Skip to main content

Cell-to-Cell Movement of Homeodomain Transcription Factors: Yesterday, Today and Tomorrow

  • Chapter
  • First Online:
Book cover Short and Long Distance Signaling

Part of the book series: Advances in Plant Biology ((AIPB,volume 3))

Abstract

Cell-to-cell communication is pivotal for the coordinated behavior of cells, and thus the orchestrated development of any multicellular organism. One special means of communication is the direct transfer of macromolecules, including transcription factors, between plant cells through plasmodesmata. KNOTTED1 (KN1), a maize homeodomain transcription factor, was the first plant protein identified to traffic between cells. KN1 belongs to a family of essential proteins functioning during stem cell maintenance in the shoot apical meristem. Here we recall the history of the remarkable finding of KN1 trafficking, and summarize our current understanding of its mechanism, regulation and potential significance. We also touch upon some of the important questions remaining for future exploration.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 129.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 169.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 169.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

References

  • Crawford KM, Zambryski PC (2000) Subcellular localization determines the availability of ­non-targeted proteins to plasmodesmatal transport. Curr Biol 10:1032–1040

    Article  PubMed  CAS  Google Scholar 

  • Cui H, Levesque MP, Vernoux T, Jung JW, Paquette AJ, Gallagher KL, Wang JY, Blilou I, Scheres B, Benfey PN (2007) An evolutionarily conserved mechanism delimiting SHR movement defines a single layer of endodermis in plants. Science 316:421–425

    Article  PubMed  CAS  Google Scholar 

  • Derossi D, Joliot AH, Chassaing G, Prochiantz A (1994) The third helix of the Antennapedia homeodomain translocates through biological membranes. J Biol Chem 269:10444–10450

    PubMed  CAS  Google Scholar 

  • Dubnau J, Struhl G (1996) RNA recognition and translational regulation by a homeodomain ­protein. Nature 379:694–699

    Article  PubMed  CAS  Google Scholar 

  • Gallagher KL, Benfey PN (2009) Both the conserved GRAS domain and nuclear localization are required for SHORT-ROOT movement. Plant J 57:785–797

    Article  PubMed  CAS  Google Scholar 

  • Gallagher KL, Paquette AJ, Nakajima K, Benfey PN (2004) Mechanisms regulating short-root intercellular movement. Curr Biol 14:1847–1851

    Article  PubMed  CAS  Google Scholar 

  • Hake S, Freeling M (1986) Analysis of genetic mosaics shows that the extra epidermal cell divisions in Knotted mutant maize plants are induced by adjacent mesophyll cells. Nature (Lond) 320:621–623

    Article  Google Scholar 

  • Hake S, Smith HM, Holtan H, Magnani E, Mele G, Ramirez J (2004) The role of knox genes in plant development. Annu Rev Cell Dev Biol 20:125–151

    Article  PubMed  CAS  Google Scholar 

  • Haywood V, Kragler F, Lucas WJ (2002) Plasmodesmata: pathways for protein and ribonucleoprotein signaling. Plant Cell 14:303–325

    Google Scholar 

  • Jackson D (2002) Double labeling of KNOTTED1 mRNA and protein reveals multiple potential sites of protein trafficking in the shoot apex. Plant Physiol 129:1423–1429

    Article  PubMed  CAS  Google Scholar 

  • Jackson D, Hake S (1997) Morphogenesis on the move: intercellular trafficking of regulatory proteins in plants. Curr Opin Genet Dev 7:495–500

    Article  PubMed  CAS  Google Scholar 

  • Jackson D, Veit B, Hake S (1994) Expression of maize KNOTTED1 related homeobox genes in the shoot apical meristem predicts patterns of morphogenesis in the vegetative shoot. Development 120:405–413

    CAS  Google Scholar 

  • Joliot A, Prochiantz A (2004) Transduction peptides: from technology to physiology. Nat Cell Biol 6:189–196

