Advertisement

Targeting Signal Transduction Pathways for the Treatment of Kaposi Sarcoma

  • Janet L. Douglas
  • Henry B. Koon
  • Ashlee V. Moses
Chapter

Abstract

Kaposi sarcoma (KS) is a multi-focal angioproliferative disease driven by infection of cells by Kaposi sarcoma herpesvirus/human herpesvirus-8 (KSHV/HHV8). KSHV/HHV8 infection activates numerous sequential and parallel signaling pathways creating an angiogenic–inflammatory state that leads to the development of Kaposi sarcoma. These pathways can be grouped into KSHV/HHV8- specific pathways and cellular growth/angiogenic pathways that are “pirated” by KSHV/HHV8. Advances in our understanding of the pathogenesis of KS parallel the clinical development of signal transduction inhibitors. This chapter reviews the signaling pathways active in KSHV/HHV8-infected cells and discusses the use of clinical inhibitors of these pathways in the treatment of KS.

Keywords

Vascular Endothelial Growth Factor Vascular Endothelial Growth Factor Expression Fibroblast Growth Factor Receptor Acquire Immune Deficiency Syndrome Vascular Endothelial Growth Factor Pathway 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Aoki, Y., and E. S. Jaffe, et al. (1999). Angiogenesis and hematopoiesis induced by Kaposi’s sarcoma-associated herpesvirus-encoded interleukin-6. Blood 93(12), 4034–4043.PubMedGoogle Scholar
  2. Arvanitakis, L., Geras-Raaka, E., et al. (1997). Human herpesvirus KSHV encodes a constitutively active G-protein-coupled receptor linked to cell proliferation. Nature 385(6614), 347–350.PubMedGoogle Scholar
  3. Aversa, S. M., Cattelan, A. M., et al. (2005). Treatments of AIDS-related Kaposi’s sarcoma. Crit Rev Oncol Hematol 53(3), 253–265.PubMedGoogle Scholar
  4. Bais, C., Santomasso, B., et al. (1998). G-protein-coupled receptor of Kaposi’s sarcoma-associated herpesvirus is a viral oncogene and angiogenesis activator. Nature 391(6662), 86–89.PubMedGoogle Scholar
  5. Bais, C., Van Geelen, A., et al. (2003). Kaposi’s sarcoma associated herpesvirus G protein-coupled receptor immortalizes human endothelial cells by activation of the VEGF receptor-2/ KDR. Cancer Cell 3(2), 131–143.PubMedGoogle Scholar
  6. Barillari, G., Sgadari, C., et al. (1999). Inflammatory cytokines synergize with the HIV-1 Tat protein to promote angiogenesis and Kaposi’s sarcoma via induction of basic fibroblast growth factor and the alpha v beta 3 integrin. J Immunol 163(4), 1929–1935.PubMedGoogle Scholar
  7. Betsholtz, C., Karlsson, L., et al. (2001). Developmental roles of platelet-derived growth factors. Bioessays 23(6), 494–507.PubMedGoogle Scholar
  8. Boshoff, C., Endo, Y., et al. (1997). Angiogenic and HIV-inhibitory functions of KSHV-encoded chemokines. Science 278(5336), 290–294.PubMedGoogle Scholar
  9. Brennan, P., Babbage, J. W., et al. (1997). Phosphatidylinositol 3-kinase couples the interleukin-2 receptor to the cell cycle regulator E2F. Immunity 7(5), 679–689.PubMedGoogle Scholar
  10. Brown, L. F., Dezube, B. J., et al. (2000). Expression of Tie1, Tie2, and angiopoietins 1, 2, and 4 in Kaposi’s sarcoma and cutaneous angiosarcoma. Am J Pathol 156(6), 2179–2183.PubMedGoogle Scholar
  11. Brugarolas, J., Lei, K., et al. (2004). Regulation of mTOR function in response to hypoxia by REDD1 and the TSC1/TSC2 tumor suppressor complex. Genes Dev 18(23), 2893–2904.PubMedGoogle Scholar
  12. Brugarolas, J. B., Vazquez, F., et al. (2003). TSC2 regulates VEGF through mTOR-dependent and -independent pathways. Cancer Cell 4(2), 147–158.PubMedGoogle Scholar
