Advertisement

Notes on 1- and 2-Gerbes

  • Lawrence Breen
Chapter
Part of the The IMA Volumes in Mathematics and its Applications book series (IMA, volume 152)

Abstract

The aim of these notes is to discuss in an informal manner the construction and some properties of 1- and 2-gerbes. They are for the most part based on the author’s texts [1–4]. Our main goal is to describe the construction which associates to a gerbe or a 2-gerbe the corresponding non-abelian cohomology class.

Keywords

Open Cover Natural Transformation Monoidal Category Local Section Coherence Condition 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

Preview

Unable to display preview. Download preview PDF.

Unable to display preview. Download preview PDF.

References

  1. [1]
    L. Breen, Bitorseurs et cohomologie non abélienne in The Grothendieck Festschrift I, Progress in Mathematics 86:401–476 (1990), Birkhaüser.MathSciNetGoogle Scholar
  2. [2]
    L. Breen, Tannakian Categories, in Motives, Proc. Symp. Pure Math. 55(1):337–376 (1994).MathSciNetGoogle Scholar
  3. [3]
    L. Breen, Théorie de Schreier supérieure, Ann. Scient. École Norm. Sup. 25(4):465–514 (1992).MATHMathSciNetGoogle Scholar
  4. [4]
    L. Breen, Classification of 2-gerbes and 2-stacks, Astérisque 225 (1994), Société Mathématique de France.Google Scholar
  5. [5]
    L. Breen and W. Messing, Differential Geometry of Gerbes, Advances in Math. 198:732–846 (2005).MATHCrossRefMathSciNetGoogle Scholar
  6. [6]
    R. Brown and N.D. Gilbert, Algebraic Models of 3-types and Automorphism structures for Crossed modules, Proc. London Math. Soc. 59:51–73 (1989).MATHCrossRefMathSciNetGoogle Scholar
  7. [7]
    P. Dedecker, Three-dimensional Non-Abelian Cohomology for Groups, in Cate-gory theory, homology theory and their applications II, Lecture Notes in Mathematics 92:32–64 (1969).CrossRefMathSciNetGoogle Scholar
  8. [8]
    E. Dror and A. Zabrodsky, Unipotency and Nilpotency in Homotopy Equiva-lences, Topology 18:187–197 (1979).MATHCrossRefMathSciNetGoogle Scholar
  9. [9]
    J. Duskin, An outline of non-abelian cohomology in a topos (1): the theory of bouquets and gerbes, Cahiers de topologie et géométrie différentielle XXIII (1982).Google Scholar
  10. [10]
    J. Giraud, Cohomologie non abélienne, Grundlehren 179, Springer-Verlag (1971).Google Scholar
  11. [11]
    N. Hitchin, Lectures on special Lagrangians on submanifolds, Winter School on Mirror Symmetry, Vector Bundles and Lagrangian Submanifolds (Cambridge MA, 1999), AMS/IP Stud. Adv. Math 23:151–182, American Math. Soc. (2001).MathSciNetGoogle Scholar
  12. [12]
    J.F. Jardine, Cocycle categories, arXiv:math.AT/0605198.Google Scholar
  13. [13]
    J.F. Jardine, Homotopy classification of gerbes arXiv:math.AT/0605200.Google Scholar
  14. [14]
    J.-L. Loday, Spaces with finitely many homotopy groups, J. Pure Appl. Alg. 24:179–202 (1982).MATHCrossRefMathSciNetGoogle Scholar
  15. [15]
    M.K. Murray, Bundle gerbes, J. of the London Math. Society 54:403–416 (1996).MATHGoogle Scholar
  16. [16]
    B. Noohi, Notes on 2-groupoids, 2-groups and crossed modules, Homology, Homotopy and Applications 9(1):75–106 (2007).MATHMathSciNetGoogle Scholar
  17. [17]
    B. Noohi, On weak maps between 2-groups, arXiv:math/0506313.Google Scholar
  18. [18]
    K. Norrie, Actions and automorphisms, Bull. Soc. Math. de France 118:109–119 (1989).MathSciNetGoogle Scholar
  19. [19]
    O. Schreier, Uber die Erweiterung von Gruppen, I Monatsh. Math. Phys. 34:165–180 (1926); II Abh. Math. Sem. Hamburg 4:321–346 (1926).Google Scholar
  20. [20]
    J.-P. Serre, Cohomologie galoisienne, Lecture Notes in Math 5 (1964), fifth revised and completed edition (1994), Springer-Verlag.Google Scholar
  21. [21]
    K.-H. Ulbrich, On the correspondence between gerbes and bouquets, Math. Proc. Cambridge Phil. Soc. 108:1–5 (1990).MATHCrossRefMathSciNetGoogle Scholar
  22. [22]
    K.-H. Ulbrich, On cocycle bitorsors and gerbes over a Grothendieck topos, Math. Proc. Cambridge Phil. Soc. 110:49–55 (1991).MATHCrossRefMathSciNetGoogle Scholar
  23. [23]
    J. Wirth and J. Stasheff, Homotopy Transition Cocycles, J. Homotopy and Related Structure 1:273–283 (2006).MATHMathSciNetGoogle Scholar
  24. [24]
    A. Vistoli, Grothendieck topologies, fibered categories and descent theory, in Fundamental Algebraic Geometry: Grothendieck’s FGA explained, Mathematical Monographs 123:1–104, American Math. Soc. (2005).MathSciNetGoogle Scholar

Copyright information

© Springer-Verlag New York 2010

Authors and Affiliations

  1. 1.UMR CNRS 7539, Institut GaliléeUniversité Paris 13ParisFrance

Personalised recommendations