Metronomic Therapy for HIV-Associated Malignancies

  • Rosemary Rochford
  • Scot C. Remick


Therapeutic complications following maximum tolerated dose cytotoxic chemotherapy are a reality of current cancer care treatment regimens and protocols. These complications include bone marrow suppression with anemia, bleeding, and neutropenia and without appropriate supportive care, result in unacceptably high morbidity and mortality rates. Over 30 million people worldwide are infected with HIV, and of these, the vast majority live in sub-Saharan Africa. Many patients with AIDS are also malnourished and so are especially vulnerable to the mucositis and weight loss that often accompanies chemotherapy further compounding the inherent risks of myelosuppressive chemotherapy. In addition, HIV infection is thought to cause abnormalities in hematopoiesis, compounding the myelotoxicity of cytotoxic therapy. Thus, myelotoxicity is a major complication following the delivery of cytotoxic therapy at maximum tolerated doses to treat AIDS-associated malignancies in developing countries. Alternative approaches to the management of AIDS-associated malignancies are needed in resource-poor countries. In this chapter, we will describe a new approach for the delivery of cytotoxic drugs – metronomic therapy – that reduces the toxicity associated with the delivery of chemotherapeutic drugs at maximum tolerated doses.


Cytotoxic Drug Cytotoxic Therapy Myelosuppressive Chemotherapy Biweekly Schedule Metronomic Schedule 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. Aldenhoven, M., Barlo, N. P., and Sanders, C. J. (2006). Therapeutic strategies for epidemic Kaposi’s sarcoma. Int J STD AIDS 17, 571–578.PubMedCrossRefGoogle Scholar
  2. Bello, L., Carrabba, G., Giussani, C., Lucini, V., Cerutti, F., Scaglione, F., Landre, J., Pluderi, M., Tomei, G., Villani, R., et al. (2001). Low-dose chemotherapy combined with an antiangiogenic drug reduces human glioma growth in vivo. Cancer Res 61, 7501–7506.PubMedGoogle Scholar
  3. Bertolini, F., Paul, S., Mancuso, P., Monestiroli, S., Gobbi, A., Shaked, Y., and Kerbel, R. S. (2003). Maximum tolerable dose and low-dose metronomic chemotherapy have opposite effects on the mobilization and viability of circulating endothelial progenitor cells. Cancer Res 63, 4342–4346.PubMedGoogle Scholar
  4. Blansfield, J. A., Caragacianu, D., Alexander, H. R., 3rd, Tangrea, M. A., Morita, S. Y., Lorang, D., Schafer, P., Muller, G., Stirling, D., Royal, R. E., et al. (2008). Combining agents that target the tumor microenvironment improves the efficacy of anticancer therapy. Clin Cancer Res 14, 270–280.PubMedCrossRefGoogle Scholar
  5. Bocci, G., Falcone, A., Fioravanti, A., Orlandi, P., Di Paolo, A., Fanelli, G., Viacava, P., Naccarato, A. G., Kerbel, R. S., Danesi, R., et al. (2008). Antiangiogenic and anticolorectal cancer effects of metronomic irinotecan chemotherapy alone and in combination with semaxinib. Br J Cancer 98, 1619–1629.PubMedCrossRefGoogle Scholar
  6. Bocci, G., Francia, G., Man, S., Lawler, J., and Kerbel, R. S. (2003). Thrombospondin 1, a mediator of the antiangiogenic effects of low-dose metronomic chemotherapy. Proc Natl Acad Sci USA 100, 12917–12922.PubMedCrossRefGoogle Scholar
