Beyond the Genome: Functional Studies of Phototrophic Sulfur Oxidation

  • Thomas E. Hanson
  • Rachael M. Morgan-Kiss
  • Leong-Keat Chan
  • Jennifer Hiras
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 675)


The increasing availability of complete genomic sequences for cultured phototrophic bacteria and assembled metagenomes from environments dominated by phototrophs has reinforced the need for a “post-genomic” analytical effort to test models of cellular structure and function proposed from genomic data. Comparative genomics has produced a testable model for pathways of sulfur compound oxidation in the phototrophic bacteria. In the case of sulfide, two enzymes are predicted to oxidize sulfide: sulfide:quinone oxidoreductase and flavocytochrome c sulfide dehydrogenase. However, these models do not predict which enzyme is important under what conditions. In Chlorobaculum tepidum, a model green sulfur bacterium, a combination of genetics and physiological analysis of mutant strains has led to the realization that this organism contains at least two active sulfide:quinone oxidoreductases and that there is significant interaction between sulfide oxidation and light harvesting. In the case of elemental sulfur, an organothiol intermediate of unknown structure has been proposed to activate elemental sulfur for transport into the cytoplasm where it can be oxidized or assimilated, and recent approaches using classical metabolite analysis have begun to shed light on this issue both in C. tepidum and the purple sulfur bacterium Allochromatium vinosum.


Sulfur Oxidation Sulfide Concentration Sulfide Oxidation Green Sulfur Bacterium Phototrophic Bacterium 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Arieli B, Shahak Y, Taglicht D, Hauska G, Padan E (1994) Purification and characterization of sulfide-quinone reductase, a novel enzyme driving anoxygenic photosynthesis in Oscillatoria limnetica. J Biol Chem 269:5705–5711PubMedGoogle Scholar
  2. Arndt C, Gaill F, Felbeck H (2001) Anaerobic sulfur metabolism in thiotrophic symbioses. J Exp Biol 204:741–750PubMedGoogle Scholar
  3. Arnirfakhri J, Vossoughi M, Soltanieh M (2006) Assessment of desulfurization of natural gas by chemoautotrophic bacteria in an anaerobic baffled reactor (ABR). Chem Eng Process 45:232–237CrossRefGoogle Scholar
  4. Bartsch RG, Newton GL, Sherrill C, Fahey RC (1996) Glutathione amide and its perthiol in anaerobic sulfur bacteria. J Bacteriol 178:4742–4746PubMedGoogle Scholar
  5. Baumgartner LK, Reid RP, Dupraz C, Decho AW, Buckley DH, Spear JR, Przekop KM, Visscher PT (2006) Sulfate reducing bacteria in microbial mats: changing paradigms, new discoveries. Sediment Geol 185:131–145CrossRefGoogle Scholar
  6. Bernhard JM (2003) Potential symbionts in bathyal foraminifera. Science 299: 861PubMedCrossRefGoogle Scholar
  7. Bernhard JM, Buck KR, Farmer MA, Bowser SS (2000) The Santa Barbara Basin is a symbiosis oasis. Nature 403: 77–80PubMedCrossRefGoogle Scholar
  8. Bernhard JM, Habura A, Bowser SS (2006) An endobiont-bearing Allogromiid from the Santa Barbara Basin: implications for the early diversification of foraminifera. J Geophys Res-Biogeosci 111:G03002 doi: 10.1029/2005JG000158Google Scholar
  9. Borrego CM, Garcia-Gil LJ (1994) Rearrangement of light harvesting bacteriochlorophyll homologues as a response of green sulfur bacteria to low light intensities. Photosynth Res 45:21–30CrossRefGoogle Scholar
  10. Bronstein M, Schutz M, Hauska G, Padan E, Shahak Y (2000) Cyanobacterial sulfide-quinone reductase: cloning and heterologous expression. J Bacteriol 182:3336–3344PubMedCrossRefGoogle Scholar
