Multicellularity in a Heterocyst-Forming Cyanobacterium: Pathways for Intercellular Communication

  • Vicente Mariscal
  • Enrique Flores
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 675)


The filamentous, heterocyst-forming cyanobacteria are among the simplest multicellular prokaryotes, and Anabaena sp. strain PCC 7120 is being used as a model for studying multicellularity in these organisms. In the absence of combined nitrogen two interdependent cell types are present in an Anabaena filament: vegetative cells and heterocysts. Vegetative cells perform oxygenic photosynthesis and supply carbon compounds to the heterocysts, which are specialized in the assimilation of atmospheric N2 and supply nitrogenous compounds to the vegetative cells. In this chapter, we discuss two possible pathways for the exchange of metabolites and regulatory signals between vegetative cells and heterocysts: the continuous periplasm that surrounds the cells in the filament and some septal proteinaceous complexes that could allow the direct intercellular transfer of small molecules.


Green Fluorescent Protein Cytoplasmic Membrane Fluorescence Recovery After Photobleaching Green Fluorescent Protein Fluorescence Filamentous Cyanobacterium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.



We thank Antonia Herrero for a critical reading of the manuscript. Work on this project was made possible by grant no. BFU2008-03811 from Ministerio de Ciencia e Innovación and Proyecto de Excelencia CVI1896 from Junta de Andalucía (Spain).