    Article  PubMed  CAS  Google Scholar 

  • Kerstetter R, Vollbrecht E, Lowe B, Veit B, Yamaguchi J, Hake S, Department of Plant Biology, U.o.C.B (1994) Sequence analysis and expression patterns divide the maize knotted1-like homeobox genes into two classes. Plant Cell 6(12):1877–1887

    Article  PubMed  CAS  Google Scholar 

  • Kim JY, Yuan Z, Jackson D (2003) Developmental regulation and significance of KNOX protein trafficking in Arabidopsis. Development 130:4351–4362

    Article  PubMed  CAS  Google Scholar 

  • Kim JY, Rim Y, Wang J, Jackson D (2005) A novel cell-to-cell trafficking assay indicates that the KNOX homeodomain is necessary and sufficient for intercellular protein and mRNA trafficking. Genes Dev 19:788–793

    Article  PubMed  CAS  Google Scholar 

  • Kim JY, Yuan Z, Cilia M, Khalfan-Jagani Z, Jackson D (2002) Intercellular trafficking of a KNOTTED1 green fluorescent protein fusion in the leaf and shoot meristem of Arabidopsis. Proc Natl Acad Sci USA 99:4103–4108

    Article  PubMed  CAS  Google Scholar 

  • Kim M, Canio W, Kessler S, Sinha N (2001) Developmental changes due to long-distance movement of a homeobox fusion transcript in tomato. Science 293:287–289

    Article  PubMed  CAS  Google Scholar 

  • Kragler F, Monzer J, Shash K, Xoconostle-Cazares B, Lucas WJ (1998) Cell-to-cell transport of proteins: requirement for unfolding and characterization of binding to a putative plasmodesmal receptor. Plant J 15:367–381

    Article  CAS  Google Scholar 

  • Kragler F, Curin M, Trutnyeva K, Gansch A, Waigmann E (2003) MPB2C, a microtubule-­associated plant protein binds to and interferes with cell-to-cell transport of tobacco mosaic virus movement protein. Plant Physiol 132:1870–1883

    Article  PubMed  CAS  Google Scholar 

  • Kurata T, Ishida T, Kawabata-Awai C, Noguchi M, Hattori S, Sano R, Nagasaka R, Tominaga R, Koshino-Kimura Y, Kato T, Sato S, Tabata S, Okada K, Wada T (2005) Cell-to-cell movement of the CAPRICE protein in Arabidopsis root epidermal cell differentiation. Development 132:5387–5398

    Article  PubMed  CAS  Google Scholar 

  • Long JA, Moan EI, Medford JI, Barton MK (1996) A member of the KNOTTED class of homeodomain proteins encoded by the SHOOTMERISTEMLESS gene of Arabidopsis. Nature 379:66–69

    Article  PubMed  CAS  Google Scholar 

  • Lucas WJ, Bouche-Pillon S, Jackson DP, Nguyen L, Baker L, Ding B, Hake S (1995) Selective trafficking of KNOTTED1 homeodomain protein and its mRNA through plasmodesmata. Science (Washington, DC) 270:1980–1983

    Article  CAS  Google Scholar 

  • Maizel A, Bensaude O, Prochiantz A, Joliot A (1999) A short region of its homeodomain is necessary for engrailed nuclear export and secretion. Development 126(14):3183–3190

    PubMed  CAS  Google Scholar 

  • Maizel A, Tassetto M, Filhol O, Cochet C, Prochiantz A, Joliot A (2002) Engrailed homeoprotein secretion is a regulated process. Development 129:3545–3553

    PubMed  CAS  Google Scholar 

  • Nakajima K, Sena G, Nawy T, Benfey PN (2001) Intercellular movement of the putative transcription factor SHR in root patterning. Nature 413:307–311

