Advertisement

The Tetrapyrrole Biosynthetic Pathway and Its Regulation in Rhodobacter capsulatus

  • Sébastien Zappa
  • Keran Li
  • Carl E. Bauer
Conference paper
Part of the Advances in Experimental Medicine and Biology book series (AEMB, volume 675)

Abstract

The purple anoxygenic photosynthetic bacterium Rhodobacter capsulatus is capable of growing in aerobic or anaerobic conditions, in the dark or using light, etc. Achieving versatile metabolic adaptations from respiration to photosynthesis requires the use of tetrapyrroles such as heme and bacteriochlorophyll, in order to carry oxygen, to transfer electrons, and to harvest light energy. A third tetrapyrrole, cobalamin (vitamin B12), is synthesized and used as a cofactor for many enzymes. Heme, bacteriochlorophyll, and vitamin B12 constitute three major end products of the tetrapyrrole biosynthetic pathway in purple bacteria. Their respective synthesis involves a plethora of enzymes, several that have been characterized and several that are uncharacterized, as described in this review. To respond to changes in metabolic requirements, the pathway undergoes complex regulation to direct the flow of tetrapyrrole intermediates into a specific branch(s) at the expense of other branches of the pathway. Transcriptional regulation of the tetrapyrrole synthesizing enzymes by redox conditions and pathway intermediates is reviewed. In addition, we discuss the involvement of several transcription factors (RegA, CrtJ, FnrL, AerR, HbrL, Irr) as well as the role of riboswitches. Finally, the interdependence of the tetrapyrrole branches on each other synthesis is discussed.

Keywords

Heme Synthesis Rhodobacter Capsulatus Ring Contraction Corrin Ring Cobalamin Biosynthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Alberti M, Burke DH, Hearst JE (1995) Anoxygenic photosynthetic bacteria. Kluwer Academic Publishers, DordrechtGoogle Scholar
  2. Armstrong GA, Schmidt A, Sandmann G et al. (1990) Genetic and biochemical characterization of carotenoid biosynthesis mutants of Rhodobacter capsulatus. J Biol Chem 265:8329–8338PubMedGoogle Scholar
  3. Astner I, Schulze JO, van den Heuvel J et al (2005) Crystal structure of 5-aminolevulinate synthase, the first enzyme of heme biosynthesis, and its link to XLSA in humans. EMBO J 24:3166–3177PubMedCrossRefGoogle Scholar
  4. Avissar YJ, Moberg PA (1995) The common origins of the pigments of life – early steps of chlorophyll biosynthesis. Photosynth Res 44:221–242CrossRefGoogle Scholar
  5. Biel AJ, Marrs BL (1983) Transcriptional regulation of several genes for bacteriochlorophyll biosynthesis in Rhodopseudomonas capsulata in response to oxygen. J Bacteriol 156:686–694PubMedGoogle Scholar
  6. Biel AJ (1991) Characterization of a coproporphyrin-protein complex from Rhodobacter capsulatus. FEMS Microbiol Lett 65:43–47PubMedGoogle Scholar
  7. Biel AJ (1992) Oxygen-regulated steps in the Rhodobacter capsulatus tetrapyrrole biosynthetic pathway. J Bacteriol 174:5272–5274PubMedGoogle Scholar
  8. Biel AJ, Canada K, Huang D et al (2002) Oxygen-mediated regulation of porphobilinogen formation in Rhodobacter capsulatus. J Bacteriol 184:1685–1692PubMedCrossRefGoogle Scholar
  9. Biel SW, Wright MS, Biel AJ (1988) Cloning of the Rhodobacter capsulatus hemA gene. J Bacteriol 170:4382–4384PubMedGoogle Scholar