  7. Bocci, G., Tuccori, M., Emmenegger, U., Liguori, V., Falcone, A., Kerbel, R. S., and Del Tacca, M. (2005). Cyclophosphamide-methotrexate ‘metronomic’ chemotherapy for the palliative treatment of metastatic breast cancer. A comparative pharmacoeconomic evaluation. Ann Oncol 16, 1243–1252.PubMedCrossRefGoogle Scholar
  8. Bottini, A., Generali, D., Brizzi, M. P., Fox, S. B., Bersiga, A., Bonardi, S., Allevi, G., Aguggini, S., Bodini, G., Milani, M., et al. (2006). Randomized phase II trial of letrozole and letrozole plus low-dose metronomic oral cyclophosphamide as primary systemic treatment in elderly breast cancer patients. J Clin Oncol 24, 3623–3628.PubMedCrossRefGoogle Scholar
  9. Bower, M. (2002). The management of lymphoma in the immunosuppressed patient. Best Pract Res Clin Haematol 15, 517–532.PubMedCrossRefGoogle Scholar
  10. Browder, T., Butterfield, C. E., Kraling, B. M., Shi, B., Marshall, B., O’Reilly, M. S., and Folkman, J. (2000). Antiangiogenic scheduling of chemotherapy improves efficacy against experimental drug-resistant cancer. Cancer Res 60, 1878–1886.PubMedGoogle Scholar
  11. Brown, A. P., Citrin, D. E., and Camphausen, K. A. (2008). Clinical biomarkers of angiogenesis inhibition. Cancer Metastasis Rev 27, 415–434.PubMedCrossRefGoogle Scholar
  12. Buckstein, R., Kerbel, R. S., Shaked, Y., Nayar, R., Foden, C., Turner, R., Lee, C. R., Taylor, D., Zhang, L., Man, S., et al. (2006). High-Dose celecoxib and metronomic “low-dose” cyclophosphamide is an effective and safe therapy in patients with relapsed and refractory aggressive histology non-Hodgkin’s lymphoma. Clin Cancer Res 12, 5190–5198.PubMedCrossRefGoogle Scholar
  13. Coleman, M., Martin, P., Ruan, J., Furman, R., Niesvizky, R., Elstrom, R., George, P., Kaufman, T. P., and Leonard, J. P. (2008a). Prednisone, etoposide, procarbazine, and cyclophosphamide (PEP-C) oral combination chemotherapy regimen for recurring/refractory lymphoma: low-dose metronomic, multidrug therapy. Cancer 112, 2228–2232.PubMedCrossRefGoogle Scholar
  14. Coleman, M., Martin, P., Ruan, J., Furman, R., Niesvizky, R., Elstrom, R., George, P., Leonard, J., and Kaufmann, T. (2008b). Low-dose metronomic, multidrug therapy with the PEP-C oral combination chemotherapy regimen for mantle cell lymphoma. Leuk Lymphoma 49, 447–450.PubMedCrossRefGoogle Scholar
  15. Colleoni, M., Orlando, L., Sanna, G., Rocca, A., Maisonneuve, P., Peruzzotti, G., Ghisini, R., Sandri, M. T., Zorzino, L., Nole, F., et al. (2006). Metronomic low-dose oral cyclophosphamide and methotrexate plus or minus thalidomide in metastatic breast cancer: antitumor activity and biological effects. Ann Oncol 17, 232–238.PubMedCrossRefGoogle Scholar
  16. Colleoni, M., Rocca, A., Sandri, M. T., Zorzino, L., Masci, G., Nole, F., Peruzzotti, G., Robertson, C., Orlando, L., Cinieri, S., et al. (2002). Low-dose oral methotrexate and cyclophosphamide in metastatic breast cancer: antitumor activity and correlation with vascular endothelial growth factor levels. Ann Oncol 13, 73–80.PubMedCrossRefGoogle Scholar
