Bio-Inspired Adhesion and Adhesives: Controlling Adhesion by Micro-Nano Structuring of Soft Surfaces

  • Abhijit Majumder
  • Ashutosh Sharma
  • Animangsu Ghatak


Although the man made synthetic adhesives have quite high adhesion because of their viscoelasticity or irreversible chemical bonding, they are not reusable and are often prone to particulate contamination and cohesive failure. On the other hand, attachment pads found at the feet of different insects and climbing animals like geckos show high adhesion, self-cleaning and reusability. Decades of research have confirmed that the patterns and structures present at the surface of or buried inside the natural adhesive pads have rendered them these amazing qualities. These observation inspired scientists and researchers to mimic the structures to fabricate soft, synthetic reusable adhesives. This chapter will present a brief review on those efforts with a focus on structure and mechanism of patterned bio-adhesives and synthetic pressure sensitive adhesives.


Adhesion enhancement bio-mimetic gecko adhesive hairy adhesive patterned surface fibrillar interface surface structuring/pattering micro-fabricated adhesive sub-surface structures microfluidic adhesive reusable adhesive carbon noano-tube 



Support from Department of Science and Technology through an IRHPA grant is gratefully acknowledged.


  1. 1.
    Maderson PFA (1964) Keratinized epidermal derivatives as an aid to climbing in gekkonid lizards. Nature 203:780–781.CrossRefGoogle Scholar
  2. 2.
    Walker G (1993) Adhesion to smooth surfaces by insects-a review. Int. J. Adhesion Adhesives 13:3–7.CrossRefGoogle Scholar
  3. 3.
  4. 4.
    Frantsevich L and Gorb S (2004) Structure and mechanism of the tarsal chain in the hornet, Vespa crabro (Hymenoptera, Vespidae): implications on the attachment mechanism. Arthr. Struc. Develop. 33:67–89.CrossRefGoogle Scholar
  5. 5.
    Dai Z, Gorb SN, and Schwarz U (2002) Roughness-dependant friction force of the tarsal claw system in the beetle Pachnoda marginata (Coleoptera, Scrabaeidae). J. Exp. Biol. 205:2479–2488.Google Scholar
  6. 6.
    Goodwyn PP, Peressadko AP, Schwarz H et al. (2006) Material structure, stiffness and adhesion: why attachment pads of the grasshopper (Tettigonia viridissima) adhere more strongly than those of the locust (Locusta migratoria) (Insecta:Orthopetra). J. Comp. Physiol. A. 192:1233–1243.CrossRefGoogle Scholar
  7. 7.
    Barnes W and Jon P (2007) Biomimetic solutions to sticky problems. Science 318:203–204.CrossRefGoogle Scholar
  8. 8.
    Northen MT and Turner KL (2005) A batch fabricated biomimetic dry adhesive. Nanotechnology 16:1159–1166.CrossRefGoogle Scholar
  9. 9.
    Northen MT and Turner KL (2005) Multi-scale compliant structure for use as a chip-scale dry adhesive. The 13th international conference on solid-state sensors, Actuators and Microsystems. Digest of Technical Papers. TRANSDUCERS ´05 2:2044–2047.Google Scholar
  10. 10.
    Sitti M and Fearing RS (2003) Synthetic gecko foot-hair micro/nano structures for future wall-climbing robots. International conference on robotics and automation, 1164–1170.Google Scholar
  11. 11.
    Menon C, Murphy M, and Sitti M (2004) Gecko inspired surface climbing robots. Proceedings of the 2004 IEEE: International Conference on Robotics and Biomimetics, 431–436.Google Scholar
  12. 12.
    Cheung E, Karagozler ME, Park S et al. (2005) A new endoscopic microcapsule robot using beetle inspired microfibrillar adhesive. Proceedings of the 2005 IEEE/ASME International Conference on Advanced Intelligent Mechatronics, 551–557.Google Scholar
  13. 13.
    Daltorio KA, Gorb S, Peressadko A et al. (2005) A robot that climbs walls using micro-structured polymer feet. International conference on climbing and walking robots. International Conference on Climbing and Walking Robots, London.Google Scholar
  14. 14.
