Advertisement

The Phototrophic Consortium “Chlorochromatium aggregatum” – A Model for Bacterial Heterologous Multicellularity

  • Jörg Overmann
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 675)

Abstract

Phototrophic consortia currently represent the most highly developed interspecific association between prokaryotes and consist of green sulfur bacterial epibionts which surround a central, motile, chemotrophic bacterium. Several independent experimental findings indicate that a rapid signal transfer occurs between the epibionts and the central bacterium. First, the cell division of the partner bacteria occurs in a highly coordinated fashion. Second, consortia accumulate scotophobotactically in the light, whereby the central bacterium confers motility to the consortium and the epibionts act as light sensors. Third, the organic carbon uptake of the central bacterium seems to be controlled by the epibiont. A decade ago, a laboratory culture of the phototrophic consortium “Chlorochromatium aggregatum” could be established and maintained. Using “C. aggregatum,” recent genomic, transcriptomic, and proteomic studies have started to unravel the molecular basis of prokaryotic heterologous multicellularity in this model system.

Keywords

Suppression Subtractive Hybridization Green Sulfur Bacterium Central Metabolic Pathway Assimilable Organic Carbon Bacterial Virulence Factor 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Notes

Acknowledgments

Several motivated students have participated in our research on phototrophic consortia: Jürgen Fröstl, Jens Glaeser, Kajetan Vogl, Martina Schlickenrieder, Martina Müller, Birgit Kanzler, Kristina Pfannes, Katharina Hütz, Anne Bayer, Dörte Dibbern, and Johannes Müller. Their contributions were decisive for the success of the project. Support by the Deutsche Forschungsgemeinschaft (grants Ov20/3-1, Ov20/3-2, Ov20/3-3, Ov20/10-1, Ov20/10-2) is gratefully acknowledged.

