Wood Formation in Populus

  • Andrew T. Groover
  • Kaisa Nieminen
  • Ykä Helariutta
  • Shawn D. Mansfield
Part of the Plant Genetics and Genomics: Crops and Models book series (PGG, volume 8)


Developmental genetic, genomic and biochemical approaches in Populus are providing new insights into the molecular and genetic mechanisms regulating wood formation. We discuss here wood properties, new approaches for the study of wood formation, and the genes and hormones responsible for regulating wood formation in Populus.


Shoot Apical Meristem Secondary Cell Wall Hybrid Poplar Tension Wood Tracheary Element 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Alden HA (1995). Hardwoods of North America. Gen. Tech. Rep. FPL-GTR-83. Madison, WI: US Dept. Agriculture, Forest Service, Forest Products Laboratory.Google Scholar
  2. Andersson-Gunnerås S, Hellgren JM, Björklund S, Regan S, Moritz T, Sundberg B (2003) Asymmetric expression of a poplar ACC oxidase controls ethylene production during gravitational induction of tension wood. Plant J 34:339–349.CrossRefPubMedGoogle Scholar
  3. Andersson-Gunnerås S, Mellerowicz E, Love J, Segerman B, Ohmiya Y, Coutinho PM, Nilsson P, Henrissat B, Moritz T, Sundberg B (2006) Biosynthesis of cellulose-enriched tension wood in Populus: Global analysis of transcripts and metabolites identifies biochemical and developmental regulators in secondary wall biosynthesis. Plant J 45:144–165.CrossRefPubMedGoogle Scholar
  4. Bannan M (1956) Cell size and survival in conifer cambium. Can J Bot 34:769–776.CrossRefGoogle Scholar
  5. Bannan M (1957) The relative frequency of the different types of anticlinal divisions in conifer cambium. Can J Bot 35:875–884.CrossRefGoogle Scholar
  6. Bendtsen BA, Maeglin RR, Frederick D (1981) Comparison of mechanical properties of eastern cottonwood and populus hybrid NE-237. Wood Sci 14(1):1–14.Google Scholar
  7. Björklund S, Antti H, Uddestrand I, Moritz T, Sundberg B (2007) Cross-talk between gibberellin and auxin in development of Populus wood: Gibberellin stimulates polar auxin transport and has a common transcriptome with auxin. Plant J 52:499–511.CrossRefPubMedGoogle Scholar
  8. Bush M, Plett JM, McPhee DP, Vitez R, O’Malley B, Sharma V, Bosnich W, Seguin A, MacKay J, Regan S, Harrison EJ (2007) Diverse developmental mutants revealed in an activation-tagged population of poplar. Can J Bot 85:1071–1081.CrossRefGoogle Scholar
  9. CCFM (2001) Forest 2020 – Plantations Canada, Canadian Council of Forest Ministers.http://www.ccfm.org/forest2020/plantationscanada.e.html.
  10. Chaffey N (2000) Microfibril orientation in wood cells: New angles on an old topic. Trends Plant Sci 5:360–362.CrossRefPubMedGoogle Scholar
  11. Clair B, Almeras T, Yamamoto H, Okuyama T, Sugiyama J (2006) Mechanical behavior of cellulose microfibrils in tension wood, in relation with maturation stress generation. Biophys J 91:1128–1135.CrossRefPubMedGoogle Scholar
  12. Dickmann DI, Isebrands JG, Echenwalder JE, Richardson J (2001) Poplar Culture in North America. NRC Research Press, Ottawa, Canada. p. 397.Google Scholar
  13. Dickerhoof HE, Youngquist JA, Carll CG (1982) U.S. Wood-based panel industry: Production trends and changing markets. Forest Prod J 32(6):14–23.Google Scholar
  14. Digby J, Wareing PF (1966) The effect of applied growth hormones on cambial division and the differentiation of the cambial derivatives. Ann Bot 30:539–548.Google Scholar
  15. Druart N, Johansson A, Baba K, Schrader J, Sjödin A, Bhalerao, RR, Resman L, Trygg J, Moritz T, Bhalerao RP (2007) Environmental and hormonal regulation of the activity-dormancy cycle in the cambial meristem involves stage-specific modulation of transcriptional and metabolic networks. Plant J 50:557–573.CrossRefPubMedGoogle Scholar
