29, 830 (2008).Google Scholar
  106. 106.
    G.D. Wilk, R.M. Wallace, and J.M. Anthony, J. Appl. Phys., 89, 5243 (2001).Google Scholar
  107. 107.
    D.D. Nolte, Solid-State Electron., 33, 295 (1990).Google Scholar
  108. 108.
    H. Hasegawa and M. Akazawa, Appl. Surf. Sci., 254, 8005 (2008).Google Scholar
  109. 109.
    J. Robertson and B. Falabretti, J. Appl. Phys., 100, 014111 (2006).Google Scholar
  110. 110.
    A. Dimoulas, P. Tsipas, A. Sotiropoulos, and E.K. Evangelou, Appl. Phys. Lett., 89, 252110 (2006).Google Scholar
  111. 111.
    W.E. Spicer, P.W. Chye, P.R. Skeath, C.Y. Su, and I. Lindau, J. Vac. Sci. Tech., 16, 1422 (1979).Google Scholar
  112. 112.
    D. Varghese, Y. Xuan, Y.Q. Wu, T. Shen, P.D. Ye, and M.A. Alam, in IEDM Tech. Dig., 2008, pp. 379–382.Google Scholar
  113. 113.
    M.V. Fischetti and S.E. Laux, IEEE Trans. Electron Devices, 38, 650 (1991).Google Scholar
  114. 114.
    D. L. Lile and M.J. Taylor, J. Appl. Phys., 54, 260 (1983).Google Scholar
  115. 115.
    D. L. Lile, Solid-State Electron., 21, 1199 (1978).Google Scholar
  116. 116.
    D. L. Lile, D. A. Collins, L. G. Meiners, and L. Messick, Electronics Lett., 14, 657 (1978).Google Scholar
  117. 117.
    T. Kawakami and M. Okamura, Electronics Lett., 15, 502 (1979).Google Scholar
  118. 118.
    Y. Shinoda and T. Kobayashi, Solid State Electron., 25, 1119 (1982).Google Scholar
  119. 119.
    W.F. Tseng, M.L. Bark, H.B. Dietrich, A. Christou, R.L. Henry, W.A. Schmidt, and N.S. Saks, IEEE Electron Device Lett., 2, 299 (1981).Google Scholar
  120. 120.
    Y.Q. Wu, Y. Xuan, T. Shen, P.D. Ye, Z. Cheng, and A. Lochtefeld, Appl. Phys. Lett., 91, 022108 (2007).Google Scholar
  121. 121.
    S. Oktyabrsky, V. Tokranov, S. Koveshnikov, M. Yakimov, R. Kambhampati, H. Bakhru, R. Moore, and W. Tsai, J. Cryst. Growth., 311, 1950 (2009).Google Scholar
  122. 122.
    N. Goel, D. Heh, S. Koveshnikov, I. Ok, S. Oktyabrsky, V. Tokranov, R. Kambhampati, M. Yakimov, Y. Sun, P. Pianetta, C.K. Gaspe, M.B. Santos, J. Lee, S. Datta, P. Majhi, and W. Tsai, in IEDM Tech. Dig., pp. 363–366 (2008).Google Scholar
  123. 123.
    P.S. Dutta, H.L. Bhat, and V. Kumar, J. Appl. Phys., 81, 5821 (1997).Google Scholar
  124. 124.
    N. Li, E.S. Harmon, J. Hyland, D.B. Salzman, T.P. Ma, Y. Xuan, and P.D. Ye, Appl. Phys. Lett., 92, 143507 (2008).Google Scholar
  125. 125.
    T. Yang, Y. Xuan, P.D. Ye, W. Wang, J.C.M. Hwang, D. Lubyshev, J.M. Fastenau, W.K. Liu, T.D. Mishima, and M.B. Santos, in Proceeding of TMS 2007 Electronic Materials Conferences, Notre Dame, USA, 2007.Google Scholar
  126. 126.
    Y.Q. Wu, T. Shen, P.D. Ye, and G.D. Wilk, Appl. Phys. Lett., 90, 143504 (2007).Google Scholar
  127. 127.
    Y.C. Chang, W.H. Chang, H.C. Chiu, L.T. Tung, C.H. Lee, K.H. Shiu, M. Hong, J. Kwo, J.M. Hong, and C.C. Tsai, Appl. Phy. Lett., 93, 053504 (2008).Google Scholar
  128. 128.
    W. Huang, T. Khan, and T.P. Chow, IEEE Electron Devices Lett., 27, 796 (2006).Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.School of Electrical and Computer Engineering and Birck Nanotechnology CenterPurdue UniversityWest LafayetteUSA

Personalised recommendations