  17. del Campo, J. M., Prat, A., Gil-Moreno, A., Perez, J., and Parera, M. (2008). Update on novel therapeutic agents for cervical cancer. Gynecol Oncol 110, S72–S76.PubMedCrossRefGoogle Scholar
  18. Dellapasqua, S., Bertolini, F., Bagnardi, V., Campagnoli, E., Scarano, E., Torrisi, R., Shaked, Y., Mancuso, P., Goldhirsch, A., Rocca, A., et al. (2008). Metronomic cyclophosphamide and capecitabine combined with bevacizumab in advanced breast cancer. J Clin Oncol 26, 4899–4905.PubMedCrossRefGoogle Scholar
  19. Folkman, J. (1971). Tumor angiogenesis: therapeutic implications. N Engl J Med 285, 1182–1186.PubMedCrossRefGoogle Scholar
  20. Garcia, A. A., Hirte, H., Fleming, G., Yang, D., Tsao-Wei, D. D., Roman, L., Groshen, S., Swenson, S., Markland, F., Gandara, D., et al. (2008). Phase II clinical trial of bevacizumab and low-dose metronomic oral cyclophosphamide in recurrent ovarian cancer: a trial of the California, Chicago, and Princess Margaret Hospital phase II consortia. J Clin Oncol 26, 76–82.PubMedCrossRefGoogle Scholar
  21. Gasparini, G. (2001). Metronomic scheduling: the future of chemotherapy? Lancet Oncol 2, 733–740.PubMedCrossRefGoogle Scholar
  22. Ghiringhelli, F., Menard, C., Puig, P. E., Ladoire, S., Roux, S., Martin, F., Solary, E., Le Cesne, A., Zitvogel, L., and Chauffert, B. (2007). Metronomic cyclophosphamide regimen selectively depletes CD4+CD25+ regulatory T cells and restores T and NK effector functions in end stage cancer patients. Cancer Immunol Immunother 56, 641–648.PubMedCrossRefGoogle Scholar
  23. Gill, P. S., Rarick, M., McCutchan, J. A., Slater, L., Parker, B., Muchmore, E., Bernstein-Singer, M., Akil, B., Espina, B. M., Krailo, M., et al. (1991). Systemic treatment of AIDS-related Kaposi’s sarcoma: results of a randomized trial. Am J Med 90, 427–433.PubMedGoogle Scholar
  24. Gill, P. S., Tulpule, A., Espina, B. M., Cabriales, S., Bresnahan, J., Ilaw, M., Louie, S., Gustafson, N. F., Brown, M. A., Orcutt, C., et al. (1999). Paclitaxel is safe and effective in the treatment of advanced AIDS-related Kaposi’s sarcoma. J Clin Oncol 17, 1876–1883.PubMedGoogle Scholar
  25. Gill, P. S., Wernz, J., Scadden, D. T., Cohen, P., Mukwaya, G. M., von Roenn, J. H., Jacobs, M., Kempin, S., Silverberg, I., Gonzales, G., et al. (1996). Randomized phase III trial of liposomal daunorubicin versus doxorubicin, bleomycin, and vincristine in AIDS-related Kaposi’s sarcoma. J Clin Oncol 14, 2353–2364.PubMedGoogle Scholar
  26. Glode, L. M., Barqawi, A., Crighton, F., Crawford, E. D., and Kerbel, R. (2003). Metronomic therapy with cyclophosphamide and dexamethasone for prostate carcinoma. Cancer 98, 1643–1648.PubMedCrossRefGoogle Scholar
  27. Graham, M. A., and Workman, P. (1992). The impact of pharmacokinetically guided dose escalation strategies in phase I clinical trials: critical evaluation and recommendations for future studies. Ann Oncol 3, 339–347.PubMedGoogle Scholar
  28. Hahnfeldt, P., Folkman, J., and Hlatky, L. (2003). Minimizing long-term tumor burden: the logic for metronomic chemotherapeutic dosing and its antiangiogenic basis. J Theor Biol 220, 545–554.PubMedCrossRefGoogle Scholar