  16. Du J, Xie HL, Zhang DQ, He XQ, Wang MJ, Li YZ, Cui KM, Lu MZ (2006) Regeneration of the secondary vascular system in poplar as a novel system to investigate gene expression by a proteomic approach. Proteomics 6:881–895.CrossRefPubMedGoogle Scholar
  17. Eriksson ME, Israelsson M, Olsson O, Moritz T (2000) Increased gibberellin biosynthesis in transgenic trees promotes growth, biomass production and xylem fiber length. Nat Biotechnol 18:784–788.CrossRefPubMedGoogle Scholar
  18. Esau K (1977) Anatomy of Seed Plants. 2nd edition. Wiley, New York.Google Scholar
  19. Evert RF (2006) Esau’s Plant Anatomy. Meristems, Cells, and Tissues. 3rd edition. Wiley, Hoboken, NJ.Google Scholar
  20. Finnie C (2006) Plant proteomics. Ann Plant Rev 28:151–184.Google Scholar
  21. Groover AT (2005) What genes make a tree a tree? Trends Plant Sci 10:210–214.CrossRefPubMedGoogle Scholar
  22. Groover AT, Fontana JR, Arroyo JM, Yordan C, McCombie WR, Martienssen RA (2003) Secretion trap tagging of secreted and membrane-spanning proteins using arabidopsis gene traps. Plant Physiol 132:698–708.CrossRefPubMedGoogle Scholar
  23. Groover A, Fontana JR, Dupper G, Ma C, Martienssen R, Strauss S, Meilan R (2004) Gene and enhancer trap tagging of vascular-expressed genes in poplar trees. Plant Physiol 134:1742–1751.CrossRefPubMedGoogle Scholar
  24. Groover A, Jones A (1999) Tracheary element differentiation uses a novel mechanism coordinating programmed cell death and secondary cell wall synthesis. Plant Physiol 119:375–384.CrossRefPubMedGoogle Scholar
  25. Groover A, Mansfield S, DiFazio S, Dupper G, Fontana J, Millar R, Wang Y (2006) The Populus homeobox gene ARBORKNOX1 reveals overlapping mechanisms regulating the shoot apical meristem and the vascular cambium. Plant Mol Biol 61:917–932.CrossRefPubMedGoogle Scholar
  26. Gunn JM (1963) Wafer dimension control: Number 1 design criteria for plant producing particleboard for building construction uses. Forest Prod J 13(4):163–167.Google Scholar
  27. Gustavsson M, Bengtsson M, Gatenholm P, Glasser W, Teleman A, Dahlman O (2001) Isolation, characterisation and material properties of 4-O-methylglucuronoxylan from aspen. In: Chiellini E, Gil H, Braunegg G, Buchert J, Gatenholm P, van der Zee M (eds) Biorelated Polymers – Sustainable Polymer Science and Technology. Kluwer Academic/Plenum Publishers, New York, pp. 41–52.Google Scholar
  28. Haygreen JG, Bowyer JL (1996) Forest Products and Wood Science. 3rd edition. Iowa State University Press, Ames, IA, pp 108–120.Google Scholar
  29. Hellgren JM, Olofsson K, Sundberg B (2004) Patterns of auxin distribution during gravitational induction of reaction wood in poplar and pine. Plant Physiol 135:212–220.CrossRefPubMedGoogle Scholar
  30. Israelsson M, Sundberg B, Moritz T (2005) Tissue-specific localization of gibberellins and expression of gibberellin-biosynthetic and signaling genes in wood-forming tissues in aspen. Plant J 44:494–504.CrossRefPubMedGoogle Scholar
  31. Jourez B, Riboux A, Leclercq A (2001) Anatomical characteristics of tension wood and opposite wood in young inclined stems of poplar (Populus euramericana cv ‘Ghoy’). IAWA J 22:133–157.Google Scholar
  32. Junghans U, Langenfeld-Heyser R, Polle A, Teichmann T (2004) Effect of auxin transport inhibitors and ethylene on the wood anatomy of poplar. Plant Biol 6:22–29.CrossRefPubMedGoogle Scholar