  10. Biel SW, Biel AJ (1990) Isolation of a Rhodobacter capsulatus mutant that lacks c-type cytochromes and excretes porphyrins. J Bacteriol 172:1321–1326PubMedGoogle Scholar
  11. Bollivar DW, Bauer CE (1992) Association of tetrapyrrole intermediates in the bacteriochlorophyll a biosynthetic pathway with the major outer-membrane porin protein of Rhodobacter capsulatus. Biochem J 282:471–476PubMedGoogle Scholar
  12. Bollivar DW, Jiang ZY, Bauer CE et al (1994a) Heterologous expression of the bchM gene product from Rhodobacter capsulatus and demonstration that it encodes S-adenosyl-L-methionine:Mg-protoporphyrin IX methyltransferase. J Bacteriol 176:5290–5296PubMedGoogle Scholar
  13. Bollivar DW, Suzuki JY, Beatty JT et al (1994b) Directed mutational analysis of bacteriochlorophyll a biosynthesis in Rhodobacter capsulatus. J Mol Biol 237:622–640PubMedCrossRefGoogle Scholar
  14. Bollivar DW, Clauson C, Lighthall R et al (2004) Rhodobacter capsulatus porphobilinogen synthase, a high activity metal ion independent hexamer. BMC Biochem. doi: 10. 1186/1471-2091-5-17Google Scholar
  15. Bollivar DW (2006) Recent advances in chlorophyll biosynthesis. Photosynth Res 90:173–194PubMedCrossRefGoogle Scholar
  16. Cohen-Bazire G, Sistrom WR, Stanier RY (1957) Kinetic studies of pigment synthesis by non-sulfur purple bacteria. J Cell Physiol 49:25–68PubMedCrossRefGoogle Scholar
  17. Cooper R (1956) The production of coproporphyrin precursors by a Rhodopseudomonas sp. Biochem J 63:25Google Scholar
  18. Cooper R (1963) The biosynthesis of coproporphyrinogen, magnesium protoporphyrin monomethyl ester and bacteriochlorophyll by Rhodopseudomonas capsulata. Biochem J 89:100–108PubMedGoogle Scholar
  19. Dailey HA (2002) Terminal steps of haem biosynthesis. Biochem Soc Trans 30:590–595PubMedCrossRefGoogle Scholar
  20. Dong C, Elsen S, Swem LR et al (2002) AerR, a second aerobic repressor of photosynthesis gene expression in Rhodobacter capsulatus. J Bacteriol 184:2805–2814PubMedCrossRefGoogle Scholar
  21. Drennan CL, Huang S, Drummond JT et al (1994) How a protein binds B12: A 3.0 A X-ray structure of B12-binding domains of methionine synthase. Science 266:1669–1674PubMedCrossRefGoogle Scholar
  22. Elsen S, Ponnampalam SN, Bauer CE (1998) CrtJ bound to distant binding sites interacts cooperatively to aerobically repress photopigment biosynthesis and light harvesting II gene expression in Rhodobacter capsulatus. J Biol Chem 273:30762–30769PubMedCrossRefGoogle Scholar
  23. Elsen S, Swem LR, Swem DL et al (2004) RegB/RegA, a highly conserved redox-responding global two-component regulatory system. Microbiol Mol Biol Rev 68:263–279PubMedCrossRefGoogle Scholar
  24. Fodje MN, Hansson A, Hansson M et al (2001) Interplay between an AAA module and an integrin I domain may regulate the function of magnesium chelatase. J Mol Biol 311:111–122PubMedCrossRefGoogle Scholar
  25. Frankenberg N, Moser J, Jahn D (2003) Bacterial heme biosynthesis and its biotechnological application. Appl Microbiol Biotechnol 63:115–127PubMedCrossRefGoogle Scholar
  26. Frère F, Reents H, Schubert WD et al (2005) Tracking the evolution of porphobilinogen synthase metal dependence in vitro. J Mol Biol 345:1059–1070PubMedCrossRefGoogle Scholar
  27. Fujita Y, Bauer CE (2003) The light-independent protochlorophyllide reductase: a nitrogenase-like enzyme catalyzing a key reaction for greening in the dark. In: Smith K, Kadish K, Guilard R (eds) The porphyrin handbook. Academic, Amsterdam, the NetherlandsGoogle Scholar
