The Molecular Basis of Lytic Induction Therapy in Relation to Gamma herpesvirus (KSHV, EBV)-Associated, AIDS-Related Tumors



The frequent presence of the EBV and KSHV genomes in AIDS-related lymphomas has suggested that manipulation of EBV and/or KSHV viral gene expression in these tumors might be used to promote tumor cell death, while sparing uninfected normal cells. Although EBV and KSHV can infect B cells for the life of the host, following recovery from primary infection, very few normal B cells are infected (usually fewer than one in a million B cells in the case of EBV-infected individuals) (Babcock et al., 2001, Methods Mol Biol 174, 103–110; Hochberg and Thorley-Lawson, 2005, Methods Mol Biol 292, 39–56). In contrast, essentially all of the tumor cells of EBV- and/or KSHV-associated malignancies contain the virus. Thus, the development of therapies that can induce killing of all EBV-infected cells in the body would be expected to dramatically reduce tumor cell viability, while potentially having no effect on healthy cells. One of the most promising approaches for inducing specific killing of EBV-infected host cells is commonly referred to as “lytic induction” therapy (Gutiérrez et al., 1996, Cancer Res 56, 969–972; Westphal et al., 1999, Cancer Res 59, 1485–1491; Israel and Kenney, 2003, Oncogene 22, 5122–5130). As the name implies, the goal of this approach is to convert the latent type of EBV infection that normally occurs in tumor cells into the lytic form of viral infection, thereby using the virus itself to kill tumor cells. Although this type of approach is potentially applicable for both EBV-associated and KSHV-associated malignancies, the development of EBV-directed lytic induction therapies is further advanced and thus will be the primary focus of most of the discussion herein.


HDAC Inhibitor Burkitt Lymphoma Primary Effusion Lymphoma Lytic Cycle Cellular Transcription Factor 


  1. Aboulafia, D. M., Ratner, L., Miles, S. A., Harrington, W. J. Jr., and AIDS Associated Malignancies Clincial Trials Consortium. (2006). Antiviral and immunomodulatory treatment for AIDS-related primary central nervous system lymphoma: AIDS Malignancies Consortium pilot study 019. Clin Lymphoma Myeloma 6(5), 399–402.PubMedGoogle Scholar
  2. Adamson, A. L., Darr, D., Holley-Guthrie, E., Johnson, R. A., Mauser, A., Swenson, J., and Kenney, S. (2000). Epstein–Barr virus immediate-early proteins BZLF1 and BRLF1 activate the ATF2 transcription factor by increasing the levels of phosphorylated p38 and c-Jun N-terminal kinases. J Virol 74, 1224–1233.PubMedGoogle Scholar
  3. Amon, W., and Farrell, P. J. (2005). Reactivation of Epstein–Barr virus from latency. Rev Med Virol 5, 149–156.Google Scholar
  4. Ansari, A., and Emery, V. C. (1999). The U69 gene of human herpesvirus 6 encodes a protein kinase which can confer ganciclovir sensitivity to baculoviruses. J Virol 73, 3284–3291.PubMedGoogle Scholar
  5. Arzoo, K. K., Bu, X., Espina, B. M., Seneviratne, L., Nathwani, B., and Levine, A. M. (2004). T-cell lymphoma in HIV-infected patients. J Acquir Immune Defic Syndr 15, 1020–1027.Google Scholar
  6. Balfour, H. H., Jr. (1990). Management of cytomegalovirus disease with antiviral drugs. Rev Infect Dis 12(Suppl 7), S849–S860.PubMedGoogle Scholar
  7. Bernstein, W. B., Little, R. F., Wilson, W. H., and Yarchoan, R. (2006). Acquired immunodeficiency syndrome-related malignancies in the era of highly active antiretroviral therapy. Int J Hematol 84, 3–11.PubMedGoogle Scholar
  8. Bhende, P. M., Dickerson, S. J., Sun, X., Feng, W. H., and Kenney, S. C. (2007). X-box-binding protein 1 activates lytic Epstein–Barr virus gene expression in combination with protein kinase D. J Virol 81, 7363–7370.PubMedGoogle Scholar
