Influence of Drugs on Thyroid Function Tests

  • Sonia Ananthakrishnan
  • Elizabeth N. Pearce
Part of the Thyroid Function Testing book series (ENDO, volume 28)


Understanding and identifying medication-induced changes in thyroid function tests is crucial to avoid unnecessary investigations and treatment. This chapter discusses the effects of medications on the secretion, transport, metabolism, and absorption of thyroid hormones, both endogenous and exogenous (Fig. 13.1).


Thyroid Hormone Thyroid Function Test Thyroid Hormone Level Thyroxine Binding Globulin Thyroid Hormone Secretion 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. 1.
    Cooper DS. Antithyroid drugs. N Engl J Med. 2005;352:905-917.PubMedCrossRefGoogle Scholar
  2. 2.
    Bocchetta A, Loviselli A. Lithium treatment and thyroid abnormalities. Clin Pract Epidemiol Ment Health. 2006;2:23-27.PubMedCrossRefGoogle Scholar
  3. 3.
    Williams JA, Berens SC, Wolff J. Thyroid secretion in vitro: inhibition of TSH and dibutyryl cyclic-AMP stimulated 131-I release by Li+1. Endocrinology. 1971;88:1385.PubMedCrossRefGoogle Scholar
  4. 4.
    Berens SC, Bernstein RS, Robbins J, Wolff J. Antithyroid effects of lithium. J Clin Invest. 1970;49:1357.PubMedCrossRefGoogle Scholar
  5. 5.
    Burrow GN, Burke WR, Himmelhoch JM, Spencer RP, Hershman JM. Effect of lithium on thyroid function. J Clin Endocrinol Metab. 1971;32:647.PubMedCrossRefGoogle Scholar
  6. 6.
    Spaulding SW, Burrow GN, Bermudez F, Himmelhoch JM. The inhibitory effect of lithium on thyroid hormone release in both euthyroid and thyrotoxic patients. J Clin Endocrinol Metab. 1972;35:905.PubMedCrossRefGoogle Scholar
  7. 7.
    Lazarus JH. The effect of lithium therapy on thyroid and thyrotropin-releasing hormone. Thyroid. 1998;8:909–913.PubMedCrossRefGoogle Scholar
  8. 8.
    Perrild H, Hegedus L, Baastrup PC, Kayser L, Kastberg S. Thyroid function and ultrasonically determined thyroid size in patients receiving long-term lithium treatment. Am J Psychiatry. 1990;147:1518.PubMedGoogle Scholar
  9. 9.
    Bocchetta A, Bernardi F, Pedditzi M, et al. Thyroid abnormalities during lithium treatment. Acta Psychiatr Scand. 1991;83:193.PubMedCrossRefGoogle Scholar
  10. 10.
    Emerson CH, Dysno WL, Utiger RD. Serum thyrotropin and thyroxine concentrations in patients recieving lithium carbonate. J Clin Endocrinol Metab. 1973;36:338.PubMedCrossRefGoogle Scholar
  11. 11.
    Vincent A, Baruch P, Vincent P. Early onset of lithium-associated hypothyroidism. J Psychiatry Neurosci. 1993;18:74.PubMedGoogle Scholar
  12. 12.
    Kirov G, Tredget J, John R, Owen MJ, Lazarus JH. A cross-sectional and a prospective study of thyroid disorders in lithium-treated patients. J Affect Disord. 2005;87:313.PubMedCrossRefGoogle Scholar
  13. 13.
    Bagchi N, Brown TR, Mack RE. Studies of the mechanism of inhibition of thyroid function by lithium. Biochem Biophys Acta. 1978;542:163.PubMedGoogle Scholar
  14. 14.
    Lindstedt G, Nilsson L-A, Walinder J, Skott A, Ohman R. On the prevalence, diagnosis and management of lithium-induced hypothyroidism in psychiatric patients. Br J Psychiatry. 1977;130:452-458.PubMedCrossRefGoogle Scholar
  15. 15.
    Myers DH, Carter RA, Burns BH, Armond A, Hussain SB, Chengapa VK. A prospective study of the effects of lithium on thyroid function and on the prevalence of antithyroid antibodies. Psychol Med. 1985;15:55-61.PubMedCrossRefGoogle Scholar
  16. 16.
