Skip to main content

Sub-100 nm Gate III-V MOSFET for Digital Applications

  • Chapter
  • First Online:
Book cover Fundamentals of III-V Semiconductor MOSFETs
  • 3513 Accesses

Abstract

The performance of nano-CMOS digital ICs is characterized in terms of key figure of merits, which provides a benchmark for III-V compound semiconductor MOSFETs. The selection of III-V channel material is discussed based on the transport properties, i.e., the intrinsic electron mobility and hole mobility, of different III-V alloys. To improve the hole mobility for III-V p-MOSFETs, the effects of strain-induced hole mobility enhancement are reviewed. Critical process issues for self-aligned III-V MOSFET are thermal stability of the oxide-semiconductor interface and source/drain doping limitations. The advantages of self-aligned GaAs enhancement-mode MOSFETs using regrown source and drain regions are demonstrated. Finally, the state-of-the-art device performance of sub-100 nm gate III-V FETs is compared with Si MOSFETs.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  1. M. Hong, J. N. Baillargeon, J. Kwo, J. P. Mannaerts, and A. Y. Cho, “First demonstration of GaAs CMOS,” Proceedings of 2000 IEEE International Symposium on Compound Semiconductors, 2000, p. 345.

    Google Scholar 

  2. M. Bohr, “MOS transistors: Scaling and performance trends,” Semiconductor International, June 1995, pp. 75–80.

    Google Scholar 

  3. S. Natarajan et al., “A 32 nm logic technology featuring 2nd-generation high-k + metal-gate transistors, enhanced channel strain and SRAM cell size in a 291 Mb array,” IEDM Tech. Dig., 2008, pp. 1–3.

    Google Scholar 

  4. B. Doyle et al., “Transistor elements for 30 nm physical gate length and beyond,” Intel Technol. J., 6, 42 (2002).

    Google Scholar 

  5. J. Chen, T. Y. Chan, I. C. Chen, P. K. Ko, and C. Hu, “Subbreakdown drain leakage current in MOSFET,” IEEE Electron Device Lett., 8, 515 (1987).

    Google Scholar 

  6. R. Chau et al., “Benchmarking nanotechnology for high-performance and low-power logic transistor applications,” IEEE Trans. Nanotechnol., 4, 153 (2005).

    Google Scholar 

  7. Sadao Adachi, Properties of group-IV, III-V and II-VI semiconductors, (John Wiley & Sons, 2005), p. 322.

    Google Scholar 

  8. D. Chattopadhyay, S. K. Sutradhar, and B. R. Nag, “Electron transport in direct-gap III-V ternary alloys,” J. Phys. C, 14, 891 (1981).

    Google Scholar 

  9. H. Miki, K. Segawa, M. Otsubo, K. Shirahata, and K. Fujibayashi, “Growth of InxGa1−xSb by liquid phase epitaxy,” in GaAs and Related Compounds (Inst. Phys. Conf. Ser. no. 24, Inst. of Phys., London and Bristol, 1975), pp. 16–21.

    Google Scholar 

  10. M. Kawashima and S. Kataoka, “Electron velocity-field characteristics of GaxIn1−xSb measured by a microwave heating technique,” Jpn. J. Appl. Phys., 18, 1311 (1979).

    Google Scholar 

  11. S. E. Thompson et al., “A 90 nm logic technology featuring strained-silicon,” IEEE Trans. Electron Devices, 51, 1790 (2004).

    Google Scholar 

  12. M. L. Lee and E. A. Fitzgerald, “Hole mobility enhancements in nanometer-scale strained-silicon structures grown on Ge-rich relaxed Si1−xGex,J. Appl. Phys., 94, 2590 (2003).

    Google Scholar 

  13. Y. Sun, S. E. Thompson, and T. Nishida, “Physics of strain effects in semiconductors and metal-oxide-semiconductor field-effect transistors,” J. Appl. Phys., 101, 104503 (2007).

    Google Scholar 

  14. S. L. Chuang, “Efficient band-structure calculations of strained quantum wells,” Phys. Rev. B, 43, 9649 (1991).

    Google Scholar 

  15. S. Datta et al., “85 nm gate length enhancement and depletion mode InSb quantum well transistors for ultra high speed and very low power digital logic applications,” IEDM Tech. Dig., 2005, pp. 763–766.

    Google Scholar 

  16. M. Radosavljevic et al., “High-performance 40 nm gate length InSb p-channel compressively strained quantum well field effect transistors for low-power (VCC = 0.5 V) logic applications,” IEDM Tech. Dig., 2008, pp. 1–4.

    Google Scholar 

  17. R. Chau, S. Datta, and A. Majumdar, “Opportunities and challenges of III-V nanoelectronics for future high-speed, low-power logic applications,” IEEE Compound Semiconductor Integrated Circuit Symposium, 2005, pp. 17–20.