  9. Bhende, P. M., Seaman, W. T., Delecluse, H. J., and Kenney, S. C. (2004). The EBV lytic switch protein, Z, preferentially binds to and activates the methylated viral genome. Nat Genet 36, 1099–1104.PubMedGoogle Scholar
  10. Biggar, R. J., Chaturvedi, A. K., Goedert, J. J., and Engels, E. A. (2007). AIDS-related cancer and severity of immunosuppression in persons with AIDS. J Natl Cancer Inst 99, 962–972.PubMedGoogle Scholar
  11. Biggar, R. J., Engels, E. A., Frisch, M., and Goedert, J. J. (2001). Risk of T-cell lymphomas in persons with AIDS. J Acquir Immune Defic Syndr 26, 371–376.PubMedGoogle Scholar
  12. Biggar, R. J., Jaffe, E. S., Goedert, J. J., Chaturvedi, A., Pfeiffer, R., and Engels, E. A. (2006). Hodgkin lymphoma and immunodeficiency in persons with HIV/AIDS. Blood 108, 3786–3791.PubMedGoogle Scholar
  13. Bouayadi, K., Hoffmann, J. S., Fons, P., Tiraby, M., Reynes, J. P., and Cazaux, C. (1997). Overexpression of DNA polymerase beta sensitizes mammalian cells to 2',3'-deoxycytidine and 3'-azido-3'-deoxythymidine. Cancer Res 57, 110–116.PubMedGoogle Scholar
  14. Calderwood, M. A., Venkatesan, K., Xing, L., Chase, M. R., Vazquez, A., Holthaus, A. M., Ewence, A. E., Li, N., Hirozane-Kishikawa, T., Hill, D. E., Vidal, M., Kieff, E., and Johannsen, E. (2007). Epstein–Barr virus and virus human protein interaction maps. Proc Natl Acad Sci USA 104, 7606–7611.PubMedGoogle Scholar
  15. Cannon, J. S., Hamzeh, F., Moore, S., Nicholas, J., and Ambinder, R. F. (1999). Human herpesvirus 8-encoded thymidine kinase and phosphotransferase homologues confer sensitivity to ganciclovir. J Virol 73, 4786–4793.PubMedGoogle Scholar
  16. Casper, C., Krantz, E. M., Corey, L., Kuntz, S. R., Wang, J., Selke, S., Hamilton, S., Huang, M. L., and Wald, A. (2008). Valganciclovir for suppression of human herpesvirus-8 replication: a randomized, double-blind, placebo-controlled, crossover trial. J Infect Dis 198, 23–30.PubMedGoogle Scholar
  17. Cesarman, E., Chang, Y., Moore, P. S., Said, J. W., and Knowles, D. M. (1995). Kaposi’s sarcoma-associated herpesvirus-like DNA sequences in AIDS-related body-cavity-based lymphomas. N Engl J Med 332, 1186–1191.PubMedGoogle Scholar
  18. Chan, A. T., Tao, Q., Robertson, K. D., Flinn, I. W., Mann, R. B., Klencke, B., Kwan, W. H., Leung, T. W., Johnson, P. J., and Ambinder, R. F. (2004). Azacitidine induces demethylation of the Epstein–Barr virus genome in tumors. J Clin Oncol 22, 1373–1381.PubMedGoogle Scholar
  19. Chang, Y., Cesarman, E., Pessin, M. S., Lee, F., Culpepper, J., Knowles, D. M., and Moore, P. S. (1994). Identification of herpesvirus-like DNA sequences in AIDS-associated Kaposi’s sarcoma. Science 16, 1865–1869.Google Scholar
  20. Cheung, M. C., Pantanowitz, L., and Dezube, B. J. (2005). AIDS-related malignancies: emerging challenges in the era of highly active antiretroviral therapy. Oncologist 10, 412–426.PubMedGoogle Scholar
  21. Clifford, G. M., Polesel, J., Rickenbach, M., Dal Maso, L., Keiser, O., Kofler, A., Rapiti, E., Levi, F., Jundt, G., Fisch, T., Bordoni, A., De Weck, D., and Franceschi, S. (2005). Cancer risk in the Swiss HIV Cohort Study: associations with immunodeficiency, smoking, and highly active antiretroviral therapy. J Natl Cancer Inst 6, 425–432.Google Scholar
  22. Countryman, J. K., Gradoville, L., and Miller, G. (2008). Histone hyperacetylation occurs on promoters of lytic cycle regulatory genes in Epstein–Barr virus-infected cell lines which are refractory to disruption of latency by histone deacetylase inhibitors. J Virol 82, 4706–4719.PubMedGoogle Scholar