    Wilson R, McKillop JH, Crocket GT, et al. The effect of lithium therapy on parameters thought to be involved in the development of autoimmune thyroid disease. Clin Endocrinol. 1991;34:357-361.CrossRefGoogle Scholar
  17. 17.
    Mizukami Y, Michigishi T, Nonomura A, Nakamura S, Noguchi M, Takazakura E. Histoloigcial features of the thyroid gland in a patient with lithium induced thyrotoxicosis. J Clin Pathol. 1995;48:582-584.PubMedCrossRefGoogle Scholar
  18. 18.
    Miller KK, Daniels GH. Association between lithium use and thyrotoxicosis caused by silent thyroiditis. Clin Endocrinol (Oxford). 2001;55:501-508.CrossRefGoogle Scholar
  19. 19.
    Barclay ML, Brownlie BE, Turner J, Wells JE. Lithium associated thyrotoxicosis: a report of 14 cases, statistical analysis of incidence. Clin Endocrinolo (Oxford). 1994;40:759-764.CrossRefGoogle Scholar
  20. 20.
    Lazarus JH, Addison GM, Richards AR, Owen GM. Treatment of thyrotoxicosis with lithium carbonate. Lancet. 1974;2:1160.PubMedCrossRefGoogle Scholar
  21. 21.
    Boehm TM, Burman KD, Barnes S, Wartofsky L. Lithium and iodine combination therapy for thyrotoxicosis. Acta Endocrinol (Copenhagen). 1980;94:174.Google Scholar
  22. 22.
    Bogazzi F, Bertalena L, Brogioni S, et al. Comparison of radioiodine with radioiodine polus lithium in the treatment of Graves’ hyperthyroidism. J Clin Endocrinol Metab. 1999;84:499-503.PubMedCrossRefGoogle Scholar
  23. 23.
    Pons F, Carrio I, Estorch M, Ginjaume M, Pons J, Milian R. Lithium as an adjuvant of iodine-131 uptake when treating patients with well-differentiated thyroid carcinoma. Clin Nucl Med. August 1987;12(8):644-647.Google Scholar
  24. 24.
    Wolff J, Chaikoff IL. Plasma inorganic iodide as a homeostatic regulator of thyroid function. J Biol Chem. 1948;174:555.PubMedGoogle Scholar
  25. 25.
    Braverman LE. Iodine induced thyroid disease. Acta Med Austriaca. 1990;17(suppl 1):29-33.PubMedGoogle Scholar
  26. 26.
    Braverman LE. Iodine and the thyroid: 33 years of study. Thyroid. 1994;4:351.PubMedCrossRefGoogle Scholar
  27. 27.
    Vagenakis AF, Braverman LE. Adverse effects of iodides on thyroid function. Med Clin North Am. 1975;59:1075.PubMedGoogle Scholar
  28. 28.
    Saberi M, Utiger RD. Augmentation of thyrotropin responses in thyrotropin-releasing hormone following small decreases in serum thyroid hormone concentrations. J Clin Endocrinol Metab. 1975;40:435.PubMedCrossRefGoogle Scholar
  29. 29.
    Philippou G, Koutras DA, Piperingos G, Souvatzoglou A, Moulopoulos SD. The effect of iodide on serum thyroid hormone levels in normal persons, in hyperthyroid patients, and in hypothyroid patients on thyroxine replacement. Clin Endocrinol (Oxford). 1992;36:573-578.CrossRefGoogle Scholar
  30. 30.
    Vagenakis AG, Wang CA, Burger A, Maloof F, Braverman LE, Ingbar SH. Iodide-induced thyrotoxicosis in Boston. N Engl J Med. 1972;287:523.PubMedCrossRefGoogle Scholar
  31. 31.
    Fradkin JE, Wolff J. Iodide-induced thyrotoxicosis. Medicine. 1983;62:1.PubMedCrossRefGoogle Scholar
  32. 32.
    Fricke E, Fricke H, Esdorn E, et al. Scintigraphy for risk stratification of iodine-induced thyrotoxicosis in patients receiving contrast agent for coronary angiography: a prospective study of patients with low thyrotropin. J Clin Endocrinol Metab. 2004;89:6092-6096.PubMedCrossRefGoogle Scholar
  33. 33.
    Martin FI, Deam DR. Hyperthyroidism in elderly hospitalized patients. Clinical features and outcome. Med J Aust. 1996;164:200.PubMedGoogle Scholar
  34. 34.