    Google Scholar 

  18. H. W. Kennel et al., “Kinetics of shallow junction activation: Physical mechanism,” Proceedings International Conference on Advanced Thermal Processing, 2006, pp. 85–91.

    Google Scholar 

  19. D. Cheng, C. Liao, K. Y. Cheng, and M. Feng, “Process development and characteristics of nano III-V MOSFET,” International Conference on Compound Semiconductor Manufacturing Technology (CS MANTECH) Technology Digest, 2008, pp. 339–342.

    Google Scholar 

  20. C. Liao, D. Cheng, C. Cheng, K. Y. Cheng, M. Feng, T. H. Chiang, J. Kwo, and M. Hong, “Inversion-channel enhancement-mode GaAs MOSFETs with regrown source and drain contacts,” J. Crystal Growth, 311, 1958 (2009).

    Google Scholar 

  21. D. Barlage et al., “Low temperature selected area regrowth of ohmic contacts for III-N FETs,” Mater. Res. Soc. Symp., 892, (2006).

    Google Scholar 

  22. P. D. Ye, “Main determinants for III-V metal-oxide-semiconductor field-effect-transistors,” J. Vac. Sci. Technol. A, 26, 697 (2008).

    Google Scholar 

  23. T. D. Lin, H. C. Chiu, P. Chang, L. T. Tung, C. P. Chen, M. Hong, J. Kwo, W. Tsai, and Y. C. Wang, “High-performance self-aligned inversion-channel In0.53Ga0.47As metal-oxide-semiconductor field-effect-transistor with Al2O3/Ga2O3(Gd2O3) as gate dielectrics,” Appl. Phys. Lett., 93, 033516 (2008).

    Google Scholar 

  24. Y. Xuan, Y. Q. Wu, and P. D. Ye, “High-performance inversion-type enhancement-mode InGaAs MOSFET with maximum drain current exceeding 1 A/mm,” IEEE Electron Device Lett., 29, 294 (2008).

    Google Scholar 

  25. Y. Q. Wu, W. K. Wang, O. Koybasi, D. N. Zakharov, E. A. Stach, S. Nakahara, J. C. M. Hwang, and P. D. Ye, “0.8 V supply voltage deep-submicrometer inversion-mode In0.75Ga0.25As MOSFET,” IEEE Electron Device Lett., 30, 700 (2009).

    Google Scholar 

  26. C. H. Jan et al., “A 65 nm ultra low power logic platform technology using uni-axial strained silicon transistors,” IEDM Tech. Dig., 2007, pp. 60–63.

    Google Scholar 

  27. N. Waldron, D. Kim, and J. A. Alamo, “90 nm self-aligned enhancement-mode InGaAs HEMT for logic applications,” IEDM Tech. Dig., 2007, pp. 633–636.

    Google Scholar 

  28. D. Kim and J. A. Alamo, “30 nm E-mode InAs pHEMTs for THz and future logic applications,” IEDM Tech. Dig., 2008, pp. 830–833.

    Google Scholar 

  29. M. Hudait et al., “Heterogeneous integration of enhancement mode In0.7Ga0.3As quantum well transistor on silicon substrate using thin composite buffer architecture for high-speed and low-voltage (0.5 V) logic applications,” IEDM Tech. Dig., 2007, pp. 625–628.

    Google Scholar 

  30. S. Datta, “III-V field-effect transistors for low power digital logic applications,” Microelectronic Eng., 84, 2133 (2007).

    Google Scholar 

  31. Y. Sun et al., "High-performance In0.7Ga0.3As-channel MOSFETs with high-k gate dielectrics and α-Si passivation,” IEEE Electron Device Lett., 30, 5 (2009).

    Google Scholar 

  32. R. Yan, A. Ourmazd, and K, Lee, “Scaling the Si MOSFET: From bulk to SOI to bulk,” IEEE Trans Electron Dev., 39, 1704 (1992).

    Google Scholar 

Download references

Acknowledgements

This work is supported in part by the MARCO MSD Focus Center, one of five research centers funded under the Focus Center Research Program, a Semiconductor Research Corporation program.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to K. Y. (Norman) Cheng .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Cheng, K., Feng, M., Cheng, D., Liao, C. (2010). Sub-100 nm Gate III-V MOSFET for Digital Applications. In: Oktyabrsky, S., Ye, P. (eds) Fundamentals of III-V Semiconductor MOSFETs. Springer, Boston, MA. https://doi.org/10.1007/978-1-4419-1547-4_10

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-1547-4_10

  • Published:

  • Publisher Name: Springer, Boston, MA

  • Print ISBN: 978-1-4419-1546-7

  • Online ISBN: 978-1-4419-1547-4

  • eBook Packages: EngineeringEngineering (R0)

Publish with us

Policies and ethics