  23. Crawford, J. R., Kadom, N., Santi, M. R., Mariani, B., and Lavenstein, B. L. (2007). Human herpesvirus 6 rhombencephalitis in immunocompetent children. J Child Neurol 22, 1260–1268.PubMedGoogle Scholar
  24. Crumpacker, C. S. (1996). Ganciclovir. N Engl J Med 335, 721–729.PubMedGoogle Scholar
  25. Culver, K. W., Ram, Z., Wallbridge, S., Ishii, H., Oldfield, E. H., and Blaese, R. M. (1992). In vivo gene transfer with retroviral vector-producer cells for treatment of experimental brain tumors. Science 256, 1550–1552.PubMedGoogle Scholar
  26. Daibata, M., Bandobashi, K., Kuroda, M., Imai, S., Miyoshi, I., and Taguchi, H. (2005). Induction of lytic Epstein–Barr virus (EBV) infection by synergistic action of rituximab and dexamethasone renders EBV-positive lymphoma cells more susceptible to ganciclovir cytotoxicity in vitro and in vivo. J Virol 79, 5875–5879.PubMedGoogle Scholar
  27. Daibata, M., Humphreys, R. E., Takada, K., and Sairenji, T. (1990). Activation of latent EBV via anti-IgG-triggered, second messenger pathways in the Burkitt’s lymphoma cell line Akata. J Immunol 144, 4788–4793.PubMedGoogle Scholar
  28. Darenkov, I. A., Marcarelli, M. A., Basadonna, G. P., Friedman, A. L., Lorber, K. M., Howe, J. G., Crouch, J., Bia, M. J., Kliger, A. S., and Lorber, M. I. (1997). Reduced incidence of Epstein–Barr virus-associated posttransplant lymphoproliferative disorder using preemptive antiviral therapy. Transplantation 64, 848–852.PubMedGoogle Scholar
  29. di Renzo, L., Altiok, A., Klein, G.,, and Klein, E. (1994). Endogenous TGF-beta contributes to the induction of the EBV lytic cycle in two Burkitt lymphoma cell lines. Int J Cancer 57, 914–919.PubMedGoogle Scholar
  30. Dorsky, D. I., and Crumpacker, C. S. (1987). Drugs five years later: acyclovir. Ann Intern Med 107, 859–874.PubMedGoogle Scholar
  31. Engels, E. A., Biggar, R. J., Hall, H. I., Cross, H., Crutchfield, A., Finch, J. L., Grigg, R., Hylton, T., Pawlish, K. S., McNeel, T. S., and Goedert, J. J. (2008). Cancer risk in people infected with human immunodeficiency virus in the United States. Int J Cancer 123, 187–194.PubMedGoogle Scholar
  32. Engels, E. A., and Goedert, J. J. (2005). Human immunodeficiency virus/acquired immunodeficiency syndrome and cancer: past, present, and future. J Natl Cancer Inst 97, 407–409.PubMedGoogle Scholar
  33. Erice, A., Gil-Roda, C., Pérez, J. L., Balfour, H. H., Jr., Sannerud, K. J., Hanson, M. N., Boivin, G., and Chou, S. (1997). Antiviral susceptibilities and analysis of UL97 and DNA polymerase sequences of clinical cytomegalovirus isolates from immunocompromised patients. J Infect Dis 175, 1087–1092.PubMedGoogle Scholar
  34. Feng, W. H., Cohen, J. I., Fischer, S., Li, L., Sneller, M., Goldbach-Mansky, R., Raab-Traub, N., Delecluse, H. J., and Kenney, S. C. (2004a). Reactivation of latent Epstein–Barr virus by methotrexate: a potential contributor to methotrexate-associated lymphomas. J Natl Cancer Inst 96, 1691–1702.PubMedGoogle Scholar
  35. Feng, W. H., Hong, G., Delecluse, H. J., and Kenney, S. C. (2004b). Lytic induction therapy for Epstein–Barr virus-positive B-cell lymphomas. J Virol 78, 1893–1902.PubMedGoogle Scholar
  36. Feng, W. H., Israel, B., Raab-Traub, N., Busson, P., and Kenney, S. C. (2002a). Chemotherapy induces lytic EBV replication and confers ganciclovir susceptibility to EBV-positive epithelial cell tumors. Cancer Res 62, 1920–1926.PubMedGoogle Scholar
  37. Feng, W. H., and Kenney, S. C. (2006). Valproic acid enhances the efficacy of chemotherapy in EBV-positive tumors by increasing lytic viral gene expression. Cancer Res 66, 8762–8769.PubMedGoogle Scholar