  13. Burger, R., Neipel, F., et al. (1998). Human herpesvirus type 8 interleukin-6 homologue is functionally active on human myeloma cells. Blood 91(6), 1858–1863.PubMedGoogle Scholar
  14. Cannon, M., Philpott, N. J., et al. (2003). The Kaposi’s sarcoma-associated herpesvirus G protein-coupled receptor has broad signaling effects in primary effusion lymphoma cells. J Virol 77(1), 57–67.PubMedGoogle Scholar
  15. Carroll, P. A., Brazeau, E., et al. (2004). Kaposi’s sarcoma-associated herpesvirus infection of blood endothelial cells induces lymphatic differentiation. Virology 328(1), 7–18.PubMedGoogle Scholar
  16. Carroll, P. A., Kenerson, H. L., et al. (2006). Latent Kaposi’s sarcoma-associated herpesvirus infection of endothelial cells activates hypoxia-induced factors. J Virol 80(21), 10802–10812.PubMedGoogle Scholar
  17. Catrina, S. B., Lewitt, M., et al. (2005). Insulin-like growth factor-I receptor activity is essential for Kaposi’s sarcoma growth and survival. Br J Cancer 92(8), 1467–1474.PubMedGoogle Scholar
  18. Chaudhary, L. R., and Avioli, L. V. (2000). Extracellular-signal regulated kinase signaling pathway mediates downregulation of type I procollagen gene expression by FGF-2, PDGF-BB, and okadaic acid in osteoblastic cells. J Cell Biochem 76(3), 354–359.PubMedGoogle Scholar
  19. Chaudhary, L. R., and Hruska, K. A. (2001). The cell survival signal Akt is differentially activated by PDGF-BB, EGF, and FGF-2 in osteoblastic cells. J Cell Biochem 81(2), 304–311.PubMedGoogle Scholar
  20. Cornali, E., Zietz, C., et al. (1996). Vascular endothelial growth factor regulates angiogenesis and vascular permeability in Kaposi’s sarcoma. Am J Pathol 149(6), 1851–1869.PubMedGoogle Scholar
  21. Cornelissen, M., van der Kuyl, A. C., et al. (2003). Gene expression profile of AIDS-related Kaposi’s sarcoma. BMC Cancer 3(1), 7.PubMedGoogle Scholar
  22. Creuzet, C., Loeb, J., et al. (1995). Fibroblast growth factors stimulate protein tyrosine phosphorylation and mitogen-activated protein kinase activity in primary cultures of hippocampal neurons. J Neurochem 64(4), 1541–1547.PubMedGoogle Scholar
  23. Dadke, D., Fryer, B. H., et al. (2003). Activation of p21-activated kinase 1-nuclear factor kappaB signaling by Kaposi’s sarcoma-associated herpes virus G protein-coupled receptor during cellular transformation. Cancer Res 63(24), 8837–8847.PubMedGoogle Scholar
  24. Dairaghi, D. J., Fan, R. A., et al. (1999). HHV8-encoded vMIP-I selectively engages chemokine receptor CCR8. Agonist and antagonist profiles of viral chemokines. J Biol Chem 274(31), 21569–21574.PubMedGoogle Scholar
  25. Davis, S., Aldrich, T. H., et al. (1996). Isolation of angiopoietin-1, a ligand for the TIE2 receptor, by secretion-trap expression cloning. Cell 87(7), 1161–1169.PubMedGoogle Scholar
  26. Deng, H., Song, M. J., et al. (2002). Transcriptional regulation of the interleukin-6 gene of human herpesvirus 8 (Kaposi’s sarcoma-associated herpesvirus). J Virol 76(16), 8252–8264.PubMedGoogle Scholar
  27. Douglas, J. L., Whitford, J. G., et al. (2009). Characterization of c-Kit expression and activation in KSHV-infected endothelial cells. Virology 390(2), 174–185.PubMedGoogle Scholar
  28. Dupin, N., Fisher, C., et al. (1999). Distribution of human herpesvirus-8 latently infected cells in Kaposi’s sarcoma, multicentric Castleman’s disease, and primary effusion lymphoma. Proc Natl Acad Sci USA 96(8), 4546–4551.PubMedGoogle Scholar
  29. Ensoli, B., Nakamura, S., et al. (1989). AIDS–Kaposi’s sarcoma-derived cells express cytokines with autocrine and paracrine growth effects. Science 243(4888), 223–226.PubMedGoogle Scholar