    Mahdavi A, Ferreira L, Sundback C et al. (2007) A biodegradable and biocompatible gecko-inspired tissue adhesive, Proc. Natl. Acad. Sci. 105:2305–2312.Google Scholar
  15. 15.
    Gay C (2002) Stickiness-some fundamentals of adhesion. Integr.Comp. Biol. 42:1123–1126.CrossRefGoogle Scholar
  16. 16.
    Creton C and Papon E (2003) Materials science of adhesives: how to bond things together. MRS Bull. June:419–423.Google Scholar
  17. 17.
    Yarusso DJ (2002) Effect of rheology on PSA performance. In: Dillard DA and Pocius AV (eds.) The Mechanics of Adhesion, 1st edn. Elsevier, Amsterdam.Google Scholar
  18. 18.
    Taljsten B (2005) The importance of bonding-An historic overview and future possibilities. Proceedings of the International Symposium on Bond Behaviour of FRP in Structures 1–10.Google Scholar
  19. 19.
    Dahlquist CA (1969) Pressure Sensitive Adhesives. Vol. 2, Patrick RL (ed) Marcel Dekker, New York.Google Scholar
  20. 20.
    Creton C and Fabre P (2002) Tack. In: Dillard DA and Pocius AV (eds) The Mechanics of Adhesion, 1st edn. Elsevier, Amsterdam.Google Scholar
  21. 21.
    Chiche A and Creton C (2004) Cavitation in a soft adhesive, Proceedings of the 27th annual adhesion society meeting, Wilmington, 296–298.Google Scholar
  22. 22.
    Ghatak A, Chaudhury M, Shenoy V et al. (2000) Meniscus instability in confined thin elastic films. Phys. Rev. Lett. 85:4329–4332.CrossRefGoogle Scholar
  23. 23.
    Chung JY, Kim K, Chaudhury MK et al. (2006) Confinement-induced instability and adhesive failure between dissimilar thin elastic films. Euro. Phys. J. E–Soft Matter 20:47–53.CrossRefGoogle Scholar
  24. 24.
    Shenoy V and Sharma A (2001) Pattern formation in a thin solid film with interactions. Phys. Rev. Lett. 86:119–122.Google Scholar
  25. 25.
    Sarkar J, Shenoy V, and Sharma A (2004) Patterns, forces and metastable pathways in debonding of elastic films. Phys. Rev. Lett. 93:018302.CrossRefGoogle Scholar
  26. 26.
    Gonuguntala M, Sharma A, Sarkar J et al. (2006) Contact Instability in adhesion and debonding of thin elastic films. Phys. Rev. Lett. 97:018303.CrossRefGoogle Scholar
  27. 27.
    Creton C (2003) Pressure-sensitive adhesives: an introductory course. MRS Bull. June:434–439.Google Scholar
  28. 28.
    Chan EP, Greiner C, Arzt E et al. (2007) Design model systems for enhanced adhesion. MRS Bull. 32:496–503.CrossRefGoogle Scholar
  29. 29.
    Jagota A and Bennison SJ (2002) Mechanics of adhesion through a fibrillar microstructure. Integr. Comp. Biol. 42:1140–1145.CrossRefGoogle Scholar
  30. 30.
    Creton C and Schach R (2009) Diffusion and adhesion. In: Benedek I and Feldstein MM (eds) Handbook of pressure-sensitive adhesive and products, Fundamentals of pressure sensitivity, 1st edn. Taylor and Francis, New York..Google Scholar
  31. 31.
    Creton C and Gorb S (2007) Sticky feet: From animals to materials. MRS Bull. 32:466–472.CrossRefGoogle Scholar
  32. 32.
    Arzt E, Gorb S, and Spolenak R (2003) From micro to nano contacts in biological attachment devices. Proc. Natl. Acad. Sci. 100:10603–10606.CrossRefGoogle Scholar
  33. 33.
    Ruibal R and Ernst V (1965) The structure of digital setae of lizards. J. Morphol. 117:271–294.CrossRefGoogle Scholar
  34. 34.
    Wainwright SA, Biggs WD, Currey JD et al. (1982) Mechanical design in organisms. Princeton University Press, Princeton, NJ.Google Scholar
  35. 35.
