The Photoactive Orange Carotenoid Protein and Photoprotection in Cyanobacteria

  • Diana Kirilovsky
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 675)


Photoprotective mechanisms have been evolved by photosynthetic organisms to cope with fluctuating high light conditions. One of these mechanisms downregulates photosynthesis by increasing thermal dissipation of the energy absorbed by the photosystem II antenna. While this process has been well studied in plants, the equivalent process in cyanobacteria was only recently discovered. In this chapter we describe the results leading to its discovery and the more recent advances in the elucidation of this mechanism. The light activation of a soluble carotenoid protein, the orange carotenoid protein (OCP), binding hydroxyechinenone, is the key inducer of this photoprotective mechanism. Light causes structural changes within both the carotenoid and the protein, leading to the conversion of an orange inactive form into a red active form. The activated red form induces an increase of energy dissipation leading to a decrease in the fluorescence of the phycobilisomes, the cyanobacterial antenna, and thus of the energy arriving to the reaction centers. The OCP, which senses light and triggers photoprotection, is a unique example of a photoactive protein containing a carotenoid as the photoresponsive chromophore.


Photoprotective Mechanism Orange Carotenoid Protein Iron Starvation Anabaena Variabilis Synechococcus Elongatus 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



Many thanks to my students Adjélé Wilson, Clémence Boulay, and Claire Punginelli who largely contributed to the results described in this work. Thanks to AW Rutherford for helpful discussions and critical reading of the manuscript. Thanks to Cheryl Kerfeld for helpful discussions and collaboration. The research of DK and her group is supported by the “Commissariat à l’Energie Atomique,” the “Centre National de la Recherche Scientifique, and the “Agence Nationale de la Recherche” (project CAROPROTECT). The work was also partially supported by EU network INTRO2.


