Advertisement

Introduction to Optical Burst Switching

  • T. Venkatesh
  • C. Siva Ram Murthy
Chapter

Abstract

The ever-increasing demand for higher bandwidth due to the growth of bandwidth-intensive applications such as remote information access, video-on-demand, video conferencing, online trading, and other multimedia applications motivated the search for alternatives to traditional electronic networks. Wavelength division multiplexing (WDM) is one such technology developed to handle the future bandwidth demands [52, 70]. In WDM networks, the huge bandwidth offered by a fiber is managed by splitting it into a number of wavelengths, each acting as an independent communication channel at a typical data rate of 10 Gbps. These networks are able to provide over 50 Tbps bandwidth on a single fiber. Characteristics such as low attenuation of signals (0.2 dB/km), extremely low bit error rates, i.e., fraction of bits that are received in error (10−12 in fiber whereas it is 10−6 in copper cables), low signal distortion, and free from being tapped (as light does not radiate from the fiber, it is nearly impossible to tap into it secretly without detection) are the additional advantages.

Keywords

Transmission Control Protocol Session Initiation Protocol Optical Burst Switching Core Node Edge Node 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Al Amin, A. et al.: Demonstration of deflection routing with layer−2 evaluation at 40 Gb/s in a three-node optical burst switching testbed. IEEE Photonics Technology Letters 20(3), 178–180 (2008)CrossRefGoogle Scholar
  2. 2.
    Al Amin, A. et al.: Development of an optical-burst switching node testbed and demonstration of multibit rate optical burst forwarding. Journal of Lightwave Technology 27, 3466–3475 (2009)CrossRefGoogle Scholar
  3. 3.
    Akar, N., Karasan, E., Dogan, K.: Wavelength converter sharing in asynchronous optical packet/burst switching: An exact blocking analysis for Markovian arrivals. IEEE Journal on Selected Areas in Communications 24(12), 69–80 (2006)CrossRefGoogle Scholar
  4. 4.
    Avo, R., Guerreiro, M., Correia, N.S.C., Medeiros, M.C.R.: A signaling architecture for consumer oriented grids based on optical burst switching. In: Proceedings of IEEE ICNS, p. 119 (2007)Google Scholar
  5. 5.
    Azim, M.M.A., Jiang, X., Ho, P.H., Horiguchi, S.: A new hybrid architecture for optical burst switching networks. In: Proceedings of HPCC, pp. 196–202 (2005)Google Scholar
  6. 6.
    Baldine, I. et al.: JumpStart deployments in ultra-high-performance optical networking testbeds. IEEE Communications Magazine 43(11), S18–S25 (2005)CrossRefGoogle Scholar
  7. 7.
    Barakat, N., Sargent, E.H.: Dual-header optical burst switching: A new architecture for WDM burst-switched networks. In: Proceedings of IEEE INFOCOM, pp. 685–693 (2005)Google Scholar
  8. 8.
    Barakat, N., Sargent, E.H.: Separating resource reservations from service requests to improve the performance of optical burst-switching networks. IEEE Journal on Selected Areas in Communications 24(4), 95–107 (2006)CrossRefGoogle Scholar
  9. 9.
    Blumenthal, D.J., Prucnal, P.R., Sauer, J.R.: Photonic packet switches: Architectures and experimental implementation. Proceedings of the IEEE 82(11), 1650–1667 (1994)CrossRefGoogle Scholar
  10. 10.
    Callegati, F., Cerroni, W., Campi, A., Zervas, G., Nejabati, R., Simeonidou, D.: Application aware optical burst switching test-bed with SIP based session control. In: Proceedings of TridentCom, pp. 1–6 (2007)Google Scholar
  11. 11.
    Callegati, F. et al.: SIP-empowered optical networks for future IT services and applications. IEEE Communications Magazine 47(5), 48–54 (2009)CrossRefGoogle Scholar
  12. 12.
    Campi, A., Cerroni, W., Callegati, F., Zervas, G., Nejabati, R., Simeonidou, D.: SIP based OBS networks for grid computing. In: Proceedings of ONDM, pp. 117–126 (2007)Google Scholar
  13. 13.