  33. Kang K-Y, Bradic S, Avramidis S, Mansfield SD (2007) Kiln drying lumber quality of hybrid poplars clones. Holzforschung 61(1):65–73.CrossRefGoogle Scholar
  34. Kennedy RW (1974) Properties of poplar that affect utilization. In: Neilson RW, McBride CF (eds) Poplar Utilization Symposium Proceedings. May 23–24, 1974 Edmonton, Alberta, Canada, pp. 54–65.Google Scholar
  35. Kim SK, Abe H, Little CH, Pharis RP (1990) Identification of two brassinosteroids from the cambial region of scots pine (Pinus silverstris) by gas chromatography-mass spectrometry, after detection using a dwarf rice lamina inclination bioassay. Plant Physiol 94:1709–1713.CrossRefPubMedGoogle Scholar
  36. Larson PR (1994) The Vascular Cambium. Springer-Verlag, New York.Google Scholar
  37. Little CHA, Bonga JM (1974) Rest in the cambium of Abies balsamea. Canadian Journal of Botany. 52:1723–1730.Google Scholar
  38. Long JA, Moan EI, Medford JI, Barton MK (1996) A member of the KNOTTED class of homeodomain proteins encoded by the STM gene of Arabidopsis. Nature 379:66–69.CrossRefPubMedGoogle Scholar
  39. Loomis RS, Torrey JG (1964) Chemical control of vascular cambium initiation in isolated radish roots. Proc Natl Acad Sci USA 52:3–11.CrossRefPubMedGoogle Scholar
  40. Love J, Björklund S, Vahala J, Hertzberg M, Kangasjörvi J, Sundberg B (2009) Ethylene is an endogenous stimulator of cell division in the cambial meristem of Populus. Proc Natl Acad Sci 106:5984–5989.CrossRefPubMedGoogle Scholar
  41. Mansfield SD, Iliadis L, Avramidis S (2007) Neural network prediction of bending strength and stiffness in western hemlock. Holzforschung 61(6):707–716.CrossRefGoogle Scholar
  42. Mansfield SD, Weineisen H (2007) Wood fibre quality and kraft pulping efficiencies of trembling Aspen (Populus tremuloides Michx) clones. J Wood Chem Technol 27:135–151.CrossRefGoogle Scholar
  43. Masatoshi Yamaguchi MK, Hiroo F, Taku D (2008) VASCULAR-RELATED NAC-DOMAIN7 is involved in the differentiation of all types of xylem vessels in Arabidopsis roots and shoots. Plant J 55:652–664.CrossRefPubMedGoogle Scholar
  44. Mellerowicz EJ, Baucher M, Sundberg B, Boerjan W (2001) Unravelling cell wall formation in the woody dicot stem. Plant Mol Biol 47:239–274.CrossRefPubMedGoogle Scholar
  45. Mellerowicz EJ, Immerzeel P, Hayashi T (2008) Xyloglucan: The molecular muscle of trees. Ann Bot 102:659–665.CrossRefPubMedGoogle Scholar
  46. Miller CO, Skoog F, Von Saltza MH, Strong F (1955) Kinetin, a cell division factor from deoxyribonucleic acid. J Am Chem Soc 77:1392.CrossRefGoogle Scholar
  47. Moreau C, Aksenov N, Lorenzo M, Segerman B, Funk C, Nilsson P, Jansson S, Tuominen H (2005) A genomic approach to investigate developmental cell death in woody tissues of Populus trees. Genome Biol 6:R34.CrossRefPubMedGoogle Scholar
  48. Moyle R, Schrader J, Stenberg A, Olsson O, Saxena S, Sandberg G, Bhalerao RP (2002) Environmental and auxin regulation of wood formation involves members of the Aux/IAA gene family in hybrid aspen. Plant J 31:675–685.CrossRefPubMedGoogle Scholar
  49. Murphey WK, Bowsersox TW, Blankenhorn PR (1979) Selected wood properties of young Populus hybrids. Wood Sci 11:263–267.Google Scholar
  50. Nieminen K, Immanen J, Laxell M, Kauppinen L, Tarkowski P, Dolezal K, Tahtiharju S, Elo A, Decourteix Ml, Ljung K, Bhalerao R, Keinonen K, Albert VA, Helariutta Y (2008) Cytokinin signaling regulates cambial development in poplar. Proc Natl Acad Sci 105:20032–20037.CrossRefPubMedGoogle Scholar
  51. Nilsson J, Karlberg A, Antti H, Lopez-Vernaza M, Mellerowicz E, Perrot-Rechenmann C, Sandberg G, Bhalerao RP (2008) Dissecting the molecular basis of the regulation of wood formation by auxin in hybrid aspen. Plant Cell 20:843–855.CrossRefPubMedGoogle Scholar