  29. Hamano, Y., Sugimoto, H., Soubasakos, M. A., Kieran, M., Olsen, B. R., Lawler, J., Sudhakar, A., and Kalluri, R. (2004). Thrombospondin-1 associated with tumor microenvironment contributes to low-dose cyclophosphamide-mediated endothelial cell apoptosis and tumor growth suppression. Cancer Res 64, 1570–1574.PubMedCrossRefGoogle Scholar
  30. Hanahan, D., Bergers, G., and Bergsland, E. (2000). Less is more, regularly: metronomic dosing of cytotoxic drugs can target tumor angiogenesis in mice. J Clin Invest 105, 1045–1047.PubMedCrossRefGoogle Scholar
  31. Hesseling, P. B., Broadhead, R., Molyneux, E., Borgstein, E., Schneider, J. W., Louw, M., Mansvelt, E. P., and Wessels, G. (2003). Malawi pilot study of Burkitt lymphoma treatment. Med Pediatr Oncol 41, 532–540.PubMedCrossRefGoogle Scholar
  32. Jorgensen, J. M., Sorensen, F. B., Bendix, K., Nielsen, J. L., Olsen, M. L., Funder, A. M., and d’Amore, F. (2007). Angiogenesis in non-Hodgkin’s lymphoma: clinico-pathological correlations and prognostic significance in specific subtypes. Leuk Lymphoma 48, 584–595.PubMedCrossRefGoogle Scholar
  33. Kerbel, R. S. (2000). Tumor angiogenesis: past, present and the near future. Carcinogenesis 21, 505–515.PubMedCrossRefGoogle Scholar
  34. Kerbel, R. S., and Kamen, B. A. (2004). The anti-angiogenic basis of metronomic chemotherapy. Nat Rev Cancer 4, 423–436.PubMedCrossRefGoogle Scholar
  35. Klement, G., Baruchel, S., Rak, J., Man, S., Clark, K., Hicklin, D. J., Bohlen, P., and Kerbel, R. S. (2000). Continuous low-dose therapy with vinblastine and VEGF receptor-2 antibody induces sustained tumor regression without overt toxicity. J Clin Invest 105, R15–R24.PubMedCrossRefGoogle Scholar
  36. Klement, G., Huang, P., Mayer, B., Green, S. K., Man, S., Bohlen, P., Hicklin, D., and Kerbel, R. S. (2002). Differences in therapeutic indexes of combination metronomic chemotherapy and an anti-VEGFR-2 antibody in multidrug-resistant human breast cancer xenografts. Clin Cancer Res 8, 221–232.PubMedGoogle Scholar
  37. Krzyzanowska, M. K., Tannock, I. F., Lockwood, G., Knox, J., Moore, M., and Bjarnason, G. A. (2007). A phase II trial of continuous low-dose oral cyclophosphamide and celecoxib in patients with renal cell carcinoma. Cancer Chemother Pharmacol 60, 135–141.PubMedCrossRefGoogle Scholar
  38. Kurokawa, M., Ghosh, S., Ramos, J., Mian, A. M., Toomey, L., Cabral, L., Whitby, D., Barber, G. N., Dittmer, D., and Harrington, W. J., Jr. (2005). Azidothymidine inhibits NF-kB and induces Epstein-Barr virus gene expression in Burkitt lymphoma. Blood 106(1), 235–240.PubMedCrossRefGoogle Scholar
  39. Laubenstein, L. J., Krigel, R. L., Odajnyk, C. M., Hymes, K. B., Friedman-Kien, A., Wernz, J. C., and Muggia, F. M. (1984). Treatment of epidemic Kaposi’s sarcoma with etoposide or a combination of doxorubicin, bleomycin, and vinblastine. J Clin Oncol 2, 1115–1120.PubMedGoogle Scholar
  40. Ma, J., and Waxman, D. J. (2008). Modulation of the antitumor activity of metronomic cyclophosphamide by the angiogenesis inhibitor axitinib. Mol Cancer Ther 7, 79–89.PubMedCrossRefGoogle Scholar