    Cao, X., Li, J., Chen, Y., Qiao, C.: Assembling TCP/IP packets in optical burst switched networks. In: Proceedings of IEEE GLOBECOM, pp. 84–90 (2002)Google Scholar
  14. 14.
    Chen, Y., Turner, J.S., Pu-Fan, M.: Optimal burst scheduling in optical burst switched networks. Journal of Lightwave Technology 25(8), 1883–1894 (2007)CrossRefGoogle Scholar
  15. 15.
    Chlamtac, I. et. al.: CORD: Contention resolution by delay lines. IEEE Journal on Selected Areas in Communications 14(5), 1014–1029 (1996)CrossRefGoogle Scholar
  16. 16.
    Christodoulopoulos, K., Varvarigos, E., Vlachos, K.G.: A new burst assembly scheme based on the average packet delay and its performance for TCP traffic. Optical Switching and Networking 4(2), 200–212 (2007)CrossRefGoogle Scholar
  17. 17.
    Chua, K.C., Guruswamy, M., Liu, Y., Phung, M.H.: Quality of Service in Optical Burst Switched Networks. Springer, USA (2007)Google Scholar
  18. 18.
    Dolzer, K., Gauger, C., Spath, J., Bodamer, S.: Evaluation of reservation mechanisms for optical burst switching. AEU Journal of Electronics and Communications 55(1) (2001)Google Scholar
  19. 19.
    Dueser, M., Bayvel, P.: Analysis of a dynamically wavelength-routed optical burst switched network architecture. Journal of Lightwave Technology 20(4), 574–585 (2002)CrossRefGoogle Scholar
  20. 20.
    Esteves, R., Abelem, A., Stanton, M.: Quality of service management in GMPLS-based grid OBS networks. In: Proceedings of ACM Symposium on Applied Computing, pp. 74–78 (2009)Google Scholar
  21. 21.
    Fan, Y., Wang, B.: Physical impairment aware scheduling in optical burst switched networks. to appear in Photonic Network Communications (2009)Google Scholar
  22. 22.
    Ge, A., Callegati, F., Tamil, L.: On optical burst switching and self-similar traffic. IEEE Communications Letters 4(3), 98–100 (2000)CrossRefGoogle Scholar
  23. 23.
    Griffith, D., Sriram, K., Golmie, N.: Protection switching for optical bursts using segmentation and deflection routing. IEEE Communications Letters 9(10), 930–932 (2005)CrossRefGoogle Scholar
  24. 24.
    Guerreiro, M., Pavan, C., Barradas, A.L., Pinto, A.N., Medeiros, M.C.R.: Path selection strategy for consumer grid over OBS networks. In: Proceedings of IEEE ICTON, pp. 138–141 (2008)Google Scholar
  25. 25.
    Guo, H., Wu, J., Liu, X., Lin, J., Ji, Y.: Multi-QoS traffic transmission experiments on OBS network testbed. In: Proceedings of ECOC, pp. 601–602 (2005)Google Scholar
  26. 26.
    Guo, H. et al.: A testbed for optical burst switching network. In: Proceedings of OFC (2005)Google Scholar
  27. 27.
    Hsu, C.F., Liu, T.L., Huang, N.F.: Performance analysis of deflection routing in optical burst switched networks. In: Proceedings of IEEE INFOCOM, pp. 55–73 (2002)Google Scholar
  28. 28.
    Y. L. Hsueh et al.: Traffic grooming on WDM rings using optical burst transport. Journal of Lightwave Technology 24(1), 44–53 (2006)CrossRefGoogle Scholar
  29. 29.
    Ito, T., Ishii, D., Okazaki, K., Sasase, I.: A scheduling algorithm for reducing unused time slots by considering head gap and tail gap in time sliced optical burst switched networks. IEICE Transactions on Communications J88-B(2), 242–252 (2006)Google Scholar
  30. 30.
    Jeong, M., Cankaya, H.C., Qiao, C.: On a new multicasting approach in optical burst switched networks. IEEE Communications Magazine 40(11), 96–103 (2002)CrossRefGoogle Scholar
  31. 31.
    Jeong, M., Qiao, C., Xiong, Y., Cankaya, H.C., Vandenhoute, M.: Tree-shared multicast in optical burst-switched WDM networks. Journal of Lightwave Technology 21(1), 13–24 (2003)CrossRefGoogle Scholar
  32. 32.