  30. Eswarakumar, V. P., Lax, I., et al. (2005). Cellular signaling by fibroblast growth factor receptors. Cytokine Growth Factor Rev 16(2), 139–149.PubMedGoogle Scholar
  31. Ferrara, N., Gerber, H. P., et al. (2003). The biology of VEGF and its receptors. Nat Med 9(6), 669–676.PubMedGoogle Scholar
  32. Folpe, A. L., Veikkola, T., et al. (2000). Vascular endothelial growth factor receptor-3 (VEGFR-3): a marker of vascular tumors with presumed lymphatic differentiation, including Kaposi’s sarcoma, kaposiform and Dabska-type hemangioendotheliomas, and a subset of angiosarcomas. Mod Pathol 13(2), 180–185.PubMedGoogle Scholar
  33. Franke, T. F., Yang, S. I., et al. (1995). The protein kinase encoded by the Akt proto-oncogene is a target of the PDGF-activated phosphatidylinositol 3-kinase. Cell 81(5), 727–736.PubMedGoogle Scholar
  34. Fukada, T., Hibi, M., et al. (1996). Two signals are necessary for cell proliferation induced by a cytokine receptor gp130: involvement of STAT3 in anti-apoptosis. Immunity 5(5), 449–460.PubMedGoogle Scholar
  35. Funamoto, M., Fujio, Y., et al. (2000). Signal transducer and activator of transcription 3 is required for glycoprotein 130-mediated induction of vascular endothelial growth factor in cardiac myocytes. J Biol Chem 275(14), 10561–10566.PubMedGoogle Scholar
  36. Gollob, J. A., Rathmell, W. K., et al. (2007). Phase II trial of sorafenib plus interferon alfa-2b as first- or second-line therapy in patients with metastatic renal cell cancer. J Clin Oncol 25(22), 3288–3295.PubMedGoogle Scholar
  37. Guertin, D. A., and Sabatini, D. M. (2005). An expanding role for mTOR in cancer. Trends Mol Med 11(8), 353–361.PubMedGoogle Scholar
  38. Haluska, P., Carboni, J. M., et al. (2006). In vitro and in vivo antitumor effects of the dual insulin-like growth factor-I/insulin receptor inhibitor, BMS-554417. Cancer Res 66(1), 362–371.PubMedGoogle Scholar
  39. Hideshima, T., Chauhan, D., et al. (2000). Characterization of signaling cascades triggered by human interleukin-6 versus Kaposi’s sarcoma-associated herpes virus-encoded viral interleukin 6. Clin Cancer Res 6(3), 1180–1189.PubMedGoogle Scholar
  40. Hong, Y. K., Foreman, K., et al. (2004). Lymphatic reprogramming of blood vascular endothelium by Kaposi sarcoma-associated herpesvirus. Nat Genet 36(7), 683–685.PubMedGoogle Scholar
  41. Ishihara, K. and Hirano, T. (2002). IL-6 in autoimmune disease and chronic inflammatory proliferative disease. Cytokine Growth Factor Rev 13(4–5), 357–368.PubMedGoogle Scholar
  42. Kahn, H. J., Bailey, D., et al. (2002). Monoclonal antibody D2-40, a new marker of lymphatic endothelium, reacts with Kaposi’s sarcoma and a subset of angiosarcomas. Mod Pathol 15(4), 434–440.PubMedGoogle Scholar
  43. Kanda, S., Hodgkin, M. N., et al. (1997). Phosphatidylinositol 3’-kinase-independent p70 S6 kinase activation by fibroblast growth factor receptor-1 is important for proliferation but not differentiation of endothelial cells. J Biol Chem 272(37), 23347–23353.PubMedGoogle Scholar
  44. Kim, E. J., Shin, H. K., et al. (2005). Genistein inhibits insulin-like growth factor-I receptor signaling in HT-29 human colon cancer cells: a possible mechanism of the growth inhibitory effect of genistein. J Med Food 8(4), 431–438.PubMedGoogle Scholar
  45. Kim, I., Kwak, H. J., et al. (1999). Molecular cloning and characterization of a novel angiopoietin family protein, angiopoietin-3. FEBS Lett 443(3), 353–356.PubMedGoogle Scholar
  46. Koon, H. B., Bubley, G. J., et al. (2005). Imatinib-induced regression of AIDS-related Kaposi’s sarcoma. J Clin Oncol 23(5), 982–989.PubMedGoogle Scholar