  38. Feng, W. H., Kraus, R. J., Dickerson, S. J., Lim, H. J., Jones, R. J., Yu, X., Mertz, J. E., and Kenney, S. C. (2007). ZEB1 and c-Jun levels contribute to the establishment of highly lytic Epstein–Barr virus infection in gastric AGS cells. J Virol 81, 10113–10122.PubMedGoogle Scholar
  39. Feng, W. H., Westphal, E., Mauser, A., Raab-Traub, N., Gulley, M. L., Busson, P., and Kenney, S. C. (2002b). Use of adenovirus vectors expressing Epstein–Barr virus (EBV) immediate-early protein BZLF1 or BRLF1 to treat EBV-positive tumors. J Virol 76, 10951–10959.PubMedGoogle Scholar
  40. Flemington, E., and Speck, S. H. (1990). Identification of phorbol ester response elements in the promoter of Epstein–Barr virus putative lytic switch gene BZLF1. J Virol 1990, 1217–1226.Google Scholar
  41. Fu, D. X., Tanhehco, Y. C., Chen, J., Foss, C. A., Fox, J. J., Lemas, V., Chong, J. M., Ambinder, R. F., and Pomper, M. G. (2007). Virus-associated tumor imaging by induction of viral gene expression. Clin Cancer Res 13, 1453–1458.PubMedGoogle Scholar
  42. Gentry, G. A. (1992). Viral thymidine kinases and their relatives. Pharmacol Ther 54, 319–355.PubMedGoogle Scholar
  43. Gershburg, E., Marschall, M., Hong, K., and Pagano, J. S. (2004). Expression and localization of the Epstein–Barr virus-encoded protein kinase. J Virol 78, 12140–12146.PubMedGoogle Scholar
  44. Gershburg, E., and Pagano, J. S. (2008). Conserved herpesvirus protein kinases. Biochim Biophys Acta 1784, 203–212.PubMedGoogle Scholar
  45. Gershburg, E., Raffa, S., Torrisi, M. R., and Pagano, J. S. (2007). Epstein–Barr virus-encoded protein kinase (BGLF4) is involved in production of infectious virus. J Virol 81, 5407–5412.PubMedGoogle Scholar
  46. Glaser, R., and Rapp, F. (1972). Rescue of Epstein–Barr virus from somatic cell hybrids of Burkitt lymphoblastoid cells. J Virol 10, 288–296.PubMedGoogle Scholar
  47. Greenspan, D., and Greenspan, J. S. (1992). Significance of oral hairy leukoplakia. Oral Surg Oral Med Oral Pathol 73, 151–154.PubMedGoogle Scholar
  48. Gruffat, H., Manet, E., and Sergeant, A. (2002). MEF2-mediated recruitment of class II HDAC at the EBV immediate early gene BZLF1 links latency and chromatin remodelling. EMBO Rep 3, 141–146.PubMedGoogle Scholar
  49. Gustafson, E. A., Chillemi, A. C., Sage, D. R., and Fingeroth, J. D. (1998). The Epstein–Barr virus thymidine kinase does not phosphorylate ganciclovir or acyclovir and demonstrates a narrow substrate specificity compared to the herpes simplex virus type 1 thymidine kinase. Antimicrob Agents Chemother 42, 2923–2931.PubMedGoogle Scholar
  50. Gustafson, E. A., Schinazi, R. F., and Fingeroth, J. D. (2000). Human herpesvirus 8 open reading frame 21 is a thymidine and thymidylate kinase of narrow substrate specificity that efficiently phosphorylates zidovudine but not ganciclovir. J Virol 74, 684–692.PubMedGoogle Scholar
  51. Harrington, W. J., Jr., Cabral, L., Cai, J. P., Chan-A-Sue, S., and Wood, C. (1996). Azothymidine and interferon-alpha are active in AIDS-associated small non-cleaved cell lymphoma but not large-cell lymphoma. Lancet 348, 833.PubMedGoogle Scholar
  52. Hume, A. J., Finkel, J. S., Kamil, J. P., Coen, D. M., Culbertson, M. R., and Kalejta, R. F. (2008). Phosphorylation of retinoblastoma protein by viral protein with cyclin-dependent kinase function. Science 320, 797–799.PubMedGoogle Scholar
  53. Israel, B. F., and Kenney, S. C. (2003). Virally targeted therapies for EBV-associated malignancies. Oncogene 22, 5122–5130.PubMedGoogle Scholar
  54. Jenson, H. B., Leach, C. T., McClain, K. L., Joshi, V. V., Pollock, B. H., Parmley, R. T., Chadwick, E. G., and Murphy, S. B. (1997). Benign and malignant smooth muscle tumors containing Epstein–Barr virus in children with AIDS. Leuk Lymphoma 27, 303–314.PubMedGoogle Scholar