    Tibaldi J, Barzel US, Albin J, Surks MI. Thyrotoxicosis in the very old. Am J Med. 1986;81:619.PubMedCrossRefGoogle Scholar
  35. 35.
    Hintze G, Blombach O, Fink H, Burkhardt U, Kobberling J. Risk of iodine-induced thyrotoxicosis after coronary angiography: an investigation in 788 unselected subjects. Eur J Endocrinol. 1999;140:264-267.PubMedCrossRefGoogle Scholar
  36. 36.
    l’Allemand D, Gruters A, Beyer P, Weber B. Iodine in contrast agents and skin disinfectants is the major cause for hypothyroidism in premature infants during intensive care. Horm Res. 1987;28:42.PubMedCrossRefGoogle Scholar
  37. 37.
    Chanoine JP, Boulvain M, Bourdoux P, et al. Increased recall rate at screening for congenital hypothyroidism in breast fed infants born to iodine overloaded mothers. Arch Dis Child. 1988;63:1027.Google Scholar
  38. 38.
    Teng W, Shan Z, Teng X, et al. Effect of iodine intake on thyroid diseases in China. N Engl J Med. 2006;354:2783.PubMedCrossRefGoogle Scholar
  39. 39.
    Pedersen IB, Laurberg P, Knudsen N, et al. An increased incidence of overt hypothyroidism after iodine fortification of salt in Denmark: a prospective population study. J Clin Endocrinol Metab. 2007;92:3122.PubMedCrossRefGoogle Scholar
  40. 40.
    Conn JJ, Sebastian MJ, Deam D, Tam M, Martin FI. A prospective study of the effect of nonionic contrast media on thyroid function. Thyroid. 1996;6:107-110.PubMedCrossRefGoogle Scholar
  41. 41.
    Dowsett M, Mehta A, Cantwell BMJ, Harris AL. Low-dose aminoglutethimide in postmenopausal breast cancer: effects on adrenal and thyroid hormone secretion. Eur J Cancer. 1991;27:846-849.PubMedCrossRefGoogle Scholar
  42. 42.
    Figg WD, Thibault A, Sartor AO, et al. Hypothyroidism associated with aminoglutethimide in patients with prostate cancer. Arch Intern Med. 1994;154:1023-1025.PubMedCrossRefGoogle Scholar
  43. 43.
    Gupta A, Eggo MC, Uetrecht JP, et al. Drug-induced hypothyroidism: the thyroid as a target organ in hypersensitivity reactions to anticonvulsants and sulfonamides. Clin Pharmacol Ther. 1992;51:56-67.PubMedCrossRefGoogle Scholar
  44. 44.
    Drucker D, Eggo MC, Salit IE, Burrow GN. Ethionamide-induced goitrous hypothyroidism. Ann Intern Med. 1984;100:837-839.PubMedGoogle Scholar
  45. 45.
    McDonnell ME, Braverman LE, Bernardo J. Hypothyroidism due to ethionamide. N Engl J Med. 2005;352(26):2757-2759.PubMedCrossRefGoogle Scholar
  46. 46.
    Bartalena L. Recent achievements in studies on thyroid hormone-binding proteins. Endocr Rev. 1990;11:47-64.PubMedCrossRefGoogle Scholar
  47. 47.
    Knopp RH, Bergelin RO, Wahl PW, Walden CE, Chapman MB. Clinical chemistry alterations in pregnancy and oral contraceptive use. Obstet Gynecol. 1985;66:682-690.PubMedGoogle Scholar
  48. 48.
    Steingold KA, Matt DW, DeZiegler D, Sealey JE, Fratkin M, Reznikov S. Comparison of transdermal to oral estradiol administration on hormonal and hepatic parameters in women with premature ovarian failure. J Clin Endocrinol Metab. 1991;73:275-280.PubMedCrossRefGoogle Scholar
  49. 49.
    Kuhl H, Jung-Hoffman C, Weber J, Boehm BO. The effect of a biphasic desogestrel-containing oral contraceptive on carbohydrate metabolism and various hormonal parameters. Contraception. 1993;47:55-68.PubMedCrossRefGoogle Scholar
  50. 50.
    Geola FL, Frumar AM, Tataryn IV, et al. Biological effects of various doses of conjugated equine estrogens in postmenopausal women. J Clin Endocrinol Metab. 1980;51:620-625.PubMedCrossRefGoogle Scholar
  51. 51.