  1. Bauer CC, Buikema WJ, Black K et al (1995) A short-filament mutant of Anabaena sp. strain PCC 7120 that fragments in nitrogen-deficient medium. J Bacteriol 177:1520–1526PubMedGoogle Scholar
  2. Buikema WJ, Haselkorn R (1991) Characterization of a gene controlling heterocyst differentiation in the cyanobacterium Anabaena 7120. Genes Dev 5:321–330PubMedCrossRefGoogle Scholar
  3. Curatti L, Flores E, Salerno G (2002) Sucrose is involved in the diazotrophic metabolism of the heterocyst-forming cyanobacterium Anabaena sp. FEBS Lett 513:175–178PubMedCrossRefGoogle Scholar
  4. Flores E, Herrero A, Wolk CP et al (2006) Is the periplasm continuous in filamentous multicellular cyanobacteria? Trends Microbiol 14:439–443PubMedCrossRefGoogle Scholar
  5. Flores E, Pernil R, Muro-Pastor AM et al (2007) Septum-localized protein required for filament integrity and diazotrophy in the heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120. J Bacteriol 189:3884–3890Google Scholar
  6. Frías JE, Flores E, Herrero A (1994) Requirement of the regulatory protein NtcA for the expression of nitrogen assimilation and heterocyst development genes in the cyanobacterium Anabaena sp. PCC 7120. Mol Microbiol 14:823–832CrossRefGoogle Scholar
  7. Giddings TH, Staeheling LA (1978) Plasma membrane architecture of Anabaena cylindrica: occurrence of microplasmodesmata and changes associated with heterocyst development and the cell cycle. Cytobiologie 16:235–249Google Scholar
  8. Golden JW, Yoon HS (2003) Heterocyst development in Anabaena. Curr Opin Microbiol 6:557–563PubMedCrossRefGoogle Scholar
  9. Herrero A, Flores E (1990) Transport of basic amino acids by the dinitrogen-fixing cyanobacterium Anabaena PCC 7120. J Biol Chem 265:3931–3935PubMedGoogle Scholar
  10. Herrero A, Muro-Pastor AM, Valladares A et al (2004) Cellular differentiation and the NtcA transcription factor in filamentous cyanobacteria. FEMS Microbiol Rev 28:469–487PubMedCrossRefGoogle Scholar
  11. Hoiczyk E, Baumeister W (1995) Envelope structure of four gliding filamentous cyanobacteria. J Bacteriol 177:2387–2395PubMedGoogle Scholar
  12. Hoiczyk E, Hansel A (2000) Cyanobacterial cell walls: news from an unusual prokaryotic envelope. J Bacteriol 182:1191–1199PubMedCrossRefGoogle Scholar
  13. Hooshangi S, Bentley WE (2008) From unicellular properties to multicellular behavior: bacteria quorum sensing circuitry and applications. Curr Opin Biotechnol 19:550–555CrossRefGoogle Scholar
  14. Huang X, Dong Y, Zhao J (2004) HetR homodimer is a DNA-binding protein required for heterocyst differentiation, and the DNA-binding activity is inhibited by PatS. Proc Natl Acad Sci USA 101:4848–4853PubMedCrossRefGoogle Scholar
  15. Huang F, Fulda S, Hagemann M et al (2006) Proteomic screening of salt-stress-induced changes in plasma membranes of Synechocystis sp. strain PCC 6803. Proteomics 6:910–920PubMedCrossRefGoogle Scholar
  16. Jack DL, Yang NM, Saier MH Jr. (2001) The drug/metabolite transporter superfamily. Eur J Biochem 268:3620–3639PubMedCrossRefGoogle Scholar
  17. Lang NJ, Fay P (1971) The heterocysts of blue-green algae II. Details of ultrastructure. Proc R Soc Lond B 178:193–203CrossRefGoogle Scholar
  18. Maeda S, Omata T (1997) Substrate-binding lipoprotein of the cyanobacterium Synechococcus sp. strain PCC 7942 involved in the transport of nitrate and nitrite. J Biol Chem 272:3036–3041Google Scholar
  19. Mariscal V, Herrero A, Flores E (2007) Continuous periplasm in a filamentous, heterocyst-forming cyanobacterium. Mol Microbiol 65:1139–1145PubMedCrossRefGoogle Scholar
  20. Martín-Figueroa E, Navarro F, Florencio FJ (2000) The GS-GOGAT pathway is not operative in the heterocysts. Cloning and expression of glsF gene from the cyanobacterium Anabaena sp. PCC 7120. FEBS Lett 476:282–286CrossRefGoogle Scholar
  21. Means AR (1998) The clash in titin. Nature 395:846–847PubMedCrossRefGoogle Scholar
  22. Montesinos ML, Herrero A, Flores E (1995) Amino acid transport systems required for diazotrophic growth in the cyanobacterium Anabaena sp. strain PCC 7120. J Bacteriol 177:3150–3157Google Scholar
  23. Moslavac S, Bredemeier R, Mirus O et al (2005) Proteomic analysis of the outer membrane of Anabaena sp. strain PCC 7120. J Proteome Res 4:1330–1338Google Scholar
  24. Mullineaux CW, Mariscal V, Nenninger A et al (2008) Mechanism of intercellular molecular exchange in heterocyst-forming cyanobacteria. EMBO J 27:1299–1308PubMedCrossRefGoogle Scholar
  25. Muro-Pastor AM, Valladares A, Flores E et al (2002) Mutual dependence of the expression of the cell differentiation regulatory protein HetR and the global nitrogen regulator NtcA during heterocyst development. Mol Microbiol 44:1377–1385PubMedCrossRefGoogle Scholar