  41. Man, S., Bocci, G., Francia, G., Green, S. K., Jothy, S., Hanahan, D., Bohlen, P., Hicklin, D. J., Bergers, G., and Kerbel, R. S. (2002). Antitumor effects in mice of low-dose (metronomic) cyclophosphamide administered continuously through the drinking water. Cancer Res 62, 2731–2735.PubMedGoogle Scholar
  42. Mancuso, P., Colleoni, M., Calleri, A., Orlando, L., Maisonneuve, P., Pruneri, G., Agliano, A., Goldhirsch, A., Shaked, Y., Kerbel, R. S., et al. (2006). Circulating endothelial-cell kinetics and viability predict survival in breast cancer patients receiving metronomic chemotherapy. Blood 108, 452–459.PubMedCrossRefGoogle Scholar
  43. Miller, K. D., Sweeney, C. J., and Sledge, G. W., Jr. (2001). Redefining the target: chemotherapeutics as antiangiogenics. J Clin Oncol 19, 1195–1206.PubMedGoogle Scholar
  44. Munoz, R., Man, S., Shaked, Y., Lee, C. R., Wong, J., Francia, G., and Kerbel, R. S. (2006). Highly efficacious nontoxic preclinical treatment for advanced metastatic breast cancer using combination oral UFT-cyclophosphamide metronomic chemotherapy. Cancer Res 66, 3386–3391.PubMedCrossRefGoogle Scholar
  45. Northfelt, D. W., Dezube, B. J., Thommes, J. A., Levine, R., Von Roenn, J. H., Dosik, G. M., Rios, A., Krown, S. E., DuMond, C., and Mamelok, R. D. (1997). Efficacy of pegylated-liposomal doxorubicin in the treatment of AIDS-related Kaposi’s sarcoma after failure of standard chemotherapy. J Clin Oncol 15, 653–659.PubMedGoogle Scholar
  46. Northfelt, D. W., Dezube, B. J., Thommes, J. A., Miller, B. J., Fischl, M. A., Friedman-Kien, A., Kaplan, L. D., Du Mond, C., Mamelok, R. D., and Henry, D. H. (1998). Pegylated-liposomal doxorubicin versus doxorubicin, bleomycin, and vincristine in the treatment of AIDS-related Kaposi’s sarcoma: results of a randomized phase III clinical trial. J Clin Oncol 16, 2445–2451.PubMedGoogle Scholar
  47. Orem, J., Fu, P., Ness, A., Mwanda, W. O., and Remick, S. C. (2005). Oral combination chemotherapy in the treatment of AIDS-associated Hodgkin’s disease. East Afr Med J 82, S144–S149.PubMedGoogle Scholar
  48. Orem, J., Otieno, M. W., and Remick, S. C. (2004). AIDS-associated cancer in developing nations. Curr Opin Oncol 16, 468–476.PubMedCrossRefGoogle Scholar
  49. Orem, J., Otieno, M. W., and Remick, S. C. (2006). Challenges and opportunities for treatment and research of AIDS-related malignancies in Africa. Curr Opin Oncol 18, 479–486.PubMedCrossRefGoogle Scholar
  50. Orlando, L., Cardillo, A., Ghisini, R., Rocca, A., Balduzzi, A., Torrisi, R., Peruzzotti, G., Goldhirsch, A., Pietri, E., and Colleoni, M. (2006a). Trastuzumab in combination with metronomic cyclophosphamide and methotrexate in patients with HER-2 positive metastatic breast cancer. BMC Cancer 6, 225.PubMedCrossRefGoogle Scholar
  51. Orlando, L., Cardillo, A., Rocca, A., Balduzzi, A., Ghisini, R., Peruzzotti, G., Goldhirsch, A., D’Alessandro, C., Cinieri, S., Preda, L., et al. (2006b). Prolonged clinical benefit with metronomic chemotherapy in patients with metastatic breast cancer. Anticancer Drugs 17, 961–967.PubMedCrossRefGoogle Scholar