  52. Nishikubo N, Awano T, Banasiak A, Bourquin V, Ibatullin F, Funada R, Brumer H, Teeri TT, Hayashi T, Sundberg B, Mellerowicz EJ (2007) Xyloglucan endo-transglycosylase (XET) functions in gelatinous layers of tension wood fibers in poplar – a glimpse into the mechanism of the balancing act of trees. Plant Cell Physiol 48:843–855.CrossRefPubMedGoogle Scholar
  53. Norberg PH, Meier H (1996) Physical and chemical properties of gelatinous layer in tension wood fibres of aspen (Populus tremula L.). Holzforschung 20:174–178.CrossRefGoogle Scholar
  54. Olson JR, Jourdain CJ, Rousseau RJ (1985) Selection for cellulose content, specific gravity, and volume in young Populus deltoides clones. Can J For Res 15:393–396.CrossRefGoogle Scholar
  55. Panshin AJ, de Zeeuw C (1980) Textbook of Wood Technology. Structure, Identification and Uses of the Commercial Woods of the United States and Canada. 4th edition. McGraw-Hill Book Company, New York. 576pGoogle Scholar
  56. Pfaff F (1988) Status of balsam (black) poplar utilization in waferboard/OSB production. Canada-Alberta Forest Resource Development Agreement Summary Report. Forestry Canada/Alberta Forest Service, Edmonton. 20pp.Google Scholar
  57. Philipson WR, Ward JM, Butterfield BG (1971) The Vascular Cambium. Barnes and Nobel, New York.Google Scholar
  58. Saks Y, Feigenbaum P, Aloni R (1984) Regulatory effect of cytokinin on secondary xylem fiber formation in an in vivo system. Plant Physiol 76:638–642.CrossRefPubMedGoogle Scholar
  59. Savidge RA (1988) Auxin and ethylene regulation of diameter growth in trees. Tree Physiol 4:401–414.PubMedGoogle Scholar
  60. Semple DE, Vaillant M-H, Kang K-Y, Oh SW, Smith GD, Mansfield SD (2007) Evaluating the suitability of hybrid poplar clones for the manufacture of oriented strand boards. Holzforschung, 61:430–438.CrossRefGoogle Scholar
  61. Scheres B (2007) Stem-cell niches: Nursery rhymes across kingdoms. Nat Rev Mol Cell Biol 8:345–354.CrossRefPubMedGoogle Scholar
  62. Schrader J, Baba K, May ST, Palme K, Bennett M, Bhalerao RP, Sandberg G (2003) Polar auxin transport in the woodforming tissues of hybrid aspen is under simultaneous control of developmental and environmental signals. Proc Natl Acad Sci USA 100:10096–10101.CrossRefPubMedGoogle Scholar
  63. Schrader J, Nilsson J, Mellerowicz E, Berglund A, Nilsson P, Hertzberg M, Sandberg G (2004) A high-resolution transcript profile across the wood-forming meristem of poplar identifies potential regulators of cambial stem cell identity. Plant Cell 16:2278–2292.CrossRefPubMedGoogle Scholar
  64. Siedlecka A, Wiklund S, Peronne MA, Micheli F, Lesniewska J, Sethson I, Edlund U, Richard L, Sundberg B, Mellerowicz EJ (2008) Pectin methyl esterase inhibits intrusive and symplastic cell growth in developing wood cells of Populus. Plant Physiol 146:554–565.CrossRefPubMedGoogle Scholar
  65. Snow R (1935) Activation of cambial growth by pure hormones. New Phytol 34:347–360.CrossRefGoogle Scholar
  66. Sterky F, Regan S, Karlsson J, Hertzberg M, Rohde A, Holmberg A, Amini B, Bhalerao R, Larsson M, Villarroel R, Van Montagu M, Sandberg G, Olsson O, Teeri TT, Boerjan W, Gustafsson P, Uhlen M, Sundberg B, Lundeberg J (1998) Gene discovery in the wood-forming tissues of poplar: Analysis of 5, 692 expressed sequence tags. Proc Natl Acad Sci U S A 95:13330–13335.CrossRefPubMedGoogle Scholar
  67. Stewart JJ, Kadla JF, Mansfield SD (2006) The influence of lignin chemistry and ultrastructure on the pulping efficiency of clonal aspen (Populus tremuloides Michx.). Holzforschung 60(2):111–122.CrossRefGoogle Scholar