  11. Bruchert V, Jorgensen BB, Neumann K, Riechmann D, Schlosser M, Schulz H (2003) Regulation of bacterial sulfate reduction and hydrogen sulfide fluxes in the central Namibian coastal upwelling zone. Geochim Cosmochim Acta 67:4505–4518CrossRefGoogle Scholar
  12. Canfield DE, Raiswell R (1999) The evolution of the sulfur cycle. Am J Sci 299:697–723CrossRefGoogle Scholar
  13. Celis-Garcia LB, Gonzalez-Blanco G, Meraz M (2008) Removal of sulfur inorganic compounds by a biofilm of sulfate reducing and sulfide oxidizing bacteria in a down-flow fluidized bed reactor. J Chem Technol Biotechnol 83:260–268CrossRefGoogle Scholar
  14. Chan L-K, Morgan-Kiss R, Hanson TE (2008) Genetic and proteomic studies of sulfur oxidation in Chlorobium tepidum (syn. Chlorobaculum tepidum). In: Hell R, Dahl C, Knaff D and Leustek T (eds) Sulfur metabolism in phototrophic organisms pp 363–379. Springer, New YorkGoogle Scholar
  15. Chan LK, Morgan-Kiss RM, Hanson TE (2009) Functional analysis of three sulfide:quinone oxidoreductase homologs in Chlorobaculum tepidum. J Bacteriol 191:1026–1034PubMedCrossRefGoogle Scholar
  16. Chen ZW, Koh M, Van Driessche G, Van Beeumen JJ, Bartsch RG, Meyer TE, Cusanovich MA, Mathews FS (1994) The structure of flavocytochrome c sulfide dehydrogenase from a purple phototrophic bacterium. Science 266:430–432PubMedCrossRefGoogle Scholar
  17. Chew AGM, Frigaard NU, Bryant DA (2007) Bacteriochlorophyllide c c-82 and c-121 methyltransferases are essential for adaptation to low light in Chlorobaculum tepidum. J Bacteriol 189:6176–6184CrossRefGoogle Scholar
  18. Dahl C (2008) Inorganic sulfur compounds as electron donors in purple sulfur bacteria. In: Hell R, Dahl C, Knaff D, Leustek T (eds) Sulfur metabolism in phototrophic organisms pp 289–317. Springer, Dordrecht, The NetherlandsCrossRefGoogle Scholar
  19. Dahl C, Engels S, Pott-Sperling AS, Schulte A, Sander J, Lubbe Y, Deuster O, Brune DC (2005) Novel genes of the dsr gene cluster and evidence for close interaction of Dsr proteins during sulfur oxidation in the phototrophic sulfur bacterium Allochromatium vinosum. J Bacteriol 187:1392–1404PubMedCrossRefGoogle Scholar
  20. Dahl C, Rakhely G, Pott-Sperling AS, Fodor B, Takacs M, Toth A, Kraeling M, Gy”orfi K, Kovacs A, Tusz J, Kovacs KL (1999) Genes involved in hydrogen and sulfur metabolism in phototrophic sulfur bacteria. FEMS Microbiol Lett 180:317–324PubMedCrossRefGoogle Scholar
  21. Elrod JW, Calvert JW, Morrison J, Doeller JE, Kraus DW, Tao L, Jiao X, Scalia R, Kiss L, Szabo C, Kimura H, Chow CW, Lefer DJ (2007) Hydrogen sulfide attenuates myocardial ischemia-reperfusion injury by preservation of mitochondrial function. Proc Natl Acad Sci U S A 104:15560–15565PubMedCrossRefGoogle Scholar
  22. Elshahed MS, Youssef NH, Luo QW, Najar FZ, Roe BA, Sisk TM, Buhring SI, Hinrichs KU, Krumholz LR (2007) Phylogenetic and metabolic diversity of planctomycetes from anaerobic, sulfide- and sulfur-rich Zodletone Spring, Oklahoma. Appl Environ Microbiol 73:4707–4716PubMedCrossRefGoogle Scholar
  23. Fahey RC (2001) Novel thiols of prokaryotes. Annu Rev Microbiol 55:333–356PubMedCrossRefGoogle Scholar
  24. Fahey RC, Buschbacher RM, Newton GL (1987) The evolution of glutathione metabolism in phototrophic microorganisms. J Mol Evol 25:81–88PubMedCrossRefGoogle Scholar
  25. Franz B, Gehrke T, Lichtenberg H, Hormes J, Dahl C, Prange A (2009) Unexpected extracellular and intracellular sulfur species during growth of Allochromatium vinosum with reduced sulfur compounds. Microbiol 155: 2766–2774CrossRefGoogle Scholar