    Kim, J. et al.: Optical burst transport: A technology for the WDM metro ring networks. Journal of Lightwave Technology 25(1), 93–102 (2007)MATHCrossRefGoogle Scholar
  33. 33.
    Kong, H., Phillips, C.: Prebooking reservation mechanism for next-generation optical networks. IEEE Journal of Selected Topics in Quantum Electronics 12(4), 645–652 (2006)CrossRefGoogle Scholar
  34. 34.
    Kozlovski, E., Dueser, M., Zapata, A., Bayvel, P.: Service differentiation in wavelength-routed optical burst-switched networks. In: Proceedings of OFC, pp. 774–775 (2002)Google Scholar
  35. 35.
    Liu, L. et al.: Experimental demonstration of SIP and P2P hybrid architectures for consumer grids on OBS testbed. In: Proceedings of OFC (2009)Google Scholar
  36. 36.
    Lee, G.M., Wydrowski, B., Zukerman, M., Choi, J.K., Foh, C.H.: Performance evaluation of optical hybrid switching system. In: Proceedings of IEEE GLOBECOM, pp. 2508–2512 (2003)Google Scholar
  37. 37.
    Li, J., Qiao, C., Chen, Y.: Recent progress in the scheduling algorithms in optical-burst-switched networks (invited). Journal of Optical Networking 3(4), 229–241 (2004)CrossRefGoogle Scholar
  38. 38.
    Liang, O., Xiansi, T., Yajie, M., Zongkai, Y.: A framework to evaluate blocking performance of time-slotted optical burst switched networks. In: Proceedings of IEEE LCN, pp. 258–267 (2005)Google Scholar
  39. 39.
    Liu, J., Ansari, N., Ott, T.J.: FRR for latency reduction and QoS provisioning in OBS networks. IEEE Journal on Selected Areas in Communications 21(7), 1210–1219 (2003)CrossRefGoogle Scholar
  40. 40.
    Liu, L., Hong, X., Wu, J., Lin, J.: Experimental demonstration of P2P-based optical grid on LOBS testbed. In: Proceedings of OFC (2008)Google Scholar
  41. 41.
    Liu, L., Hong, X., Wu, J., Lin, J.: Experimental investigation of a peer-to-peer-based architecture for emerging consumer grid applications. Journal of Optical Communications and Networking 1(1), 57–68 (2009)CrossRefGoogle Scholar
  42. 42.
    Liu, L., Hong, X., Wu, J., Yin, Y., Cai, S., Lin, J.: Experimental comparison of high-speed transmission control protocols on a traffic-driven labeled optical burst switching network testbed for grid applications. Journal of Optical Networking 8(5), 491–503 (2009)CrossRefGoogle Scholar
  43. 43.
    Liu, L., Yang, Y.: Fair scheduling in optical burst switching networks. In: Proceedings of ITC, pp. 166–178 (2007)Google Scholar
  44. 44.
    Liu, Y., Mohan, G., Chua, K.C.: A dynamic bandwidth reservation scheme for a collision-free time-slotted OBS network. In: Proceedings of IEEE/CreateNet Workshop on OBS, pp. 192–194 (2005)Google Scholar
  45. 45.
    Lu, K., Zhang, T., Jafari, A.: An anycast routing scheme for supporting emerging grid computing applications in OBS networks. In: Proceedings of IEEE ICC, pp. 2307–2312 (2007)Google Scholar
  46. 46.
    De Leenheer, M. et al.: An OBS-based grid architecture. In: Proceedings of IEEE GLOBECOM Workshop on High Performance Global Grid Networks, pp. 390–394 (2004)Google Scholar
  47. 47.
    De Leenheer, M. et al.: Anycast algorithms supporting optical burst switched grid networks. In: Proceedings of ICNS, p. 63 (2006)Google Scholar
  48. 48.
    De Leenheer, M. et al.: A view on enabling consumer oriented grids through optical burst switching. IEEE Communications Magazine 44(3), 124–131 (2006)CrossRefGoogle Scholar
  49. 49.
    Maier, M.: Optical Switching Networks. Springer, USA (2008)CrossRefGoogle Scholar
  50. 50.