  68. Sundberg B, Uggla C (1998) Origin and dynamics of indoleacetic acid under polar transport in Pinus sylvestris. Physiologia Plantarum 104:22–29.CrossRefGoogle Scholar
  69. Telewski FW, Jaffe MJ (1986) Thigmomorphogenesis: The role of ethylene in the response of Pinus taeda and Abies fraseri to mechanical perturbation. 66:227–233.Google Scholar
  70. Teleman A, Nordström M, Tenkanen M, Jacobs A, Dahlman O (2003) Isolation and characterization of O-acetylated glucomannans from aspen and birch wood. Carbohydrate Res 338:525–534.CrossRefGoogle Scholar
  71. Tuominen H, Puech L, Fink S, Sundberg B (1997) A radial concentration gradient of indole-3-acetic acid is related to secondary xylem development in hybrid aspen. Plant Physiol 115:577–585.PubMedGoogle Scholar
  72. Tuskan G, West D, Davis M, Elam C, Evans R, Bradshaw H, Neale D, Sewell M, Wheeler N, Megraw B, Jech K, Weirman C, Dinus R (2001) Development and validation of marker-aided selection methods for woody property traits in loblolly pine and hybrid poplar –final report. Oak Ridge National Laboratory Technical Report ORNL/TM–2001/41Google Scholar
  73. Uggla C, Magel E, Moritz T, Sundberg B (2001) Function and dynamics of auxin and carbohydrates during earlywood/latewood transition in Scots pine. Plant Physiol 125:2029–2039.CrossRefPubMedGoogle Scholar
  74. Uggla C, Mellerowicz EJ, Sundberg B (1998) Indole-3-acetic acid controls cambial growth in Scots pine by positional signalling. Plant Physiol 117:113–121.CrossRefPubMedGoogle Scholar
  75. Uggla C, Moritz T, Sandberg G, Sundberg B (1996) Auxin as a positional signal in pattern formation in plants. Proc Natl Acad Sci USA 93:9282–9286.CrossRefPubMedGoogle Scholar
  76. Wang Q, Little CH, Odén PC (1997) Control of longitudinal and cambial growth by gibberellins and indole-3-acetic acid in current-year shoots of Pinus sylvestris. Tree Physiol 17:715–721.PubMedGoogle Scholar
  77. Welling A, Moritz T, Palva, ET, Junttila O (2002) Independent activation of cold acclimation by low temperature and short photoperiod in hybrid aspen. Plant Physiol 129:1633–1641.CrossRefPubMedGoogle Scholar
  78. Yamamoto R, Demura T, Fukuda H (1997) Brassinosteroids induce entry into the final stage of tracheary element differentiation in cultured zinnia cells. Plant Cell Physiol 38:980–983.PubMedGoogle Scholar
  79. Yanchuk AD, Dancik BP, Micko MM (1984) Variation and heritability of wood density and fibre length of trembling aspen in Alberta, Canada. Silvae Genet 33:11–16.CrossRefGoogle Scholar
  80. Yanchuk AD, Spilda I, Micko MM (1988) Genetic variation of extractives in the wood of trembling aspen. Wood Sci Technol 22:67–71.CrossRefGoogle Scholar
  81. Yukun H, Xiaoyan Z (2000) The development of the hybrid poplar processing industry in the P.R. China. In: Evans PD (ed) Wood-Cement Composites in the Asia-Pacific Region. ACIAR Proceedings No. 107. pp. 123–128.Google Scholar
  82. Zhong R, Demura T, Ye Z-H (2006) SND1, a NAC domain transcription factor, is a key regulator of secondary wall synthesis in fibers of arabidopsis. Plant Cell 18:3158–3170.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Andrew T. Groover
    • 1
  • Kaisa Nieminen
    • 2
  • Ykä Helariutta
    • 2
  • Shawn D. Mansfield
    • 3
  1. 1.Institute of Forest Genetics, Pacific Southwest Research Station, USDA Forest ServiceDavisUSA
  2. 2.Department of Biological and Environmental SciencesInstitute of Biotechnology, University of HelsinkiHelsinkiFinland
  3. 3.Department of Wood ScienceUniversity of British ColumbiaVancouverCanada

Personalised recommendations