    Russel AP (1986) The morphological basis of weight-bearing in the scansors of the Tokay gecko (Reptilia, Sauria). Can. J. Zool. 64:948–955.CrossRefGoogle Scholar
  36. 36.
    Schleich HH and Kastle W (1986) Ultrastrukturen an Gecko-Zehen (Reptilia, Sauria: Gekkonidae). Amphibia-Reptilia. 7:141–166.CrossRefGoogle Scholar
  37. 37.
    Autumn K and Peattie AM (2002) Mechanisms of adhesion in geckos. Integr. Comp. Biol. 42:1081–1090.CrossRefGoogle Scholar
  38. 38.
    Irschick DJ, Austin CC, Petren K et al. (1996) A comparative analysis of clinging ability among pad-bearing lizards. Biol. J. Linn. Soc. 59:21–35.CrossRefGoogle Scholar
  39. 39.
    Autumn K and Hansen W (2006) Ultrahydrophobicity indicates a non-adhesive default state in gecko setae. J. Comp. Physiol. A. 192:1205–1212.CrossRefGoogle Scholar
  40. 40.
    Autumn K, Hsieh ST, Dudek DM et al. (2006) Dynamics of geckos running vertically. J. Exp. Biol. 209:260–272.CrossRefGoogle Scholar
  41. 41.
    Gillett JD and Wigglesworth VB (1932) The climbing organ of an insect, Rhodnius prolixus (Hemiptera, Reduviidae). Proc. R. Soc. B. 111:364–376.CrossRefGoogle Scholar
  42. 42.
    Gorb S, Jiao Y, and Scherge M (2000) Ultrastructural architecture and mechanical properties of attachment pads in Tettigonia viridissima (Orthoptera, Tettigonia). J. Comp. Physiol. A. 186:821–834.CrossRefGoogle Scholar
  43. 43.
    Jiao Y, Gorb S, and Scherge M (2000) Adhesion measured on the attachement pads of Tettigonia Viridissima (Orthoptera, Insecta). J. Exp. Biol. 203:1887–1895.Google Scholar
  44. 44.
    Gorb S and Scherge M (2000) Biological microtribology: anisotropy in frictional forces of orthopteran attachment pads reflects the ultrastructure of a highly deformable material. Proc. R. Soc. Lond. B. 267:1239–1244.CrossRefGoogle Scholar
  45. 45.
    Gorb S, Beutel RG, Gorb EV et al. (2002) Structural design and biomechanics of friction-based releasable attachment devices in insects. Integr. Comp. Biol. 42:1127–1139.CrossRefGoogle Scholar
  46. 46.
    Majumder A, Ghatak A, and Sharma A (2007) Microfluidic adhesion induced by subsurface microstructure. Science 318:258–261.CrossRefGoogle Scholar
  47. 47.
    Verma MKS, Majumder A, and Ghatak A (2006) Embedded template assisted fabrication of complex microchannels in PDMS and design of a microfluidic adhesive. Langmuir 22:10291–10295.CrossRefGoogle Scholar
  48. 48.
    Edward A and Ghatak A (2009) Bioinspired design of a hierarchically structured adhesive. Langmuir 25:611–617.CrossRefGoogle Scholar
  49. 49.
    Hora SL (1923) The adhesive apparatus on the toe of certain geckos and tree frogs. J. Proc. Asiat. Soc. Bengal 9:137–145.Google Scholar
  50. 50.
    Mahendra BC (1941) Contributions to the bionomics, anatomy, reproduction and development of the Indian house gecko Hemidactylus flaviviridis Ru¨ppell. Part II. The problem of locomotion. Proc. Indian Acad. Sci. Sec. B. 13:288–306.Google Scholar
  51. 51.
    Hiller U (1975) Comparative studies on the functional morphology of two gekkonid lizards. J. Bombay Nat. Hist. Soc. 73:278–282.Google Scholar
  52. 52.
    Gennaro JGJ (1969) The gecko grip. Nat. Hist. 78:36–43.Google Scholar
  53. 53.
    Russell AP (1975) A contribution to the functional morphology of the foot of the tokay, Gekko gecko (Reptilia, Gekkonidae). J. Zool. Lond. 176:437–476.CrossRefGoogle Scholar
  54. 54.