    Masetti, F. et al.: Design and implementation of a multi-terabit optical burst/packet router prototype. In: Proceedings of OFC, pp. FD1.1–FD1.3 (2002)Google Scholar
  51. 51.
    Mazloom, A.R., Ghosh, P., Basu, K., Das, S.K.: Coconet: A collision-free container-based core optical network. Computer Networks 52(10), 2013–2032 (2008)MATHCrossRefGoogle Scholar
  52. 52.
    Mukherjee, B.: Optical WDM Networks. Springer, USA (2006)Google Scholar
  53. 53.
    Nakano, Y.: NEDO project on photonic network technologies - Development of an OBS node prototype and key devices. In: Proceedings of OFC (2007)Google Scholar
  54. 54.
    National LambdaRail: http://www.nlr.net
  55. 55.
    Nawaz, A., Hong, X.B., Wu, J., Lin, J.T.: Impact of OBS and TCP parameters on instantaneous behaviour of TCP congestion window on LOBS network testbed. In: Proceedings of OFC (2009)Google Scholar
  56. 56.
    Peng, S., Li, Z., He, Y., Xu, A.: TCP window-based flow-oriented dynamic assembly algorithm for OBS networks. Journal of Lightwave Technology 27(6), 670–678 (2009)CrossRefGoogle Scholar
  57. 57.
    Qiao, C.: Labeled optical burst switching for IP-over-WDM integration. IEEE Communications Magazine 38(9), 104–114 (2000)CrossRefGoogle Scholar
  58. 58.
    Ramamirtham, J., Turner, J.: Time-sliced optical burst switching. In: Proceedings of IEEE INFOCOM, pp. 2030–2038 (2003)Google Scholar
  59. 59.
    Ramaswami, R., Sivarajan, K.N.: Optical Networks: A Practical Perspective. Morgan Kaufmann, USA (1998)Google Scholar
  60. 60.
    Raza, M.A., Mahmood, W., Ali, A.: Hybrid control and reservation architecture for multidomain optical burst switched network. Journal of Lightwave Technology 26(14), 2013–2028 (2008)CrossRefGoogle Scholar
  61. 61.
    Rosberg, Z., Zalesky, A., Vu, H.L., Zukerman, M.: Analysis of OBS networks with limited wavelength conversion. IEEE Transactions on Networking 14(5), 1118–1127 (2006)CrossRefGoogle Scholar
  62. 62.
    Rugsachart, A., Thompson, R.A.: An analysis of time-synchronized optical burst switching. In: Proceedings of IEEE HPSR (2006)Google Scholar
  63. 63.
    Sahara, A., Kasahara, R., Yamazaki, E., Aisawa, S., Koga, M.: The demonstration of congestion-controlled optical burst switching network utilizing two-way signaling - Field trial in JGN II testbed. In: Proceedings of OFC (2005)Google Scholar
  64. 64.
    Sahara, A. et al.: Demonstration of a connection-oriented optical burst switching network utilizing PLC and MEMS switches. Electronics Letters 40(25), 1597–1599 (2004)CrossRefGoogle Scholar
  65. 65.
    Sahara, A. et al.: Congestion-controlled optical burst switching network with connection guarantee: Design and demonstration. Journal of Lightwave Technology 26(14), 2075–2086 (2008)CrossRefGoogle Scholar
  66. 66.
    Sanghapi, J.N.T., Elbiaze, H., Zhani, M.F.: Adaptive burst assembly mechanism for OBS networks using control channel availability. In: Proceedings of IEEE ICTON, pp. 96–100 (2007)Google Scholar
  67. 67.
    Segarra, J., Sales, V., Prat, J.: An all-optical access-metro interface for hybrid WDM/TDM PON based on OBS. Journal of Lightwave Technology 25(4), 1002–1016 (2007)CrossRefGoogle Scholar
  68. 68.
    Shihada, B., Ho, P.H.: Transport control protocol in optical burst switched networks: Issues solutions, and challenges. IEEE Communications Surveys and Tutorials Second Quarter, 70–86 (2008)CrossRefGoogle Scholar
  69. 69.
    Simeonidou, D. R. Nejabati (Eds.): Grid optical burst switched networks (GOBS) global grid forum draft (2005)Google Scholar
  70. 70.