  47. Larsson, O., Girnita, A., et al. (2005). Role of insulin-like growth factor 1 receptor signalling in cancer. Br J Cancer 92(12), 2097–2101.PubMedGoogle Scholar
  48. Lee, H. J., Cho, C. H., et al. (2004). Biological characterization of angiopoietin-3 and angiopoietin-4. FASEB J 18(11), 1200–1208.PubMedGoogle Scholar
  49. Lennartsson, J., Jelacic, T., et al. (2005). Normal and oncogenic forms of the receptor tyrosine kinase kit. Stem Cells 23(1), 16–43.PubMedGoogle Scholar
  50. Levine, A. M., Tulpule, A., et al. (2006). Phase I study of antisense oligonucleotide against vascular endothelial growth factor: decrease in plasma vascular endothelial growth factor with potential clinical efficacy. J Clin Oncol 24(11), 1712–1719.PubMedGoogle Scholar
  51. Lindahl, P., Johansson, B. R., et al. (1997). Pericyte loss and microaneurysm formation in PDGF-B-deficient mice. Science 277(5323), 242–245.PubMedGoogle Scholar
  52. Liu, C., Okruzhnov, Y., et al. (2001). Human herpesvirus 8 (HHV-8)-encoded cytokines induce expression of and autocrine signaling by vascular endothelial growth factor (VEGF) in HHV-8-infected primary-effusion lymphoma cell lines and mediate VEGF-independent antiapoptotic effects. J Virol 75(22), 10933–10940.PubMedGoogle Scholar
  53. Lobov, I. B., Brooks, P. C., et al. (2002). Angiopoietin-2 displays VEGF-dependent modulation of capillary structure and endothelial cell survival in vivo. Proc Natl Acad Sci USA 99(17), 11205–11210.PubMedGoogle Scholar
  54. Louie, S., Cai, J., et al. (1995). Effects of interleukin-1 and interleukin-1 receptor antagonist in AIDS-Kaposi’s sarcoma. J Acquir Immune Defic Syndr Hum Retrovirol 8(5), 455–460.PubMedGoogle Scholar
  55. Luo, J. L., Kamata, H., et al. (2005). IKK/NF-kappaB signaling: balancing life and death―a new approach to cancer therapy. J Clin Invest 115(10), 2625–2632.PubMedGoogle Scholar
  56. Maisonpierre, P. C., Suri, C., et al. (1997). Angiopoietin-2, a natural antagonist for Tie2 that disrupts in vivo angiogenesis. Science 277(5322), 55–60.PubMedGoogle Scholar
  57. Manning, B. D., Tee, A. R., et al. (2002). Identification of the tuberous sclerosis complex-2 tumor suppressor gene product tuberin as a target of the phosphoinositide 3-kinase/akt pathway. Mol Cell 10(1), 151–162.PubMedGoogle Scholar
  58. Marinissen, M. J., Tanos, T., et al. (2006). Inhibition of heme oxygenase-1 interferes with the transforming activity of the Kaposi sarcoma herpesvirus-encoded G protein-coupled receptor. J Biol Chem 281(16), 11332–11346.PubMedGoogle Scholar
  59. Masood, R., Cesarman, E., et al. (2002). Human herpesvirus-8-transformed endothelial cells have functionally activated vascular endothelial growth factor/vascular endothelial growth factor receptor. Am J Pathol 160(1), 23–29.PubMedGoogle Scholar
  60. McAllister, S. C., Hansen, S. G., et al. (2004). Kaposi sarcoma-associated herpesvirus (KSHV) induces heme oxygenase-1 expression and activity in KSHV-infected endothelial cells. Blood 103(9), 3465–3473.PubMedGoogle Scholar
  61. Montaner, S., Sodhi, A., et al. (2003). Endothelial infection with KSHV genes in vivo reveals that vGPCR initiates Kaposi’s sarcomagenesis and can promote the tumorigenic potential of viral latent genes. Cancer Cell 3(1), 23–36.PubMedGoogle Scholar
  62. Montaner, S., Sodhi, A., et al. (2004). The small GTPase Rac1 links the Kaposi sarcoma-associated herpesvirus vGPCR to cytokine secretion and paracrine neoplasia. Blood 104(9), 2903–2911.PubMedGoogle Scholar
  63. Moore, P. S., Boshoff, C., et al. (1996). Molecular mimicry of human cytokine and cytokine response pathway genes by KSHV. Science 274(5293), 1739–1744.PubMedGoogle Scholar