  55. Kersten, M. J., Van Gorp, J., Pals, S. T., Boon, F., and Van Oers, M. H. (1998). Expression of Epstein–Barr virus latent genes and adhesion molecules in AIDS-related non-Hodgkin’s lymphomas: correlation with histology and CD4-cell number. Leuk Lymphoma 30, 515–524.PubMedGoogle Scholar
  56. Knowles, D. M. (1997). Molecular pathology of acquired immunodeficiency syndrome-related non-Hodgkin’s lymphoma. Semin Diagn Pathol 14, 67–82.PubMedGoogle Scholar
  57. Kraus, R. J., Perrigoue, J. G., and Mertz, J. E. (2003). ZEB negatively regulates the lytic-switch BZLF1 gene promoter of Epstein–Barr virus. J Virol 77, 199–207.PubMedGoogle Scholar
  58. Kurokawa, M., Ghosh, S. K., Ramos, J. C., Mian, A. M., Toomey, N. L., Cabral, L., Whitby, D., Barber, G. N., Dittmer, D. P., and Harrington, W. J., Jr. (2005). Azidothymidine inhibits NF-kappaB and induces Epstein–Barr virus gene expression in Burkitt lymphoma. Blood 106, 235–240.PubMedGoogle Scholar
  59. Laichalk, L. L., and Thorley-Lawson, D. A. (2005). Terminal differentiation into plasma cells initiates the replicative cycle of Epstein–Barr virus in vivo. J Virol 79, 1296–1307.PubMedGoogle Scholar
  60. Lechowicz, M., Dittner, D. P., Lee, J. Y., Krown, S. E., Wachsman, W., Aboulafia, D., Dezube, B. J., Ratner, L., Said, J., and Ambinder, R. F. (2009). Molecular and clinical assessment in the treatment of AIDS Kaposi sarcoma with valproic acid. Clin Infect Dis 49(12), 1946–1949.PubMedGoogle Scholar
  61. Lee, W. A., and Martin, J. C. (2006). Perspectives on the development of acyclic nucleotide analogs as antiviral drugs. Antiviral Res 71, 254–259.PubMedGoogle Scholar
  62. Liang, C. L., Chen, J. L., Hsu, Y. P., Ou, J. T., and Chang, Y. S. (2002). Epstein–Barr virus BZLF1 gene is activated by transforming growth factor-beta through cooperativity of Smads and c-Jun/c-Fos proteins. J Biol Chem 277, 23345–23357.PubMedGoogle Scholar
  63. Littler, E., and Arrand, J. R. (1988). Characterization of the Epstein–Barr virus-encoded thymidine kinase expressed in heterologous eucaryotic and procaryotic systems. J Virol 62, 3892–3895.PubMedGoogle Scholar
  64. Littler, E., Zeuthen, J., McBride, A. A., Trøst Sørensen, E., Powell, K. L., Walsh-Arrand, J. E., and Arrand, J. R. (1986). Identification of an Epstein–Barr virus-coded thymidine kinase. EMBO J 5, 1959–1966.PubMedGoogle Scholar
  65. Liu, S., Liu, P., Borras, A., Chatila, T., and Speck, S. H. (1997). Cyclosporin A-sensitive induction of the Epstein–Barr virus lytic switch is mediated via a novel pathway involving a MEF2 family member. EMBO J 16, 143–153.PubMedGoogle Scholar
  66. Lock, M. J., Thorley, N., Teo, J., and Emery, V. C. (2002). Azidodeoxythymidine and didehydrodeoxythymidine as inhibitors and substrates of the human herpesvirus 8 thymidine kinase. J Antimicrob Chemother 49, 359–366.PubMedGoogle Scholar
  67. Marquez, V. E., Hughes, S. H., Sei, S., and Agbaria, R. (2006). The history of N-methanocarbathymidine: the investigation of a conformational concept leads to the discovery of a potent and selective nucleoside antiviral agent. Antiviral Res 71, 268–275.PubMedGoogle Scholar
  68. Marschall, M., Stein-Gerlach, M., Freitag, M., Kupfer, R., van Den Bogaard, M., and Stamminger, T. (2001). Inhibitors of human cytomegalovirus replication drastically reduce the activity of the viral protein kinase pUL97. J Gen Virol 82, 1439–1450.PubMedGoogle Scholar
  69. Martin, D. F., Kuppermann, B. D., Wolitz, R. A., Palestine, A. G., Li, H., and Robinson, C. A. (1999). Oral ganciclovir for patients with cytomegalovirus retinitis treated with a ganciclovir implant. Roche Ganciclovir Study Group. N Engl J Med 340, 1063–1070.PubMedGoogle Scholar