  26. Friedrich CG, Bardischewsky F, Rother D, Quentmeier A, Fischer J (2005) Prokaryotic sulfur oxidation. Curr Opin Microbiol 8:253–259PubMedCrossRefGoogle Scholar
  27. Frigaard N-U, Bryant DA (2008a) Genomic and evolutionary perspectives on sulfur metabolism in green sulfur bacteria. In: Dahl C, Friedrich CG (eds) Microbial sulfur metabolism pp 60–76. Springer, New YorkCrossRefGoogle Scholar
  28. Frigaard N, Bryant D (2008b) Sulfur oxidation in green sulfur bacteria. In: Hell R, Dahl C, Knaff D, Leustek T (eds) Sulfur metabolism in phototrophic organisms pp 363–379. Springer, New YorkGoogle Scholar
  29. Goffredi SK, Waren A, Orphan VJ, Van Dover CL, Vrijenhoek RC (2004) Novel forms of structural integration between microbes and a hydrothermal vent gastropod from the Indian Ocean. Appl Environ Microbiol 70:3082–3090PubMedCrossRefGoogle Scholar
  30. Goubern M, Andriamihaja M, Nubel T, Blachier F, Bouillaud F (2007) Sulfide, the first inorganic substrate for human cells. FASEB J 21:1699–1706PubMedCrossRefGoogle Scholar
  31. Heising S, Richter L, Ludwig W, Schink B (1999) Chlorobium ferrooxidans sp. nov., a phototrophic green sulfur bacterium that oxidizes ferrous iron in coculture with a “Geospirillum” sp. strain. Arch Microbiol 172:116–124PubMedCrossRefGoogle Scholar
  32. Hohmann-Marriott MF, Blankenship RE (2007) Hypothesis on chlorosome biogenesis in green photosynthetic bacteria. FEBS Lett 581:800–803PubMedCrossRefGoogle Scholar
  33. Hollibaugh JT, Budinoff C, Hollibaugh RA, Ransom B, Bano N (2006) Sulfide oxidation coupled to arsenate reduction by a diverse microbial community in a soda lake. Appl Environ Microbiol 72:2043–2049PubMedCrossRefGoogle Scholar
  34. Holmer M, Storkholm P (2001) Sulphate reduction and sulphur cycling in lake sediments: A review. Freshw Biol 46:431–451CrossRefGoogle Scholar
  35. Janssen AJ, Lens PN, Stams AJ, Plugge CM, Sorokin DY, Muyzer G, Dijkman H, Van Zessen E, Luimes P, Buisman CJ (2009) Application of bacteria involved in the biological sulfur cycle for paper mill effluent purification. Sci Total Environ 407:1333–1343PubMedCrossRefGoogle Scholar
  36. Kamp A, Stief P, Schulz-Vogt HN (2006) Anaerobic sulfide oxidation with nitrate by a freshwater beggiatoa enrichment culture. Appl Environ Microbiol 72: 4755–4760PubMedCrossRefGoogle Scholar
  37. Kaneko T, Tabata S (1997) Complete genome structure of the unicellular cyanobacterium Synechocystis sp. PCC 6803. Plant Cell Physiol 38: 1171–1176PubMedCrossRefGoogle Scholar
  38. Klamt S, Grammel H, Straube R, Ghosh R, Gilles ED (2008) Modeling the electron transport chain of purple non-sulfur bacteria. Mol Syst Biol 4:156 doi:10.1038/msb4100191Google Scholar
  39. Lefer DJ (2007) A new gaseous signaling molecule emerges: Cardioprotective role of hydrogen sulfide. Proc Natl Acad Sci U S A 104:17907–17908PubMedCrossRefGoogle Scholar
  40. Macalady JL, Dattagupta S, Schaperdoth I, Jones DS, Druschel GK, Eastman D (2008) Niche differentiation among sulfur-oxidizing bacterial populations in cave waters. ISME Journal 2:590–601PubMedCrossRefGoogle Scholar
  41. Madrid VM, Aller RC, Aller JY, Chistoserdov AY (2006) Evidence of the activity of dissimilatory sulfate-reducing prokaryotes in nonsulfidogenic tropical mobile muds. FEMS Microbiol Ecol 57:169–181PubMedCrossRefGoogle Scholar
  42. Martin W, Rotte C, Hoffmeister M, Theissen U, Gelius-Dietrich G, Ahr S, Henze K (2003) Early cell evolution, eukaryotes, anoxia, sulfide, oxygen, fungi first (?), and a tree of genomes revisited. IUBMB Life 55:193–204PubMedCrossRefGoogle Scholar