    Ben-Rafael Z, Mastroianni L Jr, Struass JF III, Flickinger GL, Arendash-Durand B. Changes in thyroid function tests and sex hormone binding globulin associated with treatment by gonadotropin. Fertil Steril. 1987;48:318-320.PubMedGoogle Scholar
  52. 52.
    Bartalena L, Robbins J. Variations in thyroid hormone transport proteins and their clinical implications. Thyroid. 1992;2:237-245.PubMedCrossRefGoogle Scholar
  53. 53.
    Mamby CC, Love RR, Lee KE. Thyroid function test changes with adjuvant tamoxifen therapy in postmenopausal women with breast cancer. J Clin Oncol. 1995;13:854-857.PubMedGoogle Scholar
  54. 54.
    Duntas LH, Mantzou E, Koutras DA. Lack of substantial effects of raloxifene on thyroxine-binding globulin in postmenopausal women: dependency on thyroid status. Thyroid. August 1, 2001;11(8):779-782.PubMedCrossRefGoogle Scholar
  55. 55.
    Hsu SH, Cheng WC, Men-Wang J, Tsai KS. Effects of long-term use of Raloxifene, a selective estrogen receptor modulator, on thyroid function test profiles. Clin Chem. 2001;47:1865-1867.PubMedGoogle Scholar
  56. 56.
    Marqusee E, Braverman LE, Lawrence JE, Carroll JS, Seely EW. The effect of droloxifene and estrogen on thyroid function in postmenopausal women. J Clin Endocrinol Metab. 2000;85(11):4407-4410.PubMedCrossRefGoogle Scholar
  57. 57.
    Azizi F, Vagenakis AG, Portnay GI, Braverman LE, Ingbar SH. Thyroxine transport and metabolism in methadone and heroin addicts. Ann Intern Med. 1974;80:194-199.PubMedGoogle Scholar
  58. 58.
    English TN, Ruxton D, Eastman CJ. Abnormalities in thyroid function associated with chronic therapy with methadone. Clin Chem. 1988;34:2202-2204.PubMedGoogle Scholar
  59. 59.
    Novick DM, Poretsky L, Kalin MF. Methadone and thyroid-function tests. Clin Chem. 1989;35:1807-1808.PubMedGoogle Scholar
  60. 60.
    Dhopesh VP, Burke WM, Maany I, Ravi NV. Effect of cocaine on thyroid functions. Am J Drug Alcohol Abuse. 1991;17:423-427.PubMedCrossRefGoogle Scholar
  61. 61.
    van Seters AP, Moolenaar AJ. Mitotane increases the blood levels of hormone-binding proteins. Acta Endocrinol Suppl (Copenhagen). 1991;124:526-533. [Erratum, Acta Endocrinol 1991;125:336].Google Scholar
  62. 62.
    Beex L, Ross A, Smals A, Klopenborg P. 5-Fluorouracil-induced increase of total serum thyroxine and triiodothyronine. Cancer Treat Rep. 1977;61:1291-1295.PubMedGoogle Scholar
  63. 63.
    McKerron CG, Scott RL, Asper SP, Levy RI. Effects of clofibrate (Atromid S) on the thyroxine-binding capacity of thyroxine-binding globulin and free thyroxine. J Clin Endocrinol Metab. 1969;29:957.PubMedCrossRefGoogle Scholar
  64. 64.
    Deyssig R, Weissel M. Ingestion of androgenic-anabolic steroids induces mild thyroidal impairment in male body builders. J Clin Endocrinol Metab. 1993;76:1069-1071.PubMedCrossRefGoogle Scholar
  65. 65.
    Malarkey WB, Strauss RH, Leizman DJ, Liggett M, Demers LM. Endocrine effects in female weight lifters who self-administer testosterone and anabolic steroids. Am J Obstet Gynecol. 1991;165:1385-1390.PubMedGoogle Scholar
  66. 66.
    Graham RL, Gambrell RD Jr. Changes in thyroid function tests during danazol therapy. Obstet Gynecol. 1980;55:395-397PubMedGoogle Scholar
  67. 67.
    Arafah BM. Decreased levothyroxine requirement in women with hypothyroidism during androgen therapy for breast cancer. Ann Intern Med. 1994;121:247-251.PubMedGoogle Scholar
  68. 68.