  28. Gibson LC, Willows RD, Kannangara CG et al (1995) Magnesium-protoporphyrin chelatase of Rhodobacter sphaeroides: reconstitution of activity by combining the products of the bchH, -I, and -D genes expressed in Escherichia coli. Proc Natl Acad Sci USA 92:1941–1944PubMedCrossRefGoogle Scholar
  29. Giuliano G, Pollock D, Stapp H et al (1988) A genetic-physical map of the Rhodobacter capsulatus carotenoid biosynthesis gene cluster. Mol Gen Genet MGG 213:78–83CrossRefGoogle Scholar
  30. Gough SP, Petersen BO, Duus JO (2000) Anaerobic chlorophyll isocyclic ring formation in Rhodobacter capsulatus requires a cobalamin cofactor. Proc Natl Acad Sci USA 97:6908–6913PubMedCrossRefGoogle Scholar
  31. Hahn FM, Baker JA, Poulter CD (1996) Open reading frame 176 in the photosynthesis gene cluster of Rhodobacter capsulatus encodes idi, a gene for isopentenyl diphosphate isomerase. J Bacteriol 178:619–624PubMedGoogle Scholar
  32. Heinemann IU, Jahn M, Jahn D (2008) The biochemistry of heme biosynthesis. Arch Biochem Biophys 474:238–251PubMedCrossRefGoogle Scholar
  33. Heyes DJ, Hunter CN (2005) Making light work of enzyme catalysis: protochlorophyllide oxidoreductase. Trends Biochem Sci 30:642–649PubMedCrossRefGoogle Scholar
  34. Igarashi N, Harada J, Nagashima S et al (2001) Horizontal transfer of the photosynthesis gene cluster and operon rearrangement in purple bacteria. J Mol Evol 52:333–341PubMedGoogle Scholar
  35. Ineichen G, Biel AJ (1995) Nucleotide sequence of the Rhodobacter capsulatus hemE gene. Plant Physiol 108:423PubMedCrossRefGoogle Scholar
  36. Jaffe EK (2003) An unusual phylogenetic variation in the metal ion binding sites of porphobilinogen synthase. Chem Biol 10:25–34PubMedCrossRefGoogle Scholar
  37. Jaubert M, Zappa S, Fardoux J et al (2004) Light and redox control of photosynthesis gene expression in Bradyrhizobium: dual roles of two PpsR. J Biol Chem 279:44407–44416PubMedCrossRefGoogle Scholar
  38. Kanazireva E, Biel AJ (1995) Cloning and overexpression of the Rhodobacter capsulatus hemH gene. J Bacteriol 177:6693–6694PubMedGoogle Scholar
  39. Kanazireva E, Biel AJ (1996) Nucleotide sequence of the Rhodobacter capsulatus hemH gene. Gene 170:149–150PubMedCrossRefGoogle Scholar
  40. Koch M, Breithaupt C, Kiefersauer R et al (2004) Crystal structure of protoporphyrinogen IX oxidase: a key enzyme in haem and chlorophyll biosynthesis. EMBO J 23:1720–1728PubMedCrossRefGoogle Scholar
  41. Layer G, Moser J, Heinz DW et al (2003) Crystal structure of coproporphyrinogen III oxidase reveals cofactor geometry of Radical SAM enzymes. EMBO J 22:6214–6224PubMedCrossRefGoogle Scholar
  42. Layer G, Kervio E, Morlock G et al (2005) Structural and functional comparison of HemN to other radical SAM enzymes. Biol Chem 386:971–980PubMedCrossRefGoogle Scholar
  43. Li K (2009) Regulation of and by cobalamin in Rhodobacter capsulatus. PhD thesis, Indiana University, BLoomington, IndianaGoogle Scholar
  44. Maddocks SE, Oyston PCF (2008) Structure and function of the LysR-type transcriptional regulator (LTTR) family proteins. Microbiology 154:3609–3623PubMedCrossRefGoogle Scholar
  45. Mandal M, Boese B, Barrick JE et al (2003) Riboswitches control fundamental biochemical pathways in Bacillus subtilis and other bacteria. Cell 113:577–586PubMedCrossRefGoogle Scholar