  43. Meeks JC, Elhai J, Thiel T, Potts M, Larimer F, Lamerdin J, Predki P, Atlas R (2001) An overview of the genome of Nostoc punctiforme, a multicellular, symbiotic cyanobacterium. Photosynth Res 70:85–106PubMedCrossRefGoogle Scholar
  44. Morgan-Kiss RM, Chan LK, Modla S, Weber TS, Warner M, Czymmek KJ, Hanson TE (2009) Chlorobaculum tepidum regulates chlorosome structure and function in response to temperature and electron donor availability. Photosynth Res 99:11–21PubMedCrossRefGoogle Scholar
  45. Nakamura Y, Kaneko T, Sato S, Ikeuchi M, Katoh H, Sasamoto S, Watanabe A, Iriguchi M, Kawashima K, Kimura T, Kishida Y, Kiyokawa C, Kohara M, Matsumoto M, Matsuno A, Nakazaki N, Shimpo S, Sugimoto M, Takeuchi C, Yamada M, Tabata S (2002) Complete genome structure of the thermophilic cyanobacterium Thermosynechococcus elongatus BP-1. DNA Res 9:123–130PubMedCrossRefGoogle Scholar
  46. Nakamura Y, Kaneko T, Sato S, Mimuro M, Miyashita H, Tsuchiya T, Sasamoto S, Watanabe A, Kawashima K, Kishida Y, Kiyokawa C, Kohara M, Matsumoto M, Matsuno A, Nakazaki N, Shimpo S, Takeuchi C, Yamada M, Tabata S (2003) Complete genome structure of Gloeobacter violaceus PCC 7421, a cyanobacterium that lacks thylakoids. DNA Res 10:137–145PubMedCrossRefGoogle Scholar
  47. Oh-oka H, Blankenship RE (2004) Green bacteria: Secondary electron donor (cytochromes). In: Lennarz WJ, Lane MD (eds) Encyclopedia of biochemistry pp 321–324. Elsevier, BostonCrossRefGoogle Scholar
  48. Omoregie EO, Mastalerz V, de Lange G, Straub KL, Kappler A, Roy H, Stadnitskaia A, Foucher JP, Boetius A (2008) Biogeochemistry and community composition of iron- and sulfur-precipitating microbial mats at the chefren mud volcano (Nile deep sea fan, eastern Mediterranean). Appl Environ Microbiol 74:3198–3215PubMedCrossRefGoogle Scholar
  49. Orphan VJ, Ussler W, Naehr TH, House CH, Hinrichs KU, Paull CK (2004) Geological, geochemical, and microbiological heterogeneity of the seafloor around methane vents in the Eel River basin, offshore California. Chem Geol 205:265–289CrossRefGoogle Scholar
  50. Overmann J (2006) Symbiosis between non-related bacteria in phototrophic consortia. Prog Mol Subcell Biol 41:21–37PubMedCrossRefGoogle Scholar
  51. Overmann J, Beatty JT, Krouse HR, Hall KJ (1996) The sulfur cycle in the chemocline of a meromictic salt lake. Limnol Oceanogr 41:147–156CrossRefGoogle Scholar
  52. Pfannes KR, Vogl K, Overmann J (2007) Heterotrophic symbionts of phototrophic consortia: Members of a novel diverse cluster of betaproteobacteria characterized by a tandem rrn operon structure. Environ Microbiol 9:2782–2794PubMedCrossRefGoogle Scholar
  53. Preisler A, de Beer D, Lichtschlag A, Lavik G, Boetius A, Jorgensen BB (2007) Biological and chemical sulfide oxidation in a Beggiatoa inhabited marine sediment. ISME Journal 1:341–353PubMedGoogle Scholar
  54. Reinartz M, Tschape J, Bruser T, Truper HG, Dahl C (1998) Sulfide oxidation in the phototrophic sulfur bacterium Chromatium vinosum. Arch Microbiol 170:59–68PubMedCrossRefGoogle Scholar
  55. Saga Y, Osumi S, Higuchi H, Tamiaki H (2005) Bacteriochlorophyll-c homolog composition in green sulfur photosynthetic bacterium Chlorobium vibrioforme dependent on the concentration of sodium sulfide in liquid cultures. Photosynth Res 86:123–130PubMedCrossRefGoogle Scholar
  56. Schutz M, Shahak Y, Padan E, Hauska G (1997) Sulfide-quinone reductase from Rhodobacter capsulatus. Purification, cloning, and expression. J Biol Chem 272:9890–9894PubMedCrossRefGoogle Scholar