  64. Moses, A. V., Jarvis, M. A., et al. (2002). Kaposi’s sarcoma-associated herpesvirus-induced upregulation of the c-kit proto-oncogene, as identified by gene expression profiling, is essential for the transformation of endothelial cells. J Virol 76(16), 8383–8399.PubMedGoogle Scholar
  65. Motzer, R. J., Rini, B. I., et al. (2006). Sunitinib in patients with metastatic renal cell carcinoma. JAMA 295(21), 2516–2524.PubMedGoogle Scholar
  66. Mullberg, J., Geib, T., et al. (2000). IL-6 receptor independent stimulation of human gp130 by viral IL-6. J Immunol 164(9), 4672–4677.PubMedGoogle Scholar
  67. Muller-Newen, G. (2003). The cytokine receptor gp130: faithfully promiscuous. Sci STKE 2003(201), PE40.Google Scholar
  68. Nadimi, H., Saatee, S., et al. (1988). Expression of endothelial cell markers PAL-E and EN-4 and Ia-antigens in Kaposi’s sarcoma. J Oral Pathol 17(8), 416–420.PubMedGoogle Scholar
  69. Naruishi, K., Nishimura, F., et al. (2003). C-jun N-terminal kinase (JNK) inhibitor, SP600125, blocks interleukin (IL)-6-induced vascular endothelial growth factor (VEGF) production: cyclosporine A partially mimics this inhibitory effect. Transplantation 76(9), 1380–1382.PubMedGoogle Scholar
  70. Neipel, F., Albrecht, J. C., et al. (1997). Human herpesvirus 8 encodes a homolog of interleukin-6. J Virol 71(1), 839–842.PubMedGoogle Scholar
  71. Neufeld, G., and Gospodarowicz, D. (1987). Protamine sulfate inhibits mitogenic activities of the extracellular matrix and fibroblast growth factor, but potentiates that of epidermal growth factor. J Cell Physiol 132(2), 287–294.PubMedGoogle Scholar
  72. Nicholas, J., Ruvolo, V. R., et al. (1997). Kaposi’s sarcoma-associated human herpesvirus-8 encodes homologues of macrophage inflammatory protein-1 and interleukin-6. Nat Med 3(3), 287–292.PubMedGoogle Scholar
  73. Oh, H., Fujio, Y., et al. (1998). Activation of phosphatidylinositol 3-kinase through glycoprotein 130 induces protein kinase B and p70 S6 kinase phosphorylation in cardiac myocytes. J Biol Chem 273(16), 9703–9710.PubMedGoogle Scholar
  74. Oh, H., Takagi, H., et al. (1999). Hypoxia and vascular endothelial growth factor selectively up-regulate angiopoietin-2 in bovine microvascular endothelial cells. J Biol Chem 274(22), 15732–15739.PubMedGoogle Scholar
  75. Opalenik, S. R., Shin, J. T., et al. (1995). The HIV-1 TAT protein induces the expression and extracellular appearance of acidic fibroblast growth factor. J Biol Chem 270(29), 17457–17467.PubMedGoogle Scholar
  76. Orenstein, J. M. (2008). Ultrastructure of Kaposi sarcoma. Ultrastruct Pathol 32(5), 211–220.PubMedGoogle Scholar
  77. Osborne, J., Moore, P. S., et al. (1999). KSHV-encoded viral IL-6 activates multiple human IL-6 signaling pathways. Hum Immunol 60(10), 921–927.PubMedGoogle Scholar
  78. Ostman, A. (2004). PDGF receptors–mediators of autocrine tumor growth and regulators of tumor vasculature and stroma. Cytokine Growth Factor Rev 15(4), 275–286.PubMedGoogle Scholar
  79. Pati, S., Cavrois, M., et al. (2001). Activation of NF-kappaB by the human herpesvirus 8 chemokine receptor ORF74: evidence for a paracrine model of Kaposi’s sarcoma pathogenesis. J Virol 75(18), 8660–8673.PubMedGoogle Scholar
  80. Pearson, M. A., O’Farrell, A. M., et al. (1998). Investigation of the molecular mechanisms underlying growth factor synergy: the role of ERK 2 activation in synergy. Growth Factors 15(4), 293–306.PubMedGoogle Scholar
  81. Popkov, M., Jendreyko, N., et al. (2005). Targeting tumor angiogenesis with adenovirus-delivered anti-Tie-2 intrabody. Cancer Res 65(3), 972–981.PubMedGoogle Scholar