    Article  PubMed  CAS  Google Scholar 

  • Perbal M-C, Haughn G, Saedler H, Schwarz-Sommer Z (1996) Non-cell-autonomous function of the Antirrhinum floral homeotic proteins DEFICIENS and GLOBOSA is exerted by their polar cell-to-cell trafficking. Development 122:3433–3441

    PubMed  CAS  Google Scholar 

  • Selth LA, Gilbert C, Svejstrup JQ (2009) RNA immunoprecipitation to determine RNA-protein associations in vivo. Cold Spring Harb Protoc 2009, pdb prot5234

    Google Scholar 

  • Sessions A, Yanofsky MF, Weigel D (2000) Cell-cell signaling and movement by the floral transcription factors LEAFY and APETALA1. Science 289:779–782

    Article  PubMed  CAS  Google Scholar 

  • Shimizu T, Yoshii A, Sakurai K, Hamada K, Yamaji Y, Suzuki M, Namba S, Hibi T (2009) Identification of a novel tobacco DnaJ-like protein that interacts with the movement protein of tobacco mosaic virus. Arch Virol 154:959–967

    Article  PubMed  CAS  Google Scholar 

  • Smith LG, Greene B, Veit B, Hake S (1992) A dominant mutation in the maize homeobox gene, Knotted-1, causes its ectopic expression in leaf cells with altered fates. Development 116: 21–30

    PubMed  CAS  Google Scholar 

  • Taoka K, Ham BK, Xoconostle-Cázares B, Rojas MR, Lucas WJ (2007) Reciprocal phosphorylation and glycosylation recognition motifs control NCAPP1 interaction with pumpkin phloem proteins and their cell-to-cell movement. Plant Cell 19:1866–1884

    Article  PubMed  CAS  Google Scholar 

  • Vollbrecht E, Veit B, Sinha N, Hake S (1991) The developmental gene Knotted-1 is a member of a maize homeobox gene family. Nature 350:241–243

    Article  PubMed  CAS  Google Scholar 

  • Winter N, Kollwig G, Zhang S, Kragler F (2007) MPB2C, a microtubule-associated protein, regulates non-cell-autonomy of the homeodomain protein KNOTTED1. Plant Cell 19:3001–3018

    Article  PubMed  CAS  Google Scholar 

  • Wright KM, Wood NT, Roberts AG, Chapman S, Boevink P, Mackenzie KM, Oparka KJ (2007) Targeting of TMV movement protein to plasmodesmata requires the actin/ER network: ­evidence from FRAP. Traffic 8:21–31

    Article  PubMed  CAS  Google Scholar 

  • Yoshii A, Shimizu T, Yoshida A, Hamada K, Sakurai K, Yamaji Y, Suzuki M, Namba S, Hibi T (2008) NTH201, a novel class II KNOTTED1-like protein, facilitates the cell-to-cell movement of Tobacco mosaic virus in tobacco. Mol Plant Microbe Interact 21:586–596

    Article  PubMed  CAS  Google Scholar 

  • Xu MX, Wang J, Xuan Z, Goldshmidt A, Borrill P.G.M, Harihanan N, Kim JY and Jackson D, (2011) Chaperonins facilitate KNOTTED1 cell-to-cell trafficking and stem cell function. Science 333:1141–1144

    Article  PubMed  CAS  Google Scholar 

Download references

Acknowledgements

Thanks to Kate Creasey for critical reading. X. M. X. is a LSRF Fellow of the Life Sciences Research Foundation and a Chapman Fellow of the Chapman Foundation. Relevant research in the authors’ laboratory is supported by the National Science Foundation (award 1027003).

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Dave Jackson .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2012 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Xu, X.M., Jackson, D. (2012). Cell-to-Cell Movement of Homeodomain Transcription Factors: Yesterday, Today and Tomorrow. In: Kragler, F., Hülskamp, M. (eds) Short and Long Distance Signaling. Advances in Plant Biology, vol 3. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1532-0_4

Download citation

Publish with us

Policies and ethics