    Siva Ram Murthy, C. Mohan, G.: WDM Optical Networks: Concepts, Design, and Algorithms. Prentice Hall PTR, USA (2002)Google Scholar
  71. 71.
    Sivaraman, V., Vishwanath, A.: Hierarchical time-sliced optical burst switching. Optical Switching and Networking 6(1), 37–43 (2009)CrossRefGoogle Scholar
  72. 72.
    Sun, Y. et al.: Design and implementation of an optical burst-switched network testbed. IEEE Communications Magazine 43(11), S48–S55 (2005)CrossRefGoogle Scholar
  73. 73.
    Tachibana, T.: Burst-cluster transmission with probabilistic pre-emption for reliable data transfer in high-performance OBS networks. Photonic Network Communications 17(5), 245–254 (2009)CrossRefGoogle Scholar
  74. 74.
    Tachibana, T., Kasahara, S.: Burst-cluster transmission: Service differentiation mechanism for immediate reservation in optical burst switching networks. IEEE Communications Magazine 44(5), 46–55 (2006)CrossRefGoogle Scholar
  75. 75.
    Tan, C.W., Mohan, G., Li, J.C.S.: Achieving multi-class service differentiation in WDM optical burst switching networks: A probabilistic preemptive burst segmentation scheme. IEEE Journal on Selected Areas in Communications 24(12), 106–119 (2006)CrossRefGoogle Scholar
  76. 76.
    Tanemura, T., A. Al Amin, Nakano, Y.: Multihop field trial of optical burst switching testbed with PLZT optical matrix switch. IEEE Photonics Technology Letters 21(1), 42–44 (2009)CrossRefGoogle Scholar
  77. 77.
    Teng, J., Rouskas, G.N.: Wavelength selection in OBS networks using traffic engineering and priority-based concepts. IEEE Journal on Selected Areas in Communications 23(8), 1658–1669 (2005)CrossRefGoogle Scholar
  78. 78.
    Tode, H., Honda, H., Murakami, K.: Multicast design method using multiple shared-trees in OBS networks. In: Proceedings of OFC/NFOEC (2006)Google Scholar
  79. 79.
    Tode, Y.H.H., Murakami, K.: A novel cooperation method for routing and wavelength assignment in optical burst switched networks. IEICE Transactions on Communications E90-B(11), 3108–3116 (2007)CrossRefGoogle Scholar
  80. 80.
    Venkatesh, T., Kiran, Y.V., Murthy, C.S.R.: Joint path and wavelength selection using q-learning in optical burst switching networks. In: Proceedings of IEEE ICC (2009)Google Scholar
  81. 81.
    Venkatesh, T., Sujatha, T.L., C. Siva Ram Murthy: A novel burst assembly algorithm for optical burst switched networks based on learning automata. In: Proceedings of ONDM, pp. 368–377 (2007)Google Scholar
  82. 82.
    Vlachos, K.G., Monroy, I.T., Koonen, A.M.J., Peucheret, C., Jeppesen, P.: STOLAS: Switching technologies for optically labeled signals. IEEE Communications Magazine 41(11), S9–S15 (2003)CrossRefGoogle Scholar
  83. 83.
    Vlachos, K.G., Ramantas, K.: A non-competing hybrid optical burst switch architecture for QoS differentiation. Optical Switching and Networking 5(4), 177–187 (2008)CrossRefGoogle Scholar
  84. 84.
    Vokkarane, V.M., Jue, J.P.: Prioritized burst segmentation and composite burst-assembly techniques for QoS support in optical burst-switched networks. IEEE Journal on Selected Areas in Communications 21(7), 1198–1209 (2003)CrossRefGoogle Scholar
  85. 85.
    Vokkarane, V.M., Jue, J.P.: Introduction to Optical Burst Switching. Springer, USA (2004)Google Scholar
  86. 86.
    Vokkarane, V.M., Jue, J.P.: Segmentation-based nonpreemptive channel scheduling algorithms for optical burst-switched networks. Journal of Lightwave Technology 23(10), 3125–3137 (2005)CrossRefGoogle Scholar
  87. 87.
    Vokkarane, V.M., Zhang, Q.: Reliable optical burst switching for next-generation grid networks. In: Proceedings of BROADNETS, pp. 1428–1437 (2005)Google Scholar
  88. 88.