  70. Meng, Q., Hagemeier, S. R., Fingeroth, J. D., Gershburg, E., Pagano, J. S., and Kenney, S. C. (2010). The EBV-encoded protein kinase, EBV-PK, but not the thymidine kinase (EBV-TK), is required for ganciclovir and acyclovir inhibition of lytic viral production. J Virol Feb 24. [Epub ahead of print].Google Scholar
  71. Mentzer, S. J., Fingeroth, J., Reilly, J. J., Perrine, S. P., and Faller, D. V. (1998). Arginine butyrate-induced susceptibility to ganciclovir in an Epstein–Barr-virus-associated lymphoma. Blood Cells Mol Dis 24, 114–123.PubMedGoogle Scholar
  72. Michel, D., and Mertens, T. (2004). The UL97 protein kinase of human cytomegalovirus and homologues in other herpesviruses: impact on virus and host. Biochim Biophys Acta 1697, 169–180.PubMedGoogle Scholar
  73. Michel, D., Pavić, I., Zimmermann, A., Haupt, E., Wunderlich, K., Heuschmid, M., and Mertens, T. (1996). The UL97 gene product of human cytomegalovirus is an early–late protein with a nuclear localization but is not a nucleoside kinase. J Virol 70, 6340–6346.PubMedGoogle Scholar
  74. Miller, G., El-Guindy, A., Countryman, J., Ye, J., and Gradoville, L. (2007). Lytic cycle switches of oncogenic human gammaherpesviruses. Adv Cancer Res 97, 81–109.PubMedGoogle Scholar
  75. Moore, S. M., Cannon, J. S., Tanhehco, Y. C., Hamzeh, F. M., and Ambinder, R. F. (2001). Induction of Epstein–Barr virus kinases to sensitize tumor cells to nucleoside analogues. Antimicrob Agents Chemother 45, 2082–2091.PubMedGoogle Scholar
  76. Ogata, M., Satou, T., Kawano, R., Goto, K., Ikewaki, J., Kohno, K., Ando, T., Miyazaki, Y., Ohtsuka, E., Saburi, Y., Saikawa, T., and Kadota, J. I. (2008). Plasma HHV-6 viral load-guided preemptive therapy against HHV-6 encephalopathy after allogeneic stem cell transplantation: a prospective evaluation. Bone Marrow Transplant 41, 279–285.PubMedGoogle Scholar
  77. Oksenhendler, E., Boulanger, E., Galicier, L., Du, M. Q., Dupin, N., Diss, T. C., Hamoudi, R., Daniel, M. T., Agbalika, F., Boshoff, C., Clauvel, J. P., Isaacson, P. G., and Meignin, V. (2002). High incidence of Kaposi sarcoma-associated herpesvirus-related non-Hodgkin lymphoma in patients with HIV infection and multicentric Castleman disease. Blood 99, 2331–2336.PubMedGoogle Scholar
  78. Park, J., Lee, M. S., Yoo, S. M., and Seo, T. (2007). A novel protein encoded by Kaposi’s sarcoma-associated herpesvirus open reading frame 36 inhibits cell spreading and focal adhesion kinase activation. Intervirology 50, 426–432.PubMedGoogle Scholar
  79. Perrine, S. P., Hermine, O., Small, T., Suarez, F., O’Reilly, R., Boulad, F., Fingeroth, J., Askin, M., Levy, A., Mentzer, S. J., Di Nicola, M., Gianni, A. M., Klein, C., Horwitz, S., and Faller, D. V. (2007). A phase ½ trial of arginine butyrate and ganciclovir in patients with Epstein-Barr virus-associated lymphoid malignancies. Blood 109(6), 2571–2578. [Epub 2006 Nov 21].PubMedGoogle Scholar
  80. Prichard, M. N., Keith, K. A., Quenelle, D. C., and Kern, E. R. (2006). Activity and mechanism of action of N-methanocarbathymidine against herpesvirus and orthopoxvirus infections. Antimicrob Agents Chemother 50, 1336–1341.PubMedGoogle Scholar
  81. Raez, L., Cabral, L., Cai, J. P., Landy, H., Sfakianakis, G., Byrne, G. E., Jr., Hurley, J., Scerpella, E., Jayaweera, D., and Harrington, W. J., Jr. (1999). Treatment of AIDS-related primary central nervous system lymphoma with zidovudine, ganciclovir, and interleukin 2. AIDS Res Hum Retroviruses 15, 713–719.PubMedGoogle Scholar