    Williams EE and Peterson JA (1982) Convergent and alternative designs in the digital adhesive pads of scincid lizards. Science 215:1509–1511.CrossRefGoogle Scholar
  55. 55.
    Stork NE (1980) Experimental analysis of adhesion of Chrysolina polita (Chrysomelidae: Coleoptera) on a variety of surfaces. J. Exp. Biol. 88:91–108.Google Scholar
  56. 56.
    Autumn K, Liang YA, Hsieh ST et al. (2000) Adhesive force of a single gecko foot-hair. Nature 405:681–685.CrossRefGoogle Scholar
  57. 57.
    Autumn K, Sitti M, Liang YA et al. (2002) Evidence for van der Waals adhesion in gecko setae. Proc. Natl. Acad. Sci. 99:12252–12256.CrossRefGoogle Scholar
  58. 58.
    Federle W, Baumgartner W, and Holldobler B (2004) Biomechanics of ant adhesive pads: frictional forces are rate and temperature dependent. J. Exp. Biol. 206:67–74.CrossRefGoogle Scholar
  59. 59.
    Huber G, Mantz H, Spolenak R et al. (2005) Evidence for capillarity contributions to gecko adhesion from single spatula nanomechanical measurements. Proc. Natl. Acad. Sci. 102:16293–16296.CrossRefGoogle Scholar
  60. 60.
    Tian Y, Pesika N, Zenget H et al. (2006) Adhesion and friction in gecko toe attachment and detachment. Proc. Natl. Acad. Sci. 103:19320–19325.CrossRefGoogle Scholar
  61. 61.
    Persson BNJ (2003) On the mechanism of adhesion in biological systems. J. Chem. Phys. 118:7614–7621.CrossRefGoogle Scholar
  62. 62.
    Persson BNJ (2007) Biological adhesion for locomotion on rough surfaces: Basic principle and a theorist’s view. MRS Bull. 32: 486–490.CrossRefGoogle Scholar
  63. 63.
    Persson BNJ and Gorb S (2003) The effect of surface roughness on the adhesion of elastic plates with application to biological systems. J.Chem. Phys. 119:11437–11444.CrossRefGoogle Scholar
  64. 64.
    Autumn K (2007) Gecko Adhesion: Structure, function and applications. MRS Bull. 32:473–478.CrossRefGoogle Scholar
  65. 65.
    Johnson KL, Kendall K, and Roberts AD (1971) Surface energy and the contact of elastic solids. Proc. R. Soc. Lond. A. 324:301–313.CrossRefGoogle Scholar
  66. 66.
    Spolenak R, Gorb S, and Arzt E (2005) Ahesion design maps for bio-inspired attachment systems. Acta Biomaterialia. 1:5–13.CrossRefGoogle Scholar
  67. 67.
    Varenberg M, Peressadko A, Gorb S et al. (2006) Effect of real contact geometry on adhesion. Appl. Phys. Lett. 89:121905–121907.CrossRefGoogle Scholar
  68. 68.
    Campo AD, Greiner C, and Arzt E (2007) Contact shape controls adhesion of bio-inspired fibrillar surfaces. Langmuir. 23:10235–10243.CrossRefGoogle Scholar
  69. 69.
    Spolenak R, Gorb S, Gao H et al. (2005) Effect of contact shape on the scaling of biological attachments. Proc. R. Soc. A. 461:305–319.CrossRefGoogle Scholar
  70. 70.
    Spuskanyuk AV, McMeeking RM, Deshpande VS et al. (2008) The effect of shape on the adhesion of fibrillar surfaces. Acta Biomaterialia. 4:1669–1676.CrossRefGoogle Scholar
  71. 71.
    Gao H and Yao H (2004) Shape insensitive optimal adhesion of nanoscale fibrillar structures. Proc. Natl. Acad. Sci. 21:7851–7856.CrossRefGoogle Scholar
  72. 72.
    Hui CY, Glassmaker NJ, Tang T et al. (2004) Design of biomimetic fibrillar interfaces: 2. Mechanics of enhanced adhesion. J. R. Soc. Lond. Inter. 1:35–48.CrossRefGoogle Scholar
  73. 73.