  26. Nayar AS, Yamaura H, Rajagopalan R et al (2007) FraG is necessary for filament integrity and heterocyst maturation in the cyanobacterium Anabaena sp. strain PCC 7120. Microbiology 153:601–607Google Scholar
  27. Olmedo-Verd E, Valladares A, Flores E et al (2008) Role of two NtcA-binding sites in the complex ntcA gene promoter of the heterocyst-forming cyanobacterium Anabaena sp. strain PCC 7120. J Bacteriol 190:7584–7590Google Scholar
  28. Pankratz HS, Bowen CC (1963) Cytology of blue-green algae. I. The cells of Symploca muscorum. Am J Bot 50:387–399CrossRefGoogle Scholar
  29. Pernil R, Picossi S, Mariscal V et al (2008) ABC-type amino acid uptake transporters Bgt and N-II of Anabaena sp. strain PCC 7120 share an ATPase subunit and are expressed in vegetative cells and heterocysts. Mol Microbiol 67:1067–1080PubMedCrossRefGoogle Scholar
  30. Picossi S, Valladares A, Flores E et al (2004) Nitrogen-regulated genes for the metabolism of cyanophycin, a bacterial nitrogen reserve polymer: expression and mutational analysis of two cyanophycin synthetase and cyanophycinase gene clusters in heterocyst-forming cyanobacterium Anabaena sp. PCC 7120. J Biol Chem 279:11582–11592CrossRefGoogle Scholar
  31. Picossi S, Montesinos ML, Pernil R et al (2005) ABC-type neutral amino acid permease N-I is required for optimal diazotrophic growth and is repressed in the heterocysts of Anabaena sp. strain PCC 7120. Mol Microbiol 57:1582–1592PubMedCrossRefGoogle Scholar
  32. Rees DC, Johnson E, Lewinson O (2009) ABC transporters: the power to change. Nat Rev Mol Cell Biol 10:218–227PubMedCrossRefGoogle Scholar
  33. Rippka R, Deruelles J, Waterbury JB et al (1978) Generic assignments, strain stories and properties of pure cultures of cyanobacteria. J Gen Microbiol 111:1–61Google Scholar
  34. Ris H, Singh RN (1961) Electron microscope studies on blue-green algae. J Biophys Biochem Cytol 9:63–80PubMedCrossRefGoogle Scholar
  35. Robinson C, Bolhuis A (2004) Tat-dependent protein targeting in prokaryotes and chloroplasts. Biochim Bipphys Acta 1694:135–147CrossRefGoogle Scholar
  36. Sherman DM, Tucker D, Sherman LA (2000) Heterocyst development and localization of cyanophycin in N2-fixing cultures of Anabaena sp. PCC 7120 (cyanobacteria). J Phycol 36:932–941CrossRefGoogle Scholar
  37. Stanier RY, Cohen-Bazire G (1977) Phototrophic prokaryotes: the cyanobacteria. Annu Rev Microbiol 31:225–274PubMedCrossRefGoogle Scholar
  38. Thomas J, Meeks JC, Wolk CP et al (1977) Formation of glutamine from [13N]ammonia, [13N]dinitrogen, and [14C]glutamate by heterocysts isolated from Anabaena cylindrica. J Bacteriol 129:1545–1555PubMedGoogle Scholar
  39. Wei TF, Ramasubramanian TS, Golden JW (1994) Anabaena sp. strain PCC 7120 ntcA gene required for growth on nitrate and heterocyst development. J Bacteriol 176:4473–4482PubMedGoogle Scholar
  40. Wolk CP (1968) Movement of carbon from vegetative cells to heterocysts in Anabaena cylindrica. J Bacteriol 96:2138–2143PubMedGoogle Scholar
  41. Wolk CP (1973) Physiology and cytological chemistry blue-green algae. Bacteriol Rev 37:32–101PubMedGoogle Scholar
  42. Wolk CP, Austin SM, Bortins J et al (1974) Autoradiographic localization of 13N after fixation of 13N-labeled nitrogen gas by a heterocyst-forming blue-green alga. J Cell Biol 61:440–453PubMedCrossRefGoogle Scholar
  43. Wolk CP, Thomas J, Shaffer PW et al (1976) Pathway of nitrogen metabolism after fixation of 13N-labeled nitrogen gas by the cyanobacterium, Anabaena cylindrica. J Biol Chem 251:5027–5034PubMedGoogle Scholar
  44. Wu X, Liu D, Lee MH et al (2004) patS minigenes inhibit heterocyst development of Anabaena sp. strain PCC 7120. J Bacteriol 186:6422–6429PubMedCrossRefGoogle Scholar
  45. Yoon HS, Golden JW (1998) Heterocyst pattern formation controlled by a diffusible peptide. Science 282:935–938PubMedCrossRefGoogle Scholar
  46. Yoon HS, Golden JW (2001) PatS and products of nitrogen fixation control heterocyst pattern. J Bacteriol 183:2605–2613PubMedCrossRefGoogle Scholar
  47. Zhang LC, Chen YF, Chen WL et al (2008) Existence of periplasmic barriers preventing green fluorescent protein diffusion from cell to cell in the cyanobacterium Anabaena sp. strain PCC 7120. Mol Microbiol 70: 814–823PubMedGoogle Scholar
  48. Zhou R, Wei X, Jiang N et al (1998) Evidence that HetR protein is an unusual serine-type protease. Proc Natl Acad Sci USA 95: 4959–4963PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Instituto de Bioquímica Vegetal y FotosíntesisC.S.I.C. and Universidad de SevillaSevilleSpain

Personalised recommendations