    Cashin-Hemphill L, Spencer CA, Nicoloff JT, et al. Alterations in serum thyroid hormonal indices with colestipol-niacin therapy. Ann Intern Med. 1987;107:324-329.PubMedGoogle Scholar
  69. 69.
    O’Brien T, Silverberg JD, Nguyen TT. Nicotinic acid-induced toxicity associated with cytopenia and decreased levels of thyroxine-binding globulin. Mayo Clin Proc. 1992;67:465-468.PubMedGoogle Scholar
  70. 70.
    Shakir KM, Kroll S, Aprill BS, Drake AJ III, Eisold JF. Nicotinic acid decreases serum thyroid hormone levels while maintaining a euthyroid state. Mayo Clin Proc. 1995;70:556-558.PubMedCrossRefGoogle Scholar
  71. 71.
    Witztum JL, Jacobs LS, Schonfeld G. Thyroid hormone and thyrotropin levels in patients placed on colestipol hydrochloride. J Clin Endocrinol Metab. 1978;46:838-840.PubMedCrossRefGoogle Scholar
  72. 72.
    Garrnick MB, Larsen PR. Acute deficiency of thyroxine-binding globulin during L-asparaginase therapy. N Engl J Med. 1979;301:252.CrossRefGoogle Scholar
  73. 73.
    Ratcliffe WA, Hazelton RA, Thompson JA. Effect of fenclofenac on thyroid-function tests. Lancet. 1980;1:432.PubMedCrossRefGoogle Scholar
  74. 74.
    Baranetsky NG, Chertow BS, Webb MD, et al. Combined phenytoin and salicylate effects on thyroid function tests. Arch Int Pharmacodyn Ther. 1986;284:166-176.PubMedGoogle Scholar
  75. 75.
    Larsen PR. Salicylate-induced increases in free triiodothyronine in human serum: evidence of inhibition of triiodothyronine binding to thyroxine-binding globulin and thyroxine-binding prealbumin. J Clin Invest. 1972;51:1125-1134.PubMedCrossRefGoogle Scholar
  76. 76.
    McConnell RJ. Abnormal thyroid function test results in patients taking salsalate. JAMA. 1992;267:1242-1243.PubMedCrossRefGoogle Scholar
  77. 77.
    Samuels MH, Pillote K, Asher D, Nelson JC. Variable effects of nonsteroidal antiinflammatory agents on thyroid test results. J Clin Endocrinol Metab. December 2003;88(12):5710-5716.PubMedCrossRefGoogle Scholar
  78. 78.
    Humphrey MJ, Capper SJ, Kurtz AB. Fenclofenac and thyroid hormone concentrations. Lancet. 1980;32:487-488.CrossRefGoogle Scholar
  79. 79.
    Lim CF, Bai Y, Tpoliss DJ, Barlow JW, Stockgt JR. Drug and fatty acid effects on serum thyroid hormone binding. J Clin Endocrinol Metab. 1988;67:682-688.PubMedCrossRefGoogle Scholar
  80. 80.
    Newnham HH, Hamblin PS, Long F, Lim CF, Topliss DJ, Stockigt JR. Effect of oral frusemide on diagnostic indices of thyroid function. Clin Endocrinol (Oxford). 1987;26:423-431.CrossRefGoogle Scholar
  81. 81.
    Stockigt JR, Lim CF, Barlow JW, et al. Interaction of furosemide with serum thyroxine binding sites: in vivo and in vitro studies and comparison with other inhibitors. J Clin Endocrinol Metab. 1985;60:1025-1031.PubMedCrossRefGoogle Scholar
  82. 82.
    Stockigt JR, Topliss DJ. Assessment of thyroid function during high-dose furosemide therapy. Arch Intern Med. 1989;149:973-973.PubMedCrossRefGoogle Scholar
  83. 83.
    Hershman JM, Jones CM, Bailey AL. Reciprocal changes in serum thyrotropin and free thyroxine produced by heparin. J Clin Endocrinol Metab. 1972;34:574-579.CrossRefGoogle Scholar
  84. 84.
    Mendel CM, Frost PH, Kunitake ST, Cavalieri RR. Mechanism of the heparin-induced increase in the concentration of free thyroxine in plasma. J Clin Endocrinol Metab. 1987;65:1259-1264.PubMedCrossRefGoogle Scholar
  85. 85.