  82. Qian, L. W., Xie, J., et al. (2007). Kaposi’s sarcoma-associated herpesvirus infection promotes invasion of primary human umbilical vein endothelial cells by inducing matrix metalloproteinases. J Virol 81(13), 7001–7010.PubMedGoogle Scholar
  83. Rose, P. P., Carroll, J. M., et al. (2007). The insulin receptor is essential for virus-induced tumorigenesis of Kaposi’s sarcoma. Oncogene 26(14), 1995–2005.PubMedGoogle Scholar
  84. Rosenkilde, M. M., Kledal, T. N., et al. (2000). Selective elimination of high constitutive activity or chemokine binding in the human herpesvirus 8 encoded seven transmembrane oncogene ORF74. J Biol Chem 275(34), 26309–26315.PubMedGoogle Scholar
  85. Roth, W. K., Werner, S., et al. (1989). Depletion of PDGF from serum inhibits growth of AIDS-related and sporadic Kaposi’s sarcoma cells in culture. Oncogene 4(4), 483–487.PubMedGoogle Scholar
  86. Samaniego, F., Markham, P. D., et al. (1998). Vascular endothelial growth factor and basic fibroblast growth factor present in Kaposi’s sarcoma (KS) are induced by inflammatory cytokines and synergize to promote vascular permeability and KS lesion development. Am J Pathol 152(6), 1433–1443.PubMedGoogle Scholar
  87. Schwarz, M., and Murphy, P. M. (2001). Kaposi’s sarcoma-associated herpesvirus G protein-coupled receptor constitutively activates NF-kappa B and induces proinflammatory cytokine and chemokine production via a C-terminal signaling determinant. J Immunol 167(1), 505–513.PubMedGoogle Scholar
  88. Sinkovics, J. G. (1991). Kaposi’s sarcoma: its ‘oncogenes’ and growth factors. Crit Rev Oncol Hematol 11(2), 87–107.PubMedGoogle Scholar
  89. Skobe, M., Brown, L. F., et al. (1999). Vascular endothelial growth factor-C (VEGF-C) and its receptors KDR and flt-4 are expressed in AIDS-associated Kaposi’s sarcoma. J Invest Dermatol 113(6), 1047–1053.PubMedGoogle Scholar
  90. Sodhi, A., Montaner, S., et al. (2004). Viral hijacking of G-protein-coupled-receptor signalling networks. Nat Rev Mol Cell Biol 5(12), 998–1012.PubMedGoogle Scholar
  91. Sodhi, A., Montaner, S., et al. (2000). The Kaposi’s sarcoma-associated herpes virus G protein-coupled receptor up-regulates vascular endothelial growth factor expression and secretion through mitogen-activated protein kinase and p38 pathways acting on hypoxia-inducible factor 1alpha. Cancer Res 60(17), 4873–4880.PubMedGoogle Scholar
  92. Stallone, G., Schena, A., et al. (2005). Sirolimus for Kaposi’s sarcoma in renal-transplant recipients. N Engl J Med 352(13), 1317–1323.PubMedGoogle Scholar
  93. Stine, J. T., Wood, C., et al. (2000). KSHV-encoded CC chemokine vMIP-III is a CCR4 agonist, stimulates angiogenesis, and selectively chemoattracts TH2 cells. Blood 95(4), 1151–1157.PubMedGoogle Scholar
  94. Sturzl, M., Roth, W. K., et al. (1992). Expression of platelet-derived growth factor and its receptor in AIDS-related Kaposi sarcoma in vivo suggests paracrine and autocrine mechanisms of tumor maintenance. Proc Natl Acad Sci USA 89(15), 7046–7050.PubMedGoogle Scholar
  95. Sun, R., Lin, S. F., et al. (1999). Kinetics of Kaposi’s sarcoma-associated herpesvirus gene expression. J Virol 73(3), 2232–2242.PubMedGoogle Scholar
  96. Suri, C., Jones, P. F., et al. (1996). Requisite role of angiopoietin-1, a ligand for the TIE2 receptor, during embryonic angiogenesis. Cell 87(7), 1171–1180.PubMedGoogle Scholar
  97. Takeda, N., Maemura, K., et al. (2004). Endothelial PAS domain protein 1 gene promotes angiogenesis through the transactivation of both vascular endothelial growth factor and its receptor, Flt-1. Circ Res 95(2), 146–153.PubMedGoogle Scholar