  46. Marrs B (1974) Genetic recombination in Rhodopseudomonas capsulata. Proc Natl Acad Sci USA 71:971–973PubMedCrossRefGoogle Scholar
  47. Marrs B (1981) Mobilization of the genes for photosynthesis from Rhodopseudomonas capsulata by a promiscuous plasmid. J Bacteriol 146:1003–1012PubMedGoogle Scholar
  48. Martens JH, Barg H, Warren MJ et al (2002) Microbial production of vitamin B12. Appl Microbiol Biotechnol 58:275–285PubMedCrossRefGoogle Scholar
  49. Masoumi A, Heinemann IU, Rohde M et al (2008) Complex formation between protoporphyrinogen IX oxidase and ferrochelatase during haem biosynthesis in Thermosynechococcus elongatus. Microbiology 154:3707–3714PubMedCrossRefGoogle Scholar
  50. McGoldrick H, Deery E, Warren M et al (2002) Cobalamin (vitamin B(12)) biosynthesis in Rhodobacter capsulatus. Biochem Soc Trans 30:646–648PubMedCrossRefGoogle Scholar
  51. McGoldrick HM, Roessner CA, Raux E et al (2005) Identification and characterization of a novel vitamin B12 (cobalamin) biosynthetic enzyme (CobZ) from Rhodobacter capsulatus, containing flavin, heme, and Fe-S cofactors. J Biol Chem 280:1086–1094PubMedCrossRefGoogle Scholar
  52. Nahvi A, Sudarsan N, Ebert MS et al (2002) Genetic control by a metabolite binding mRNA. Chem Biol 9:1043–1049PubMedCrossRefGoogle Scholar
  53. Nahvi A, Barrick JE, Breaker RR (2004) Coenzyme B12 riboswitches are widespread genetic control elements in prokaryotes. Nucleic Acids Res 32:143–150PubMedCrossRefGoogle Scholar
  54. Nandi DL, Shemin D (1973) δ-Aminolevulinic acid dehydratase of Rhodopseudomonas capsulata. Arch Biochem Biophys 158:305–311PubMedCrossRefGoogle Scholar
  55. Nomata J, Swem LR, Bauer CE et al (2005) Overexpression and characterization of dark-operative protochlorophyllide reductase from Rhodobacter capsulatus. Biochim Biophys Acta 1708:229–237PubMedCrossRefGoogle Scholar
  56. Nomata J, Mizoguchi T, Tamiaki H et al (2006) A second nitrogenase-like enzyme for bacteriochlorophyll biosynthesis: reconstitution of chlorophyllide a reductase with purified X-protein (BchX) and YZ-protein (BchY-BchZ) from Rhodobacter capsulatus. J Biol Chem 281:15021–15028PubMedCrossRefGoogle Scholar
  57. Nou X, Kadner RJ (2000) Adenosylcobalamin inhibits ribosome binding to btuB RNA. Proc Natl Acad Sci USA 97:7190–7195PubMedCrossRefGoogle Scholar
  58. Olmo-Mira MF, Cabello P, Pino C et al (2006) Expression and characterization of the assimilatory NADH-nitrite reductase from the phototrophic bacterium Rhodobacter capsulatus E1F1. Arch Microbiol 186:339–344PubMedCrossRefGoogle Scholar
  59. Oster U, Bauer CE, Rudiger W (1997) Characterization of chlorophyll a and bacteriochlorophyll a synthases by heterologous expression in Escherichia coli. J Biol Chem 272:9671–9676PubMedCrossRefGoogle Scholar
  60. Ouchane S, Picaud M, Therizols P et al (2007) Global regulation of photosynthesis and respiration by FnrL: the first two targets in the tetrapyrrole pathway. J Biol Chem 282:7690–7699PubMedCrossRefGoogle Scholar
  61. Panek H, O’Brian MR (2002) A whole genome view of prokaryotic haem biosynthesis. Microbiology 148:2273–2282PubMedGoogle Scholar
  62. Petricek M, Petrickova K, Havlicek L et al (2006) Occurrence of two 5-aminolevulinate biosynthetic pathways in Streptomyces nodosus subsp. asukaensis is linked with the production of asukamycin. J Bacteriol 188:5113–5123PubMedCrossRefGoogle Scholar