    Tang T, Hui CK, and Glassmaker NJ (2005) Can a fibrillar interface be stronger than a non-fibrillar one? J. R. Soc. Inter. 2:505–516.CrossRefGoogle Scholar
  74. 74.
    Ghatak A, Mahadevan L, Chung JY et al. (2004) Peeling from a biomimetically patterned thin elastic film. Proc. R. Soc. Lond. A. 460:2725–2735.CrossRefMATHGoogle Scholar
  75. 75.
    Chung JY and Chaudhury MK (2005) Roles of discontinuities in bio-inspired adhesive pads. J. R. Soc. Inter. 2:55–61.CrossRefGoogle Scholar
  76. 76.
    Glassmaker NJ, Jagota A, and Hui CY (2005) Adhesion enhancement in a biomimetic fibrillar interface. Acta Biomaterialia 1:367–375.CrossRefGoogle Scholar
  77. 77.
    Gay C and Leibler L (1999) Theory of tackiness. Phys. Rev. Lett. 82:936–939.CrossRefGoogle Scholar
  78. 78.
    Federle W (2006) Why are so many adhesive pads hairy? J. Exp. Biol. 209:2611–2621.CrossRefGoogle Scholar
  79. 79.
    Lake GJ and Thomas AG (1967) The strength of highly elastic materials. Proc. R. Soc. Lond. A. 300:108–119.CrossRefGoogle Scholar
  80. 80.
    Campolo D, Jones S, Fearing RS et al. (2003) Fabrication of Gecko foot-hair like nano structures and adhesion to random rough surfaces. IEEE Nano 2003, San Fransisco.Google Scholar
  81. 81.
    Gao H, Wang X, Yao H et al. (2005) Mechanics of hierarchical adhesion structures of geckos. Mech. mater. 37:275–285.CrossRefGoogle Scholar
  82. 82.
    Majidi C, Groff R, and Fearing RS (2004) Clumping and packing of hair arrays manufactured by nanocasting. ASME International Mechancal Engineering Congress and Exposition. IMECE, California.Google Scholar
  83. 83.
    Sitti M and Fearing RS (2002) Nanomolding based fabrication of synthetic gecko foot hair micro/nanostructures. Proceedings of the IEEE Nanotechnology Conference. Washington 137–140.Google Scholar
  84. 84.
    Shah G and Sitti M (2004) Modeling and design of biomimetic adhesive inspired by gecko foot-hairs. IEEE International Conference on Robotics and Bio-Mimetics.Google Scholar
  85. 85.
    Geim AK, Dubonos SV, Grigorieva IV et al. (2003) Microfabricated adhesive mimicking gecko foot-hair. Nat. Mater. 2:461–463.CrossRefGoogle Scholar
  86. 86.
    Hui CY, Jagota A, Lin YY et al. (2002) Constraints on micro-contact printing imposed by stamp deformation. Langmuir. 18:1394–1407.CrossRefGoogle Scholar
  87. 87.
    Glassmaker NJ, Jagota A, Hui CY et al. (2004) Design of biomimetic fibrillar interfaces: 1 Making contact. J. R. Soc. Inter. 1:23–33.CrossRefGoogle Scholar
  88. 88.
    Greiner C, Arzt E, and Campo A (2009) Hierarchical gecko-like adhesives. Adv. Mater. 21:479–482.CrossRefGoogle Scholar
  89. 89.
    Kustandi TS, Samper VD, Yi DK et al. (2007) Fabrication of a gecko-like hierarchical fibril array using a bonded porous alumina template. J. Micromech. Microeng. 17: N75–N81.CrossRefGoogle Scholar
  90. 90.
    Yao H and Gao H (2006) Bio-inspired mechanics of robust and releasable adhesion on rough surface. J. Mech. Phys. Solids. 54:1120–1146.CrossRefMATHGoogle Scholar
  91. 91.
    Bhushan B, Peressadko AG, and Kim TW (2006) Adhesion analysis of two-level hierarchical morphology in natural attachment systems for “smart adhesion”. J. Adhesion Sci. Tech. 20:1475–1491.CrossRefGoogle Scholar
  92. 92.
    Yao H and Gao H (2007) Mechanical principles of robust and releasable adhesion of gecko. J. Adhesion Sci. Tech. 21:1185–1212.CrossRefGoogle Scholar
  93. 93.