References

  1. Bayer A (2007) Neue Ansätze zur Analyse der bakteriellen Interaktionen in phototrophen Konsortien. Diplomarbeit University of Munich, Munich, 104 pp.Google Scholar
  2. Buder J (1914) Chloronium mirabile. Berichte deutsche botanische Gesellschaft 31:80–97Google Scholar
  3. Caldwell DE, Tiedje JM (1975) A morphological study of anaerobic bacteria from the hypolimnia of two Michigan lakes. Can J Microbiol 21:362–376PubMedCrossRefGoogle Scholar
  4. Croome RL, Tyler PA (1984) Microbial microstratification and crepuscular photosynthesis in meromictic Tasmanian lakes. Verh Int Verein Limnol 22:1216–1223Google Scholar
  5. Czeczuga B, Gradski F (1972) Relationship between extracellular and cellular production in the sulphuric green bacterium Chlorobium limicola Nads. as compared to primary production of phytoplankton. Hydrobiologia 42:85–95CrossRefGoogle Scholar
  6. De Bok FA, Plugge CM, Stams AJ (2004) Interspecies electron transfer in methanogenic propionate degrading consortia. Water Res 38:1368–1375PubMedCrossRefGoogle Scholar
  7. Eichler B, Pfennig N (1990) Seasonal development of anoxygenic phototrophic bacteria in a holomictic drumlin lake (Schleinsee, F.R.G.). Arch Hydrobiol 119:369–392Google Scholar
  8. Eisen JA, Nelson KE, Paulsen IT et al (2002) The complete genome sequence of Chlorobium tepidum TLS, a photosynthetic, anaerobic, green-sulfur bacterium. Proc Natl Acad Sci USA 99:9509–9514PubMedCrossRefGoogle Scholar
  9. Fröstl J, Overmann J (1998) Physiology and tactic response of “Chlorochromatium aggregatum”. Arch Microbiol 169:129–135PubMedCrossRefGoogle Scholar
  10. Fröstl JM, Overmann J (2000) Phylogenetic affiliation of the bacteria that constitute phototrophic consortia. Arch Microbiol 174:50–58PubMedCrossRefGoogle Scholar
  11. Gasol JM, Jürgens K, Massana R, Calderón-Paz JI, Pedrós-Alió C (1995) Mass development of Daphnia pulex in a sulfide-rich pond (Lake Cisó). Arch Hydrobiol 132:279–296Google Scholar
  12. Glaeser J, Overmann J (2003a) Characterization and in situ carbon metabolism of phototrophic consortia. Appl Environ Microbiol 69:3739–3750PubMedCrossRefGoogle Scholar
  13. Glaeser J, Overmann J (2003b) The significance of organic carbon compounds for in situ metabolism and chemotaxis of phototrophic consortia. Environ Microbiol 5:1053–1063PubMedCrossRefGoogle Scholar
  14. Glaeser J, Overmann J (2004) Biogeography, evolution and diversity of the epibionts in phototrophic consortia. Appl Environ Microbiol 70:4821–4830PubMedCrossRefGoogle Scholar
  15. Gorlenko VM (1988) Ecological niches of green sulfur bacteria. In: Olson JM, Ormerod JG, Amesz J, Stackebrandt E, Trüper HG (eds) Green photosynthetic bacteria. Plenum, New York, pp 257–267CrossRefGoogle Scholar
  16. Kanzler B, Pfannes KR, Vogl K, Overmann J (2005) Molecular characterization of the non-photosynthetic partner bacterium in the consortium “Chlorochromatium aggregatum”. Appl Environ Microbiol 71:7434–7441PubMedCrossRefGoogle Scholar
  17. Lauterborn R (1906) Zur Kenntnis der sapropelischen Flora. Allg Bot 2:196–197Google Scholar
  18. Overmann J (2001) Phototrophic consortia: a tight cooperation between non-related eubacteria. In: Seckbach J (ed) Symbiosis: mechanisms and model systems. Kluwer, Dordrecht, pp 239–255Google Scholar
  19. Overmann J (2006) The symbiosis between nonrelated bacteria in phototrophic consortia. In: Overmann J (ed) Molecular basis of symbiosis. Progress in molecular subcellular biology, Chapter II. Springer, Berlin, pp 21–37Google Scholar
  20. Overmann J, Lehmann S, Pfennig N (1991) Gas vesicle formation and buoyancy regulation in Pelodictyon phaeoclathratiforme (Green sulfur bacteria). Arch Microbiol 157:29–37CrossRefGoogle Scholar
  21. Overmann J, Pfennig N (1989) Pelodictyon phaeoclathratiformesp. nov., a new brown-colored member of the Chlorobiaceae forming net-like colonies. Arch Microbiol 152:401–406CrossRefGoogle Scholar
  22. Overmann J, Tilzer MM (1989) Control of primary productivity and the significance of photosynthetic bacteria in a meromictic kettle lake (Mittlerer Buchensee, West Germany). Aquat Sci 51:261–278CrossRefGoogle Scholar
  23. Overmann J, Tuschak C, Fröstl J, Sass H (1998) The ecological niche of the consortium “Pelochromatium roseum”. Arch Microbiol 169:120–128PubMedCrossRefGoogle Scholar
  24. Pfennig N (1980) Syntrophic mixed cultures and symbiotic consortia with phototrophic bacteria: a review. In: Gottschalk G, Pfennig N, Werner H (eds) Anaerobes and anaerobic infections. Fischer, Stuttgart, New York, pp 127–131Google Scholar
  25. Pfannes K (2007) Characterization of the symbiotic bacterial partners in phototrophic consortia. Dissertation, University of Munich, 180p.Google Scholar
  26. Pfannes KR, Vogl K, Overmann J (2007) Heterotrophic symbionts of phototrophic consortia: members of a novel diverse cluster of Betaproteobacteria characterised by a tandem rrn operon structure. Environ Microbiol 9:2782–2794PubMedCrossRefGoogle Scholar
  27. Schink B (1991) Syntrophism among prokaryotes. In: Balows A, Trüper HG, Dworkin M, Harder W, Schleifer K-H (eds) The prokaryotes, 2nd edn. Springer, Berlin, pp 276–299Google Scholar
  28. Schink B (2002) Synergistic interactions in the microbial world. Ant van Leeuwenhoek 81:257–261CrossRefGoogle Scholar
  29. Tuschak C, Glaeser J, Overmann J (1999) Specific detection of green sulfur bacteria by in situ hybridization with a fluorescently labeled oligonucleotide probe. Arch Microbiol 171:265–272PubMedCrossRefGoogle Scholar
  30. Vogl K, Glaeser J, Pfannes KR et al (2006) Chlorobium chlorochromatii sp. nov., a symbiotic green sulfur bacterium isolated from the phototrophic consortium “Chlorochromatium aggregatum”. Arch Microbiol 185:363–372PubMedCrossRefGoogle Scholar
  31. Vogl K, Wenter R, Dressen M, et al (2008) Identification and analysis of four candidate symbiosis genes from ‘Chlorochromatium aggregatum’, a highly developed bacterial symbiosis. Environ Microbiol 10:2842–2856PubMedCrossRefGoogle Scholar
  32. Wanner G, Vogl K, Overmann J (2008) Ultrastructural characterization of the prokaryotic symbiosis in ‘Chlorochromatium aggregatum’. J Bacteriol 190:3721–3730PubMedCrossRefGoogle Scholar
  33. Wenter R, Hütz K, Dibbern D, Reisinger V, Li T, Plöscher M, Eichacker L, Eddie B, Hanson T, Bryant D, Overmann J (2010) Expression-based identification of genetic determinants of the bacterial symbiosis in ‘Chlorochromatium aggregatum’. Environ Microbiol (in press; Ms. No. EMI-2009-0895)Google Scholar
  34. Wenter R, Wanner G, Schüler D, Overmann J (2009) Ultrastructure, phylogeny and tactic behaviour of a novel multicellular magnetotactic prokaryote from North Sea sediments. Environ Microbiol 11:1493–1505PubMedCrossRefGoogle Scholar
  35. Whittaker CJ, Klier CM, Kolenbrander PE (1996) Mechanisms of adhesion by oral bacteria. Annu Rev Microbiol 50:513–552PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Bereich Mikrobiologie, Department Biologie ILudwig-Maximilians-Universität MünchenPlanegg-MartinsriedGermany

Personalised recommendations