  63. Pino C, Olmo-Mira F, Cabello P et al (2006) The assimilatory nitrate reduction system of the phototrophic bacterium Rhodobacter capsulatus E1F1. Biochem Soc Trans 34:127–129PubMedCrossRefGoogle Scholar
  64. Ponnampalam SN, Buggy JJ, Bauer CE (1995) Characterization of an aerobic repressor that coordinately regulates bacteriochlorophyll, carotenoid, and light harvesting-II expression in Rhodobacter capsulatus. J Bacteriol 177:2990–2997PubMedGoogle Scholar
  65. Ponnampalam SN, Bauer CE (1997) DNA binding characteristics of CrtJ. A redox-responding repressor of bacteriochlorophyll, carotenoid, and light harvesting-II gene expression in Rhodobacter capsulatus. J Biol Chem 272:18391–18396PubMedCrossRefGoogle Scholar
  66. Ponnampalam SN, Elsen S, Bauer CE (1998) Aerobic repression of the Rhodobacter capsulatus bchC promoter involves cooperative interactions between CrtJ bound to neighboring palindromes. J Biol Chem 273:30757–30761PubMedCrossRefGoogle Scholar
  67. Raux E, Schubert HL, Roper JM et al (1999) Vitamin B12: insights into biosynthesis’s mount improbable. Bioorg Chem 27:100–118CrossRefGoogle Scholar
  68. Rodionov DA, Vitreschak AG, Mironov AA et al (2003) Comparative genomics of the vitamin B12 metabolism and regulation in prokaryotes. J Biol Chem 278:41148–41159PubMedCrossRefGoogle Scholar
  69. Rodionov DA, Gelfand MS, Todd JD et al (2006) Computational reconstruction of iron- and manganese-responsive transcriptional networks in alpha-proteobacteria. PLoS Comput Biol. doi: 10.1371/journal.pcbi.0020163Google Scholar
  70. Rompf A, Hungerer C, Hoffmann T et al (1998) Regulation of Pseudomonas aeruginosa hemF and hemN by the dual action of the redox response regulators Anr and Dnr. Mol Microbiol 29:985–997PubMedCrossRefGoogle Scholar
  71. Rondon MR, Escalante-Semerena JC (1992) The poc locus is required for 1,2-propanediol-dependent transcription of the cobalamin biosynthetic (cob) and propanediol utilization (pdu) genes of Salmonella typhimurium. J Bacteriol 174:2267–2272PubMedGoogle Scholar
  72. Rondon MR, Escalante-Semerena JC (1996) In vitro analysis of the interactions between the PocR regulatory protein and the promoter region of the cobalamin biosynthetic (cob) operon of Salmonella typhimurium LT2. J Bacteriol 178:2196–2203PubMedGoogle Scholar
  73. Roth JR, Lawrence JG, Rubenfield M et al (1993) Characterization of the cobalamin (vitamin B12) biosynthetic genes of Salmonella typhimurium. J Bacteriol 175:3303–3316PubMedGoogle Scholar
  74. Rudolph G, Hennecke H, Fischer HM (2006) Beyond the Fur paradigm: iron-controlled gene expression in rhizobia. FEMS Microbiol Rev 30:631–648PubMedCrossRefGoogle Scholar
  75. Schobert M, Jahn D (2002) Regulation of heme biosynthesis in non-phototrophic bacteria. J Mol Microbiol Biotechnol 4:287–294PubMedGoogle Scholar
  76. Schubert HL, Raux E, Matthews MA et al (2002) Structural diversity in metal ion chelation and the structure of uroporphyrinogen III synthase. Biochem Soc Trans 30:595–600PubMedCrossRefGoogle Scholar
  77. Schulze JO, Schubert WD, Moser J et al (2006) Evolutionary relationship between initial enzymes of tetrapyrrole biosynthesis. J Mol Biol 358:1212–1220PubMedCrossRefGoogle Scholar
  78. Scott AI, Roessner CA (2002) Biosynthesis of cobalamin (vitamin B(12)). Biochem Soc Trans 30:613–620PubMedCrossRefGoogle Scholar