  57. Shahak Y (2008) Sulfide oxidation from cyanobacteria to humans: sulfide-quinone oxidoreductase (SQR). In: Hell R, Dahl C, Knaff D, Leustek T (eds) Sulfur metabolism in phototrophic organisms pp 319–335. Springer, Dordrecht, The NetherlandsCrossRefGoogle Scholar
  58. Shahak Y, Arieli B, Padan E, Hauska G (1992) Sulfide quinone reductase (SQR) activity in Chlorobium. FEBS Lett 299: 127–130PubMedCrossRefGoogle Scholar
  59. Shahak Y, Schutz M, Bronstein M, Griesbeck C, Hauska G, Padan E (1999) Sulfide-dependent anoxygenic photosynthesis in prokaryotes- sulfide-quinone reductase (SQR), the initial step. In: Peschek GA, Loffelhardt WL, Schmetterer G (eds) The phototrophic prokaryotes pp 217–228. Kluwer Academic/ Plenum, New YorkCrossRefGoogle Scholar
  60. Sorensen PG, Cox RP, Miller M (2008) Chlorosome lipids from Chlorobium tepidum: characterization and quantification of polar lipids and wax esters. Photosynth Res 95:191–196PubMedCrossRefGoogle Scholar
  61. Theissen U, Hoffmeister M, Grieshaber M, Martin W (2003) Single eubacterial origin of eukaryotic sulfide : quinone oxidoreductase, a mitochondrial enzyme conserved from the early evolution of eukaryotes during anoxic and sulfidic times. Mol Biol Evol 20:1564–1574PubMedCrossRefGoogle Scholar
  62. Turchyn AV, Schrag DP (2006) Cenozoic evolution of the sulfur cycle: insight from oxygen isotopes in marine sulfate. Earth Planet Sci Lett 241:763–779CrossRefGoogle Scholar
  63. Vergauwen B, Pauwels F, Jacquemotte F, Meyer TE, Cusanovich MK, Bartsch RG, Van Beeumen JJ (2001) Characterization of glutathione amide reductase from Chromatium gracile – identification of a novel thiol peroxidase (Prx/Grx) fueled by glutathione amide redox cycling. J Biol Chem 276:20890–20897PubMedCrossRefGoogle Scholar
  64. Wakai S, Kikumoto M, Kanao T, Kamimura K (2004) Involvement of sulfide:quinone oxidoreductase in sulfur oxidation of an acidophilic iron-oxidizing bacterium, Acidithiobacillus ferrooxidans NASF-1. Biosci Biotechnol Biochem 68:2519–2528PubMedCrossRefGoogle Scholar
  65. Wang GZ, Spivack AJ, Rutherford S, Manor U, D′Hondt S (2008) Quantification of co-occurring reaction rates in deep subseafloor sediments. Geochim Cosmochim Acta 72:3479–3488CrossRefGoogle Scholar
  66. Weston NB, Porubsky WP, Samarkin VA, Erickson M, Macavoy SE, Joye SB (2006) Porewater stoichiometry of terminal metabolic products, sulfate, and dissolved organic carbon and nitrogen in estuarine intertidal creek-bank sediments. Biogeochem 77: 375–408CrossRefGoogle Scholar
  67. Yang G, Wu L, Jiang B, Yang W, Qi J, Cao K, Meng Q, Mustafa AK, Mu W, Zhang S, Snyder SH, Wang R (2008) H2S as a physiologic vasorelaxant: hypertension in mice with deletion of cystathionine gamma-lyase. Science 322:587–590PubMedCrossRefGoogle Scholar
  68. Yang W, Vollertsen J, Hvitved-Jacobsen T (2005) Anoxic sulfide oxidation in wastewater of sewer networks. Water Sci Technol 52:191–199PubMedGoogle Scholar
  69. Zopfi J, Bttcher ME, Jorgensen BB (2008) Biogeochemistry of sulfur and iron in Thioploca-colonized surface sediments in the upwelling area off central Chile. Geochim Cosmochim Acta 72:827–843CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Thomas E. Hanson
    • 1
  • Rachael M. Morgan-Kiss
    • 2
  • Leong-Keat Chan
    • 3
  • Jennifer Hiras
    • 4
  1. 1.College of Earth, Ocean and Environment and Delaware Biotechnology Institute and Department of Biological SciencesUniversity of DelawareNewarkUSA
  2. 2.Department of MicrobiologyMiami UniversityOxfordUSA
  3. 3.Department of Marine SciencesUniversity of GeorgiaAthensUSA
  4. 4.College of Earth, Ocean and Environment and Delaware Biotechnology InstituteUniversity of DelawareNewarkUSA

Personalised recommendations