  82. Rea, D., Delecluse, H. J., Hamilton-Dutoit, S. J., Marelle, L., Joab, I., Edelman, L., Finet, J. F., and Raphael, M. (1994). Epstein–Barr virus latent and replicative gene expression in post-transplant lymphoproliferative disorders and AIDS-related non-Hodgkin’s lymphomas. French Study Group of Pathology for HIV-associated tumors. Ann Oncol 5(Suppl 1), 113–116.PubMedGoogle Scholar
  83. Romaker, D., Schregel, V., Maurer, K., Auerochs, S., Marzi, A., Sticht, H., and Marschall, M. (2006). Analysis of the structure–activity relationship of four herpesviral UL97 subfamily protein kinases reveals partial but not full functional conservation. J Med Chem 49, 7044–7053.PubMedGoogle Scholar
  84. Rooney, C., Taylor, N., Countryman, J., Jenson, H., Kolman, J., and Miller, G. (1988). Genome rearrangements activate the Epstein–Barr virus gene whose product disrupts latency. Proc Natl Acad Sci USA 85, 9801–9805.PubMedGoogle Scholar
  85. Roychowdhury, S., Peng, R., Baiocchi, R. A., Bhatt, D., Vourganti, S., Grecula, J., Gupta, N., Eisenbeis, C. F., Nuovo, G. J., Yang, W., Schmalbrock, P., Ferketich, A., Moeschberger, M., Porcu, P., Barth, R. F., and Caligiuri, M. A. (2003). Experimental treatment of Epstein–Barr virus-associated primary central nervous system lymphoma. Cancer Res 63, 965–971.PubMedGoogle Scholar
  86. Rozen, R., Sathish, N., Li, Y., and Yuan, Y. (2008). Virion-wide protein interactions of Kaposi’s sarcoma-associated herpesvirus. J Virol 82, 4742–4750.PubMedGoogle Scholar
  87. Rubsam, L. Z., Davidson, B. L., and Shewach, D. S. (1998). Superior cytotoxicity with ganciclovir compared with acyclovir and 1-beta-d-arabinofuranosylthymine in herpes simplex virus-thymidine kinase-expressing cells: a novel paradigm for cell killing. Cancer Res 58, 3873–3882.PubMedGoogle Scholar
  88. Said, J. W. (2007). Immunodeficiency-related Hodgkin lymphoma and its mimics. Adv Anat Pathol 14, 189–194.PubMedGoogle Scholar
  89. Seeley, W. W., Marty, F. M., Holmes, T. M., Upchurch, K., Soiffer, R. J., Antin, J. H., Baden, L. R., and Bromfield, E. B. (2007). Post-transplant acute limbic encephalitis: clinical features and relationship to HHV6. Neurology 69, 156–165.PubMedGoogle Scholar
  90. Smith, R. F., and Smith, T. F. (1989). Identification of new protein kinase-related genes in three herpesviruses, herpes simplex virus, varicella-zoster virus, and Epstein–Barr virus. J Virol 63, 450–455.PubMedGoogle Scholar
  91. Speck, S. H., Chatila, T., and Flemington, E. (1997). Reactivation of Epstein–Barr virus: regulation and function of the BZLF1 gene. Trends Microbiol 5, 399–405.PubMedGoogle Scholar
  92. Sun, C. C., and Thorley-Lawson, D. A. (2007). Plasma cell-specific transcription factor XBP-1s binds to and transactivates the Epstein–Barr virus BZLF1 promoter. J Virol 81, 13566–13577.PubMedGoogle Scholar
  93. Takada, K., and Ono, Y. (1989). Synchronous and sequential activation of latently infected Epstein–Barr virus genomes. J Virol 63, 445–449.PubMedGoogle Scholar
  94. Takada, K., and Zur Hausen, H. (1984). Induction of Epstein–Barr virus antigens by tumor promoters for epidermal and nonepidermal tissues. Int J Cancer 33, 491–496.PubMedGoogle Scholar
  95. Talarico, C. L., Burnette, T. C., Miller, W. H., Smith, S. L., Davis, M. G., Stanat, S. C., Ng, T. I., He, Z., Coen, D. M., Roizman, B., and Biron, K. K. (1999). Acyclovir is phosphorylated by the human cytomegalovirus UL97 protein. Antimicrob Agents Chemother 43, 1941–1946.PubMedGoogle Scholar
  96. Tarakanova, V. L., Leung-Pineda, V., Hwang, S., Yang, C. W., Matatall, K., Basson, M., Sun, R., Piwnica-Worms, H., Sleckman, B. P., and Virgin, H. W., 4th (2007). Gamma-herpesvirus kinase actively initiates a DNA damage response by inducing phosphorylation of H2AX to foster viral replication. Cell Host Microbe 1, 275–286.PubMedGoogle Scholar