    Mendel CM, Frost PH, Cavalieri RR. Effect of free fatty acids on the concentration of free thyroxine in human serum: the role of albumin. J Clin Endocrinol Metab. 1986;63:1394-1399.PubMedCrossRefGoogle Scholar
  86. 86.
    Hollander CS, Scott RL, Burgess JA, Rabinowitz D, Merimee TJ, Oppenheimer JH. Free fatty acids: a possible regulator of free thyroid hormone levels in man. J Clin Endocrinol Metab. 1967;27:1219-1223.PubMedCrossRefGoogle Scholar
  87. 87.
    Jain R, Uy HL. Increase in serum free thyroxine levels related to intravenous heparin treatment. Ann Intern Med. 1996;124:74-75.PubMedGoogle Scholar
  88. 88.
    Saeed-Uz-Zafar M, Miller JM, Breneman GM, Mansour J. Observations on the effect of heparin on free and total thyroxine. J Clin Endocrinol Metab. 1971;32:633-640.PubMedCrossRefGoogle Scholar
  89. 89.
    Schwartz HL, Schadlow AR, Faierman D, Surk MI, Oppenheimer JH. Heparin administration appears to decrease cellular binding of thyroxine. J Clin Endocrinol Metab. 1973;36:598-600.PubMedCrossRefGoogle Scholar
  90. 90.
    Abend SL, Fang SL, Alex S, et al. Rapid alteration in circulating free thyroxine modulates pituitary type II 5′ deiodinase and basal thyrotropin secretion in the rat. J Clin Invest. 1991;88:899-903.CrossRefGoogle Scholar
  91. 91.
    Chanoine JP, Alex S, Fang SL, et al. Role of transthyretin in the transport of thyroxine from the blood to the choroids plexus, the cerebrospinal fluid and the brain. Endocrinology. 1992;130:933-938.PubMedCrossRefGoogle Scholar
  92. 92.
    Blackshear JL, Schultz AL, Napier JS, Stuart DD. Thyroxine replacement requirements in hypothyroid patients receiving phenytoin. Ann Intern Med. 1983;99:341-342.PubMedGoogle Scholar
  93. 93.
    Smith PJ, Surks MI. Multiple effects of 5,5′-diphenylhydantoin on the thyroid hormone system. Endocr Rev. 1984;5:514-524.PubMedCrossRefGoogle Scholar
  94. 94.
    Liewendahl K, Tikanoja S, Helenius T, Majuri H. Free thyroxin and free triiodothyronine as measured by equilibrium dialysis and analog radioimmunoassay in serum of patients taking phenytoin and carbamazepine. Clin Chem. 1985;31:1993-1996.PubMedGoogle Scholar
  95. 95.
    Isojarvi JIT, Pakarinen AJ, Myllyla VV. Thyroid function in epileptic patients treated with carbamazepine. Arch Neurol. 1989;46:1175-1178.PubMedGoogle Scholar
  96. 96.
    Bentsen KD, Gram L, Veje A. Serum thyroid hormones and blood folic acid during monotherapy with carbamazepine or valproate: a controlled study. Acta Neurol Scand. 1983;67:235-241.PubMedCrossRefGoogle Scholar
  97. 97.
    Surks MI, Ordene KW, Mann DN, Kumara-Siri MH. Diphenylhydantoin inhibits the thyrotropin response to thyrotropin-releasing hormone in man and rat. J Clin Endocrinol Metab. 1983;56:940-945.PubMedCrossRefGoogle Scholar
  98. 98.
    Engler D, Burger AG. The deiodination of the iodothyronines and of their derivatives in man. Endocr Rev. 1984;5:151-184.PubMedCrossRefGoogle Scholar
  99. 99.
    Oppenheimer JH, Bernstein G, Surks MI. Increased thyroxine turnover and thyroidal function after stimulation of hepatocellular binding of thyroxine by phenobarbital. J Clin Invest. 1968;47:1399-1406.PubMedGoogle Scholar
  100. 100.
    Cavalieri RR, Sung LC, Becker CE. Effects of phenobarbital on thyroxine and triiodothyronine kinetics in Graves’ disease. J Clin Endocrinol Metab. 1973;37:308-316.CrossRefGoogle Scholar
  101. 101.
    Miller J, Carney P. Central hypothyroidism with oxcarbazepine therapy. Pediatr Neurol. March 2006;34(3):242-244.PubMedCrossRefGoogle Scholar
  102. 102.