    Porwal PK and Hui CY (2007) Strength statistics of adhesive contact between a fibrillar structure and a rough substrate. J. R. Soc. Inter. 5:441–448.CrossRefGoogle Scholar
  94. 94.
    Crosby AJ, Hageman M, and Duncan A (2005) Controlling polymer adhesion with “Pancakes”. Langmuir 21:11738–11743.CrossRefGoogle Scholar
  95. 95.
    Lee H, Lee BP, and Messersmith PB (2007) A reversible wet/dry adhesive inspired by mussels and geckos. Nature 448:338–341.CrossRefGoogle Scholar
  96. 96.
    Lamblet M, Verneuil E, and Vilmin T (2007) Adhesion enhancement through micropatterning at polydimethylsiloxane-acrylic adhesive interfaces. Langmuir 23:6966–6974.CrossRefGoogle Scholar
  97. 97.
    Reddy S, Arzt E, and Campo A (2007) Bioinspired surfaces with switchable adhesion. Adv. Mater. 19:3833–3837.CrossRefGoogle Scholar
  98. 98.
    Northen MT, Greiner C, Arzt E et al. (2008) A gecko inspired reversible adhesive. Adv. Mater. 20:1–5.CrossRefGoogle Scholar
  99. 99.
    Gorb S, Varenberg M, Peressadko A et al. (2007) Biomimetic mushroom shaped fibrillar adhesive microstructure. J. R. Soc. Inter. 4:271–275.CrossRefGoogle Scholar
  100. 100.
    Varenberg M and Gorb S (2008) A beetle-inspired soulution for underwater adhesion. J.R. Soc. Inter. 5:383–385.Google Scholar
  101. 101.
    Glassmaker NJ, Jagota A, Hui CY et al. (2007) Biologically inspired crack trapping for enhanced adhesion. Proc. Natl. Acad. Sci. 104:10786–10791.CrossRefGoogle Scholar
  102. 102.
    Noderer WL, Shen L, Vajpayee S et al. (2007) Enhanced adhesion and compliance of film-terminated fibrillar surfaces. Proc. R. Soc. A 463:2631–2654.CrossRefGoogle Scholar
  103. 103.
    Yurdumakan B, Raravikar NR, Ajayan PM et al. (2005) Synthetic gecko goot-hairs from multiwalled carbon nanotubes. Chem. Commun. 3799:3801.Google Scholar
  104. 104.
    Zhao Y, Tong T, Delzeit L et al. (2006) Interfacial energy and strength of multiwalled carbon nanotube based dry adhesive. J. Vac. Sci. Technol. 24:331–335.CrossRefGoogle Scholar
  105. 105.
    Ge L, Sethi S, Ci L et al. (2007) Carbon nanotube based synthetic gecko tapes. Proc. Natl. Acad. Sci. 104:10792–10795.CrossRefGoogle Scholar
  106. 106.
    Qu L, Dai L, Stone M et al. (2008) Carbon nanotube arrays with strong binding-on and easy normal lifting-off. Science 322:238–242.CrossRefGoogle Scholar
  107. 107.
    Sethi S, Ge L, Ci L et al. (2008) Gecko-inspired carbon nanotube-based self-cleaning adhesives. Nano Lett. 8:822–825.CrossRefGoogle Scholar
  108. 108.
    Dickrell PL, Sinnott SB, Hahn DW et al. (2005) Frictional anisotropy of oriented carbon nanotube surfaces. Tribol. Lett. 18:59–62.CrossRefGoogle Scholar
  109. 109.
    Kinoshita H, Kuma I, Tagawa M et al. (2004) High friction of a vertically aligned carbon-nanotube film in microtribology. App. Phys. Lett. 85:2780–2781.CrossRefGoogle Scholar
  110. 110.
    Majumder A, Sharma A, and Ghatak A (2009) A bio-inspired wet/dry microfluidic adhesive for aqueous environment. Langmuir. DOI: 10. 1021/la9021849.Google Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Abhijit Majumder
    • 1
  • Ashutosh Sharma
    • 1
  • Animangsu Ghatak
    • 1
  1. 1.Department of Chemical EngineeringIndian Institute of Technology KanpurKanpurIndia

Personalised recommendations