  1. Adir N (2005) Elucidation of the molecular structures of components of the phycobilisome: reconstructing a giant. Photosynth Res 85:15–32PubMedCrossRefGoogle Scholar
  2. Anderson DC, Campbell EL, Meeks JC (2006) A soluble 3D LC/MS/MS proteome of the filamentous cyanobacterium Nostoc punctiforme. J Proteome Res 5:3096–3104PubMedCrossRefGoogle Scholar
  3. Aro EM, Virgin I, Andersson B (1993) Photoinhibition of photosystem II, inactivation, protein damage and turnover. Biochim Biophys Acta 1143:113–134PubMedCrossRefGoogle Scholar
  4. Ashby MK, Mullineaux CW (1999) The role of ApcD and ApcF in energy transfer from phycobilisomes to PSI and PSII in a cyanobacterium. Photosynth Res 61:169–179CrossRefGoogle Scholar
  5. Bailey S, Grossman A (2008) Photoprotection in cyanobacteria:regulation of light harvesting. Photochem Photobiol 84:1410–1420PubMedCrossRefGoogle Scholar
  6. Boulay C, Abasova L, Six C et al (2008) Occurrence and function of the orange carotenoid protein in photoprotective mechanisms in various cyanobacteria. Biochim Biophys Acta 1777:1344–1354PubMedCrossRefGoogle Scholar
  7. Boulay C, Wilson A, Kirilovsky D (2008) Orange carotenoid protein (OCP) related NPQ in Synechocystis PCC 6803 OCP-phycobilisomes interactions. In: Photosynthesis 2007. Energy from the sun. Proceedings of the 14th International Congress on Photosynthesis. Springer, Heidelberg, pp 254–254Google Scholar
  8. Cadoret JC, Demouliere R, Lavaud J et al (2004) Dissipation of excess energy triggered by blue light in cyanobacteria with CP43' (IsiA). Biochim Biophys Acta 1659:100–104PubMedCrossRefGoogle Scholar
  9. Campbell D, Hurry V, Clarke AK et al (1998) Chlorophyll fluorescence analysis of cyanobacterial photosynthesis and acclimation. Microbiol Mol Biol Rev 62:667–683PubMedGoogle Scholar
  10. Dong C, Tang A, Zhao J et al (2009) ApcD is necessary for efficient energy transfer from phycobilisomes to photosystem I and helps to prevent photoinhibition in the cyanobacterium Synechococcus sp. PCC 7002. Biochim Biophys Acta 1787:1122–1128PubMedCrossRefGoogle Scholar
  11. El Bissati K, Delphin E, Murata N et al (2000) Photosystem II fluorescence quenching in the cyanobacterium Synechocystis PCC 6803:involvement of two different mechanisms. Biochim Biophys Acta 1457:229–242PubMedCrossRefGoogle Scholar
  12. Fulda S, Mikkat S, Huang F et al (2006) Proteome analysis of salt stress response in the cyanobacterium Synechocystis sp. strain PCC 6803. Proteomics 6:2733–2745PubMedCrossRefGoogle Scholar
  13. Funk C, Vermaas W (1999) A cyanobacterial gene family coding for single-helix proteins resembling part of the light-harvesting proteins from higher plants. Biochemistry 38:9397–9404PubMedCrossRefGoogle Scholar
  14. Gantt E, Conti SF (1966a) Granules associated with chloroplast lamellae of Porphyridium cruentum. J Cell Biol 29:423–434PubMedCrossRefGoogle Scholar
  15. Gantt E, Conti SF (1966b) Phycobiliprotein localization in algae. Brookhaven Symp Biol 19:393–405PubMedGoogle Scholar
  16. Gindt YM, Zhou J, Bryant DA et al (1994) Spectroscopic studies of phycobilisome subcore preparations lacking key core chromophores: assignment of excited state energies to the Lcm, β 18 and α AP-B chromophores. Biochim Biophys Acta 1186:153–162PubMedCrossRefGoogle Scholar
  17. Glazer AN (1984) Phycobilisome – a macromolecular complex optimized for light energy-transfer. Biochim Biophys Acta 768:29–51CrossRefGoogle Scholar
  18. Grossman AR, Schaefer MR, Chiang GG et al (1993) The phycobilisome, a light-harvesting complex responsive to environmental-conditions. Microbiol Rev 57:725–749PubMedGoogle Scholar
  19. Harper SM, Neil LC, Gardner KH (2003) Structural basis of a phototropin light switch. Science 301:1541–1544PubMedCrossRefGoogle Scholar
  20. Havaux M, Guedeney G, He Q et al (2003) Elimination of high-light-inducible polypeptides related to eukaryotic chlorophyll a/b-binding proteins results in aberrant photoacclimation in Synechocystis PCC6803. Biochim Biophys Acta 1557:21–33PubMedCrossRefGoogle Scholar
  21. He Q, Dolganov N, Bjorkman O et al (2001) The high light-inducible polypeptides in Synechocystis PCC6803. Expression and function in high light. J Biol Chem 276:306–314PubMedCrossRefGoogle Scholar
  22. Hihara Y, Kamei A, Kanehisa M et al (2001) DNA microarray analysis of cyanobacterial gene expression during acclimation to high light. Plant Cell 13:793–806PubMedGoogle Scholar
  23. Holt TK, Krogmann DW (1981) A carotenoid-protein from cyanobacteria. Biochim Biophys Acta 637:408–414CrossRefGoogle Scholar
  24. Horton P, Ruban AV, Walters RG (1996) Regulation of light harvesting in green plants. Annu Rev Plant Physiol Plant Mol Biol 47:655–684PubMedCrossRefGoogle Scholar
  25. Ihalainen JA, D'Haene S, Yeremenko N et al (2005) Aggregates of the chlorophyll-binding protein IsiA (CP43') dissipate energy in cyanobacteria. Biochemistry 44:10846–10853PubMedCrossRefGoogle Scholar
  26. Joshua S, Bailey S, Mann NH et al (2005) Involvement of phycobilisome diffusion in energy quenching in cyanobacteria. Plant Physiol 138:1577–1585PubMedCrossRefGoogle Scholar
  27. Karapetyan NV (2007) Non-photochemical quenching of fluorescence in cyanobacteria. Biochemistry (Mosc) 72:1127–1135CrossRefGoogle Scholar
  28. Kerfeld CA (2004a) Structure and function of the water-soluble carotenoid-binding proteins of cyanobacteria. Photosynth Res 81:215–225PubMedCrossRefGoogle Scholar
  29. Kerfeld CA (2004b) Water-soluble carotenoid proteins of cyanobacteria. Arch Biochem Biophys 430:2–9PubMedCrossRefGoogle Scholar