    Isley WL. Effect of rifampin therapy on thyroid function tests in a hypothyroid patient on replacement L-thyroxine. Ann Intern Med. 1987;107:517-518.PubMedGoogle Scholar
  103. 103.
    Ohnahaus EE, Studer H. The effect of different doses of rifampicin on thyroid hormone metabolism. Br J Clin Pharmacol. 1980;9:285-286.Google Scholar
  104. 104.
    Christensen HR, Simonsen K, Hegedus L, et al. Influence of rifampicin on thyroid gland volume, thyroid hormones, and anti-pyrine metabolism. Acta Endocrinol (Copenhagen). 1989;121:406-410.Google Scholar
  105. 105.
    Burgi H, Wimpfheimer C, Burger A, et al. Changes of circulating thyroxine, triiodothyronine, and reverse triiodothyronine after radiocontrast agents. J Clin Endocrinol Metab. 1976;43:1203-1210.PubMedCrossRefGoogle Scholar
  106. 106.
    Suzuki H, Kadena N, Takeuchi K, Nakagawa S. Effects of three-day oral cholecystography on serum iodothyronines and TSH concentrations:comparison of the effects among some cholecystographic agents and the effects of iopanoic acid on the pituitary-thyroid axis. Acta Endocrinol (Copenhagen). 1979;92:477-488.Google Scholar
  107. 107.
    Brown RS, Cohen JH, Braverman LE. Successul treatment of massive acute thyroid hormone poisoning with iopanoic acid. J Pediatr. 1998;132:902-905.Google Scholar
  108. 108.
    Meier CA, Burger AC. Effects of drugs and other substances on thyroid hormone synthesis and metabolism. In: Braverman LE, Utiger RD, eds. The Thyroid: A Fundamental and Clinical Text. Philadelphia, PA: Lippincott Williams and Wilkins; 2005:229-263.Google Scholar
  109. 109.
    Leonard JL, Rosenberg IN. Thyroxine 5′deiodinase activity of rat kidney: observations on activation by thiols and inhibition by propylthiouracil. Endocrinology. 1978;103:2137-2144.PubMedCrossRefGoogle Scholar
  110. 110.
    Saberi M, Sterling FH, Utiger RD. Reduction in extrathyroidal triiodothyronine production by propylthiouracil in man. J Clin Invest. 1975;55:218-223.PubMedCrossRefGoogle Scholar
  111. 111.
    Kristensen BO, Weeke J. Propranolol-induced increments in total and free serum thyroxine in patients with essential hypertension. Clin Pharmacol Ther. 1977;22:864-867.PubMedGoogle Scholar
  112. 112.
    Cooper DS, Daniels GH, Ladenson PW, Ridgway EC. Hyperthyroxinemia in patients treated with high-dose propranolol. Am J Med. 1982;73:867-871.PubMedCrossRefGoogle Scholar
  113. 113.
    Perrild H, Hansen JM, Skovsted L, Christensen LK. Different effects of propranolol, alprenolol, sotalol, atenolol and metoprolol on serum T3 and serum rT3 in hyperthyroidism. Clin Endocrinol (Oxford). 1983;18:139-142.CrossRefGoogle Scholar
  114. 114.
    Cooper, DS, Klibanski, A, Ridgway, EC. Dopaminergic modulation of TSH and its subunits: in vivo and in vitro studies. Clin Endocrinol. 1983;18:265.CrossRefGoogle Scholar
  115. 115.
    Agner T, Hagen C, Andersen AN, Djursing H. Increased dopaminergic activity inhibits basal and metoclopramide-stimulated prolactin and thyrotropin secretion. J Clin Endocrinol Metab. 1986;62:778-782.PubMedCrossRefGoogle Scholar
  116. 116.
    Kerr DJ, Singh VK, McConway MG, et al. Circadian variation of thyrotrophin, determined by ultrasensitive immunoradiometric assay, and the effect of low dose nocturnal dopamine infusion. Clin Sci. 1987;72:737-741.PubMedGoogle Scholar
  117. 117.
    Kaptein EM, Spencer CA, Kamiel MB, et al. Prolonged dopamine administration and thyroid hormone economy in normal and critically ill subjects. J Clin Endocrinol Metab.1980;51(2):387-393.PubMedCrossRefGoogle Scholar
  118. 118.