  79. Shoolingin-Jordan PM (1995) Porphobilinogen deaminase and uroporphyrinogen III synthase: structure, molecular biology, and mechanism. J Bioenerg Biomembr 27:181–195PubMedCrossRefGoogle Scholar
  80. Small SK, Puri S, O’Brian MR (2009) Heme-dependent metalloregulation by the iron response regulator (Irr) protein in Rhizobium and other Alpha-proteobacteria. Biometals 22:89–97PubMedCrossRefGoogle Scholar
  81. Smart JL, Willett JW, Bauer CE (2004) Regulation of hem gene expression in Rhodobacter capsulatus by redox and photosystem regulators RegA, CrtJ, FnrL, and AerR. J Mol Biol 342:1171–1186PubMedCrossRefGoogle Scholar
  82. Smart JL, Bauer CE (2006) Tetrapyrrole biosynthesis in Rhodobacter capsulatus is transcriptionally regulated by the heme-binding regulatory protein, HbrL. J Bacteriol 188:1567–1576PubMedCrossRefGoogle Scholar
  83. Stroupe ME, Leech HK, Daniels DS et al (2003) CysG structure reveals tetrapyrrole-binding features and novel regulation of siroheme biosynthesis. Nat Struct Biol 10:1064–1073PubMedCrossRefGoogle Scholar
  84. Suzuki JY, Bollivar DW, Bauer CE (1997) Genetic analysis of chlorophyll biosynthesis. Annu Rev Genet 31:61–89PubMedCrossRefGoogle Scholar
  85. Taylor DP, Cohen SN, Clark WG et al (1983) Alignment of genetic and restriction maps of the photosynthesis region of the Rhodopseudomonas capsulata chromosome by a conjugation-mediated marker rescue technique. J Bacteriol 154:580–590PubMedGoogle Scholar
  86. Warren MJ, Raux E, Schubert HL et al (2002) The biosynthesis of adenosylcobalamin (vitamin B12). Nat Prod Rep 19:390–412PubMedCrossRefGoogle Scholar
  87. Warren MJ, Deery E. 2009. Vitamin B12 (cobalamin) biosynthesis in the purple bacteria. In: Hunter CN, Daldal F, Thurnauer MC, Beatty JT (eds) Advances in Photosynthesis and Respiration, vol 28. Springer, DordrechtGoogle Scholar
  88. Willett J, Smart JL, Bauer CE (2007) RegA control of bacteriochlorophyll and carotenoid synthesis in Rhodobacter capsulatus. J Bacteriol 189:7765–7773PubMedCrossRefGoogle Scholar
  89. Wright MS, Cardin RD, Biel AJ (1987) Isolation and characterization of an aminolevulinate-requiring Rhodobacter capsulatus mutant. J Bacteriol 169:961–966PubMedGoogle Scholar
  90. Wright MS, Eckert JJ, Biel SW et al (1991) Use of a lacZ fusion to study transcriptional regulation of the Rhodobacter capsulatus hemA gene. FEMS Microbiol Lett 62:339–342PubMedCrossRefGoogle Scholar
  91. Wu J, Bauer CE (2008) RegB/RegA, A global redox-responding two-component regulatory system. In: Utsumi R (ed) Advances in experimental medicine and biology, vol 631. Landes Bioscience Eurekah, GeorgetownGoogle Scholar
  92. Yang ZM, Bauer CE (1990) Rhodobacter capsulatus genes involved in early steps of the bacteriochlorophyll biosynthetic pathway. J Bacteriol 172:5001–5010PubMedGoogle Scholar
  93. Yen HC, Marrs B (1976) Map of genes for carotenoid and bacteriochlorophyll biosynthesis in Rhodopseudomonas capsulata. J Bacteriol 126:619–629PubMedGoogle Scholar
  94. Young DA, Bauer CE, Williams JC et al (1989) Genetic evidence for superoperonal organization of genes for photosynthetic pigments and pigment-binding proteins in Rhodobacter capsulatus. Mol Gen Genet 218:1–12PubMedCrossRefGoogle Scholar
  95. Zsebo KM, Hearst JE (1984) Genetic-physical mapping of a photosynthetic gene cluster from R. capsulata. Cell 37:937–947PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Biology DepartmentIndiana UniversityBloomingtonUSA

Personalised recommendations