  98. Taniguchi, C. M., Emanuelli, B., et al. (2006). Critical nodes in signalling pathways: insights into insulin action. Nat Rev Mol Cell Biol 7(2), 85–96.PubMedGoogle Scholar
  99. Tee, A. R., Fingar, D. C., et al. (2002). Tuberous sclerosis complex-1 and -2 gene products function together to inhibit mammalian target of rapamycin (mTOR)-mediated downstream signaling. Proc Natl Acad Sci USA 99(21), 13571–13576.PubMedGoogle Scholar
  100. Vart, R. J., Nikitenko, L. L., et al. (2007). Kaposi’s sarcoma-associated herpesvirus-encoded interleukin-6 and G-protein-coupled receptor regulate angiopoietin-2 expression in lymphatic endothelial cells. Cancer Res 67(9), 4042–4051.PubMedGoogle Scholar
  101. Viatour, P., Merville, M. P., et al. (2005). Phosphorylation of NF-kappaB and IkappaB proteins: implications in cancer and inflammation. Trends Biochem Sci 30(1), 43–52.PubMedGoogle Scholar
  102. Wang, H. W., Trotter, M. W., et al. (2004a). Kaposi sarcoma herpesvirus-induced cellular reprogramming contributes to the lymphatic endothelial gene expression in Kaposi sarcoma. Nat Genet 36(7), 687–693.PubMedGoogle Scholar
  103. Wang, L., Wakisaka, N., et al. (2004b). The Kaposi’s sarcoma-associated herpesvirus (KSHV/HHV-8) K1 protein induces expression of angiogenic and invasion factors. Cancer Res 64(8), 2774–2781.PubMedGoogle Scholar
  104. Watson, J. R., Granoff, D., et al. (2004). Dysphonia due to Kaposi’s sarcoma as the presenting symptom of human immunodeficiency virus. J Voice 18(3), 398–402.PubMedGoogle Scholar
  105. Weber, K. S., Grone, H. J., et al. (2001). Selective recruitment of Th2-type cells and evasion from a cytotoxic immune response mediated by viral macrophage inhibitory protein-II. Eur J Immunol 31(8), 2458–2466.PubMedGoogle Scholar
  106. Werner, S., Hofschneider, P. H., et al. (1990). Cultured Kaposi’s sarcoma-derived cells express functional PDGF A-type and B-type receptors. Exp Cell Res 187(1), 98–103.PubMedGoogle Scholar
  107. West, J. T., and Wood, C. (2003). The role of Kaposi’s sarcoma-associated herpesvirus/human herpesvirus-8 regulator of transcription activation (RTA) in control of gene expression. Oncogene 22(33), 5150–5163.PubMedGoogle Scholar
  108. Xu, H., Edwards, J. R., et al. (2004). Expression of a lymphatic endothelial cell marker in benign and malignant vascular tumors. Hum Pathol 35(7), 857–861.PubMedGoogle Scholar
  109. Yao, R., and Cooper, G. M. (1995). Requirement for phosphatidylinositol-3 kinase in the prevention of apoptosis by nerve growth factor. Science 267(5206), 2003–2006.PubMedGoogle Scholar
  110. Ye, F. C., Blackbourn, D. J., et al. (2007). Kaposi’s sarcoma-associated herpesvirus promotes angiogenesis by inducing angiopoietin-2 expression via AP-1 and Ets1. J Virol 81(8), 3980–3991.PubMedGoogle Scholar
  111. Yoshizaki, K., Nishimoto, N., et al. (1990). Interleukin 6 and expression of its receptor on epidermal keratinocytes. Cytokine 2(5), 381–387.PubMedGoogle Scholar
  112. Zhang, X., Wang, J. F., et al. (2005). Kaposi’s sarcoma-associated herpesvirus activation of vascular endothelial growth factor receptor 3 alters endothelial function and enhances infection. J Biol Chem 280(28), 26216–26224.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Janet L. Douglas
    • 1
  • Henry B. Koon
    • 2
  • Ashlee V. Moses
    • 1
  1. 1.Vaccine & Gene Therapy Institute, Oregon Health & Science UniversityBeavertonUSA
  2. 2.Case Western Reserve School of Medicine, Ireland Cancer Center/University HospitalsClevelandUSA

Personalised recommendations