  52. Otieno, M. W., Banura, C., Katongole-Mbidde, E., Johnson, J. L., Ghannoum, M., Dowlati, A., Renne, R., Arts, E., Whalen, C., Lederman, M. M., et al. (2002). Therapeutic challenges of AIDS-related non-Hodgkin’s lymphoma in the United States and East Africa. J Natl Cancer Inst 94, 718–732.PubMedCrossRefGoogle Scholar
  53. Park, J., and Levitt, L. (1993). Overexpression of mitogen-activated protein kinase (ERK1) enhances t-cell cytokine gene expression: role of Ap1, NF-At, and NF-KB. Blood 82, 2470–2477.PubMedGoogle Scholar
  54. Randall, L. M., Monk, B. J., Darcy, K. M., Tian, C., Burger, R. A., Liao, S. Y., Peters, W. A., Stock, R. J., and Fruehauf, J. P. (2008). Markers of angiogenesis in high-risk, early-stage cervical cancer: a Gynecologic Oncology Group study. Gynecol Oncol 112(3), 583–589.PubMedCrossRefGoogle Scholar
  55. Rochford, R., Fiore, N., Harrington, W., and Remick, S. C. (2006). Metronomic therapy for treatment of AIDS Burkitt lymphoma in a NOD/SCID lymphoma xenograft model. Paper presented at AORTIC 2007, Capetown, South Africa.Google Scholar
  56. Ruddell, A., Mezquita, P., Brandvold, K. A., Farr, A., and Iritani, B. M. (2003). B lymphocyte-specific c-Myc expression stimulates early and functional expansion of the vasculature and lymphatics during lymphomagenesis. Am J Pathol 163, 2233–2245.PubMedCrossRefGoogle Scholar
  57. Sanborn, S. L., Cooney, M. M., Dowlati, A., Brell, J. M., Krishnamurthi, S., Gibbons, J., Bokar, J. A., Nock, C., Ness, A., and Remick, S. C. (2008). Phase I trial of docetaxel and thalidomide: a regimen based on metronomic therapeutic principles. Invest New Drugs 26, 355–362.PubMedCrossRefGoogle Scholar
  58. Saville, M. W., Lietzau, J., Pluda, J. M., Feuerstein, I., Odom, J., Wilson, W. H., Humphrey, R. W., Feigal, E., Steinberg, S. M., Broder, S., et al. (1995). Treatment of HIV-associated Kaposi’s sarcoma with paclitaxel. Lancet 346, 26–28.PubMedCrossRefGoogle Scholar
  59. Seymour, L. (2002). The design of clinical trials for new molecularly targeted compounds: progress and new initiatives. Curr Pharm Des 8, 2279–2284.PubMedCrossRefGoogle Scholar
  60. Shaked, Y., Bertolini, F., Man, S., Rogers, M. S., Cervi, D., Foutz, T., Rawn, K., Voskas, D., Dumont, D. J., Ben-David, Y., et al. (2005a). Genetic heterogeneity of the vasculogenic phenotype parallels angiogenesis; Implications for cellular surrogate marker analysis of antiangiogenesis. Cancer Cell 7, 101–111.PubMedGoogle Scholar
  61. Shaked, Y., Emmenegger, U., Francia, G., Chen, L., Lee, C. R., Man, S., Paraghamian, A., Ben-David, Y., and Kerbel, R. S. (2005b). Low-dose metronomic combined with intermittent bolus-dose cyclophosphamide is an effective long-term chemotherapy treatment strategy. Cancer Res 65, 7045–7051.PubMedCrossRefGoogle Scholar
  62. Shaked, Y., Emmenegger, U., Man, S., Cervi, D., Bertolini, F., Ben-David, Y., and Kerbel, R. S. (2005c). Optimal biologic dose of metronomic chemotherapy regimens is associated with maximum antiangiogenic activity. Blood 106, 3058–3061.PubMedCrossRefGoogle Scholar
  63. Sleijfer, S., and Wiemer, E. (2008). Dose selection in phase I studies: why we should always go for the top. J Clin Oncol 26, 1576–1578.PubMedCrossRefGoogle Scholar