  30. Kerfeld CA, Alexandre M, Kirilovsky D (2009) The orange carotenoid protein of cyanobacteria. In: Landrum J (ed), Carotenoids: physical, chemical and biological functions and properties. Taylor and Francis Group, LondonGoogle Scholar
  31. Kerfeld CA, Sawaya MR, Brahmandam V et al (2003) The crystal structure of a cyanobacterial water-soluble carotenoid binding protein. Structure 11:55–65PubMedCrossRefGoogle Scholar
  32. Kirilovsky D (2007) Photoprotection in cyanobacteria: the orange carotenoid protein (OCP)-related non-photochemical-quenching mechanism. Photosynth Res 93:7–16PubMedCrossRefGoogle Scholar
  33. MacColl R (1998) Cyanobacterial phycobilisomes. J Struct Biol 124: 311–334PubMedCrossRefGoogle Scholar
  34. Niyogi KK (1999) Photoprotection revisited: genetic and molecular approaches. Annu Rev Plant Physiol Plant Mol Biol 50:333–359PubMedCrossRefGoogle Scholar
  35. Pascal AA, Liu ZF, Broess K et al (2005) Molecular basis of photoprotection and control of photosynthetic light-harvesting. Nature 436:134–137PubMedCrossRefGoogle Scholar
  36. Polivka T, Kerfeld CA, Pascher T et al (2005) Spectroscopic properties of the carotenoid 3'-hydroxyechinenone in the orange carotenoid protein from the cyanobacterium Arthrospira maxima. Biochemistry 44:3994–4003PubMedCrossRefGoogle Scholar
  37. Prasil O, Adir N, Ohad I (1992) Dynamics of photosystem II:mechanism of photoinhibition and recovery processes. In: Barber J (ed) The photosystems:structure, function and molecular biology Elsevier Science, Amsterdam, pp 295–348Google Scholar
  38. Punginelli C, Wilson A, Routaboul JM et al (2009) Influence of zeaxanthin and echinenone binding on the activity of the Orange Carotenoid Protein. Biochim Biophys Acta 1787:280–288PubMedCrossRefGoogle Scholar
  39. Rakhimberdieva MG, Bolychevtseva YV, Elanskaya IV et al (2007b) Protein-protein interactions in carotenoid triggered quenching of phycobilisome fluorescence in Synechocystis sp. PCC 6803. FEBS Lett 581:2429–2433PubMedCrossRefGoogle Scholar
  40. Rakhimberdieva MG, Stadnichuk IN, Elanskaya IV et al (2004) Carotenoid-induced quenching of the phycobilisome fluorescence in photosystem II-deficient mutant of Synechocystis sp. FEBS Lett 574:85–88PubMedCrossRefGoogle Scholar
  41. Rakhimberdieva MG, Vavilin DV, Vermaas WF et al (2007a) Phycobilin/chlorophyll excitation equilibration upon carotenoid-induced non-photochemical fluorescence quenching in phycobilisomes of the cyanobacterium Synechocystis sp. PCC 6803. Biochim Biophys Acta 1767:757–765PubMedCrossRefGoogle Scholar
  42. Ruban AV, Berera R, Ilioaia C et al (2007) Identification of a mechanism of photoprotective energy dissipation in higher plants. Nature 450:575–U522Google Scholar
  43. Rubinstenn G, Vuister GW, Mulder FA et al (1998) Structural and dynamic changes of photoactive yellow protein during its photocycle in solution. Nat Struct Biol 5:568–570PubMedCrossRefGoogle Scholar
  44. Scott M, McCollum C, Vasil'ev S et al (2006) Mechanism of the down regulation of photosynthesis by blue light in the Cyanobacterium Synechocystis sp. PCC 6803. Biochemistry 45:8952–8958PubMedCrossRefGoogle Scholar
  45. Spudich JL, Yang CS, Jung KH et al (2000) Retinylidene proteins:structures and functions from archaea to humans. Annu Rev Cell Dev Biol 16:365–392PubMedCrossRefGoogle Scholar
  46. Stockel J, Welsh EA, Liberton M et al (2008) Global transcriptomic analysis of Cyanothece 51142 reveals robust diurnal oscillation of central metabolic processes. Proc Natl Acad Sci USA 105:6156–6161PubMedCrossRefGoogle Scholar
  47. Tandeau de Marsac N (2003) Phycobiliproteins and phycobilisomes:the early observations. Photosynth Res 76:197–205Google Scholar
  48. Tyystjärvi E (2008) Photoinhibition of photosystem II and photodamage of the oxygen evolving manganese cluster. Coordination Chem Rev 252:361–376CrossRefGoogle Scholar
  49. van Thor JJ, Mullineaux CW, Matthijs HCP et al (1998) Light harvesting and state transitions in cyanobacteria. Botanica Acta 111:430–443Google Scholar
  50. Vass I, Aro EM (2007) Photoinhibition of photosystem II electron transport. In:Renger G, (ed) Primary processes of photosynthesis:basic principles and apparatus. Royal Society of Chemistry, Cambridge, pp 393–411CrossRefGoogle Scholar
  51. Williams WP, Allen JF (1987) State-1/State-2 changes in higher-plants and algae. Photosynth Res 13:19–45CrossRefGoogle Scholar
  52. Wilson A, Ajlani G, Verbavatz JM et al (2006) A soluble carotenoid protein involved in phycobilisome-related energy dissipation in cyanobacteria. Plant Cell 18:992–1007PubMedCrossRefGoogle Scholar
  53. Wilson A, Boulay C, Wilde A et al (2007) Light-induced energy dissipation in iron-starved cyanobacteria:roles of OCP and IsiA proteins. Plant Cell 19:656–672PubMedCrossRefGoogle Scholar
  54. Wilson A, Punginelli C, Gall A et al (2008) A photoactive carotenoid protein acting as light intensity sensor. Proc Natl Acad Sci USA 105:12075–12080PubMedCrossRefGoogle Scholar
  55. Wollman FA (2001) State transitions reveal the dynamics and flexibility of the photosynthetic apparatus. Embo J 20:3623–3630PubMedCrossRefGoogle Scholar
  56. Wu YP, Krogmann DW (1997) The orange carotenoid protein of Synechocystis PCC 6803. Biochim Biophys Acta 1322:1–7PubMedCrossRefGoogle Scholar
  57. Yeremenko N, Kouril R, Ihalainen JA et al (2004) Supramolecular organization and dual function of the IsiA chlorophyll-binding protein in cyanobacteria. Biochemistry 43:10308–10313PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Commissariat à l’Energie Atomique (CEA)Institut de Biologie et Technologies de Saclay (iBiTecS) and Centre National de la Recherche Scientifique (CNRS)Gif sur YvetteFrance

Personalised recommendations