  97. Thorley-Lawson, D. A. (2001). Epstein–Barr virus: exploiting the immune system. Nat Rev Immunol 1, 75–82.PubMedGoogle Scholar
  98. Thorley-Lawson, D. A., and Gross, A. (2004). Persistence of the Epstein–Barr virus and the origins of associated lymphomas. N Engl J Med 350, 1328–1337.PubMedGoogle Scholar
  99. Thust, R., Tomicic, M., Klöcking, R., Wutzler, P., and Kaina, B. (2000). Cytogenetic genotoxicity of anti-herpes purine nucleoside analogues in CHO cells expressing the thymidine kinase gene of herpes simplex virus type 1: comparison of ganciclovir, penciclovir and aciclovir. Mutagenesis 15, 177–184.PubMedGoogle Scholar
  100. Törnevik, Y., Ullman, B., Balzarini, J., Wahren, B., and Eriksson, S. (1995). Cytotoxicity of 3'-azido-3'-deoxythymidine correlates with 3'-azidothymidine-5'-monophosphate (AZTMP) levels, whereas anti-human immunodeficiency virus (HIV) activity correlates with 3'-azidothymidine-5'-triphosphate (AZTTP) levels in cultured CEM T-lymphoblastoid cells. Biochem Pharmacol 49, 829–837.PubMedGoogle Scholar
  101. Tosi, P., Gherlinzoni, F., Mazza, P., Visani, G., Coronado, O., Costigliola, P., Raise, E., Mazzetti, M., Gritti, F., Chiodo, F., and Tura, S. (1997). 3'-Azido 3'-deoxythymidine + methotrexate as a novel antineoplastic combination in the treatment of human immunodeficiency virus-related non-Hodgkin’s lymphomas. Blood 89, 419–425.PubMedGoogle Scholar
  102. Tovey, M. G., Dron, M., and Gresser, I. (1982). Interferon enhances the expression of Epstein–Barr virus early antigen in Daudi cells. J Gen Virol 60, 31–38.PubMedGoogle Scholar
  103. Tung, P. P., and Summers, W. C. (1994). Substrate specificity of Epstein–Barr virus thymidine kinase. Antimicrob Agents Chemother 38, 2175–2179.PubMedGoogle Scholar
  104. Uccini, S., Monardo, F., Ruco, L. P., Baroni, C. D., Faggioni, A., Agliano, A. M., Gradilone, A., Manzari, V., Vago, L., Costanzi, G., et al. (1989). High frequency of Epstein–Barr virus genome in HIV-positive patients with Hodgkin’s disease. Lancet 24, 14581–14585.Google Scholar
  105. Westphal, E. M., Blackstock, W., Feng, W., Israel, B., and Kenney, S. C. (2000). Activation of lytic Epstein–Barr virus (EBV) infection by radiation and sodium butyrate in vitro and in vivo: a potential method for treating EBV-positive malignancies. Cancer Res 60, 5781–5788.PubMedGoogle Scholar
  106. Wood, C., and Harrington, W., Jr. (2005). AIDS and associated malignancies. Cell Res 15, 947–952.PubMedGoogle Scholar
  107. Wu, W., Rochford, R., Toomey, L., Harrington, W., Jr., and Feuer, G. (2005). Inhibition of HHV-8/KSHV infected primary effusion lymphomas in NOD/SCID mice by azidothymidine and interferon-alpha. Leuk Res 2005(29), 545–555.Google Scholar
  108. Yu, X., Wang, Z., and Mertz, J. E. (2007). ZEB1 regulates the latent-lytic switch in infection by Epstein–Barr virus. PLoS Pathog 3, e19.Google Scholar
  109. Zalani, S., Holley-Guthrie, E., and Kenney, S. (1996). Epstein–Barr viral latency is disrupted by the immediate-early BRLF1 protein through a cell-specific mechanism. Proc Natl Acad Sci USA 93, 9194–9199.PubMedGoogle Scholar
  110. Zou, P., Kawada, J., Pesnicak, L., and Cohen, J. I. (2007). Bortezomib induces apoptosis of Epstein–Barr virus (EBV)-transformed B cells and prolongs survival of mice inoculated with EBV-transformed B cells. J Virol 81, 10029–10036.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Departments of Oncology and MedicineUniversity of Wisconsin-MadisonMadisonUSA
  2. 2.Division of Infectious DiseasesHarvard Medical School, Beth Israel Deaconess Medical CenterBostonUSA

Personalised recommendations