  64. Spieth, K., Kaufmann, R., and Gille, J. (2003). Metronomic oral low-dose treosulfan chemotherapy combined with cyclooxygenase-2 inhibitor in pretreated advanced melanoma: a pilot study. Cancer Chemother Pharmacol 52, 377–382.PubMedCrossRefGoogle Scholar
  65. Steinbild, S., Arends, J., Medinger, M., Haring, B., Frost, A., Drevs, J., Unger, C., Strecker, R., Hennig, J., and Mross, K. (2007). Metronomic antiangiogenic therapy with capecitabine and celecoxib in advanced tumor patients – results of a phase II study. Onkologie 30, 629–635.PubMedCrossRefGoogle Scholar
  66. Sterba, J., Valik, D., Mudry, P., Kepak, T., Pavelka, Z., Bajciova, V., Zitterbart, K., Kadlecova, V., and Mazanek, P. (2006). Combined biodifferentiating and antiangiogenic oral metronomic therapy is feasible and effective in relapsed solid tumors in children: single-center pilot study. Onkologie 29, 308–313.PubMedCrossRefGoogle Scholar
  67. Stewart, S., Jablonowski, H., Goebel, F. D., Arasteh, K., Spittle, M., Rios, A., Aboulafia, D., Galleshaw, J., and Dezube, B. J. (1998). Randomized comparative trial of pegylated liposomal doxorubicin versus bleomycin and vincristine in the treatment of AIDS-related Kaposi’s sarcoma. International Pegylated Liposomal Doxorubicin Study Group. J Clin Oncol 16, 683–691.PubMedGoogle Scholar
  68. Vogt, T., Hafner, C., Bross, K., Bataille, F., Jauch, K. W., Berand, A., Landthaler, M., Andreesen, R., and Reichle, A. (2003). Antiangiogenetic therapy with pioglitazone, rofecoxib, and metronomic trofosfamide in patients with advanced malignant vascular tumors. Cancer 98, 2251–2256.PubMedCrossRefGoogle Scholar
  69. Wang, L., and Damania, B. (2008). Kaposi’s sarcoma-associated herpesvirus confers a survival advantage to endothelial cells. Cancer Res 68, 4640–4648.PubMedCrossRefGoogle Scholar
  70. Welles, L., Saville, M. W., Lietzau, J., Pluda, J. M., Wyvill, K. M., Feuerstein, I., Figg, W. D., Lush, R., Odom, J., Wilson, W. H., et al. (1998). Phase II trial with dose titration of paclitaxel for the therapy of human immunodeficiency virus-associated Kaposi’s sarcoma. J Clin Oncol 16, 1112–1121.PubMedGoogle Scholar
  71. Young, S. D., Whissell, M., Noble, J. C., Cano, P. O., Lopez, P. G., and Germond, C. J. (2006). Phase II clinical trial results involving treatment with low-dose daily oral cyclophosphamide, weekly vinblastine, and rofecoxib in patients with advanced solid tumors. Clin Cancer Res 12, 3092–3098.PubMedCrossRefGoogle Scholar
  72. Zhang, L., Yu, D., Hicklin, D. J., Hannay, J. A., Ellis, L. M., and Pollock, R. E. (2002). Combined anti-fetal liver kinase 1 monoclonal antibody and continuous low-dose doxorubicin inhibits angiogenesis and growth of human soft tissue sarcoma xenografts by induction of endothelial cell apoptosis. Cancer Res 62, 2034–2042.PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Microbiology and ImmunologySUNY Upstate Medical UniversitySyracuseUSA
  2. 2.Medicine-Hematology/Oncology and the Laurence and Jean DeLynn Chair of OncologyMary Babb Randolph Cancer Center, West Virginia UniversityMorgantownUSA

Personalised recommendations