    Wang, X., Morikawa, H., Aoyama, T.: Burst optical deflection routing protocol for wavelength routing WDM networks. In: Proceedings of SPIE OptiComm, pp. 257–266 (2000)Google Scholar
  89. 89.
    Wei, J.Y., McFarland, R.I.: Just-in-time signaling for WDM optical burst switching networks. Journal of Lightwave Technology 18(12), 2019–2037 (2000)CrossRefGoogle Scholar
  90. 90.
    Xin, C., Qiao, C., Ye, Y., Dixit, S.: A hybrid optical switching approach. In: Proceedings of IEEE GLOBECOM, pp. 3808–3812 (2003)Google Scholar
  91. 91.
    Xinwan, L., Jianping, C., Guiling, W., Hui, W., Ailun, Y.: An experimental study of an optical burst switching network based on wavelength-selective optical switches. IEEE Communications Magazine 43(5), S3–S10 (2005)CrossRefGoogle Scholar
  92. 92.
    Xiong, Y., Vandenhoute, M., Cankaya, H.C.: Control architecture in optical burst-switched WDM networks. IEEE Journal on Selected Areas in Communications 18(10), 1838–1851 (2000)CrossRefGoogle Scholar
  93. 93.
    Yang, L., Rouskas, G.N.: Adaptive path selection in OBS networks. Journal of Lightwave Technology 24(8), 3002–3011 (2006)CrossRefGoogle Scholar
  94. 94.
    Yiannopoulos, K., Vlachos, K.G., Varvarigos, E.: Multiple-input-buffer and shared-buffer architectures for optical packet and burst switching networks. Journal of Lightwave Technology 25(6), 1379–1389 (2007)CrossRefGoogle Scholar
  95. 95.
    Yin, Y., Hong, X., Wu, J., Kun, X., Yong, Z., Lin, J.: Experimental evaluation of the extended JET protocol in support of TDM services. In: Proceedings of OFC (2009)Google Scholar
  96. 96.
    Yoo, S.J.B.: Optical packet and burst switching technologies for the future photonic Internet. Journal of Lightwave Technology 24(12), 4468–4492 (2006)CrossRefGoogle Scholar
  97. 97.
    Zalesky, A., Vu, H.L., Rosberg, Z., Wong, E.W.M., Zukerman, M.: Stabilizing deflection routing in optical burst switched networks. IEEE Journal on Selected Areas in Communications 25(6), 3–19 (2007)CrossRefGoogle Scholar
  98. 98.
    Zervas, G., Nejabati, R., Simeonidou, D.: Grid-empowered optical burst switched network: Architecture, protocols and testbed. In: Proceedings of IEEE ICNS, p. 118 (2007)Google Scholar
  99. 99.
    Zervas, G., Nejabati, R., Simeonidou, D., M. O’Mahony: QoS-aware ingress optical grid user network interface: High-speed ingress OBS node design and implementation. In: Proceedings of OFC (2006)Google Scholar
  100. 100.
    Zervas, G. et al.: Demonstration of application layer service provisioning integrated on full-duplex optical burst switching network test-bed. In: Proceedings of OFC (2008)Google Scholar
  101. 101.
    Zervas, G. et al.: SIP-enabled optical burst switching architectures and protocols for application-aware optical networks. Computer Networks 52(10), 2065–2076 (2008)CrossRefGoogle Scholar
  102. 102.
    Zhang, W., Wu, J., Lin, J., Minxue, W., Jindan, S.: TCP performance experiment on LOBS network testbed. In: Proceedings of ONDM, pp. 186–193 (2007)Google Scholar
  103. 103.
    Zhang, W., Wu, J., Xu, K., Lin, J.T.: TCP performance experiment on OBS network testbed. In: Proceedings of OFC (2006)Google Scholar
  104. 104.
    Zhang, Z., Liu, L., Yang, Y.: Slotted optical burst switching (SOBS) networks. Computer Communications 30(18), 3471–3479 (2007)CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Computer Science and EngineeringIndian Institute of TechnologyGuwahatiIndia
  2. 2.Department of Computer Science and EngineeringIndian Institute of TechnologyChennaiIndia

Personalised recommendations