    Lee E, Chen P, Rao H, Brumeister LA. Effect of acute high dose dobutamine administration on serum thyrotrophin (TSH). Clin Endocrinol (Oxford). 1999;50:487-492.CrossRefGoogle Scholar
  119. 119.
    Chanson P, Weintraub BD, Harris AG. Octreotide therapy for thyroid-stimulating hormone-secreting pituitary adenomas: a follow-up of 52 patients. Ann Intern Med. 1993;119:236-240.PubMedGoogle Scholar
  120. 120.
    Bertherat J, Brue T, Enjalbert A, et al. Somatostatin receptors on thyrotropin-secreting pituitary adenomas: comparison with the inhibitory effects of octreotide upon in vivo and in vitro hormonal secretions. J Clin Endocrinol Metab. 1992;75:540-546.PubMedCrossRefGoogle Scholar
  121. 121.
    Vigersky RA, Filmore-Nassar A, Glass AR. Thyrotropin suppression by metformin. J Clin Endocrinol Metab.2006;91(1):225-227.PubMedCrossRefGoogle Scholar
  122. 122.
    Brabant A, Brabant G, Schuermeyer T, et al. The role of glucocorticoids in the regulation of thyrotropin. Acta Endocrinol Suppl (Copenhagen). 1989;121:95-100.Google Scholar
  123. 123.
    Samuels MH, Luther M, Henry P, Ridgway EC. Effects of hydrocortisone on pulsatile pituitary glycoprotein secretion. J Clin Endocrinol Metab. 1994;78:211-215.PubMedCrossRefGoogle Scholar
  124. 124.
    Wilber JF, Utiger RD. The effect of glucocorticoids on thyrotropin secretion. J Clin Invest. 1969;48:2096-2103.PubMedCrossRefGoogle Scholar
  125. 125.
    LoPresti JS, Eigen A, Kaptein E, Aderson KP, Spencer CA, Nicoloff JT. Alterations in 3,3′5′-triiodothyronine metabolism in response to propylthiouracil, dexamethasone, and thyroxine administration in man. J Clin Invest. 1989;84:1650-1656.PubMedCrossRefGoogle Scholar
  126. 126.
    Degroot LJ, Hoye K. Dexamethasone suppression of serum T3 and T4. J Clin Endocrinol Metab. 1976;42:976-978.PubMedCrossRefGoogle Scholar
  127. 127.
    Gamstedt A, Jarnerot G, Kagedal B. Dose related effects of betamethasone on iodothyronines and thyroid hormone-binding proteins in serum. Acta Endocrinol Suppl (Copenhagen). 1981;96:484-490.Google Scholar
  128. 128.
    Duick DS, Warren DW, Nicoloff JT, Otis CL, Croxson MS. Effect of single dose dexamethasone on the concentration of serum triiodothyronine in man. J Clin Endocrinol Metab. 1974;39:1151-1154.PubMedCrossRefGoogle Scholar
  129. 129.
    Chopra IJ, Williams DE, Orgiazzi J, Solomon DH. Opposite effects of dexamethasone on serum concentrations of 3,3′5′-triiodothyronine (reverse T3) and 3,3′5-triiodothyronine (T3). J Clin Endocrinol Metab. 1975;41:911-920.PubMedCrossRefGoogle Scholar
  130. 130.
    Emerson CH, Seiler CM, Alex S, Fang SL, Mori Y, DeVito WJ. Gene expression and serum thyroxine-binding globulin are regulated by adrenal status and corticosterone in the rat. Endocrinology. September 1993;133(3):1192-1196.Google Scholar
  131. 131.
    Basaria S, Cooper DS. Amiodarone and the thyroid. Am J Med. 2005;118:706.PubMedCrossRefGoogle Scholar
  132. 132.
    Martino E. Environmental iodine intake and thyroid dysfunction during chronic amiodarone therapy. Ann Intern Med. 1984;101:28.PubMedGoogle Scholar
  133. 133.
    Figge HL, Figge J. The effects of amiodarone on thyroid hormone function: a review of the physiology and clinical manifestations. J Clin Pharmacol. 1990;30:588-595.PubMedGoogle Scholar
  134. 134.
    Trip MD, Wiersinga W, Plomp TA. Incidence, predictability, and pathogenesis of amiodarone-induced thyrotoxicosis and hypothyroidism. Am J Med. 1991;91:507-511.PubMedCrossRefGoogle Scholar
  135. 135.
    Nademanee K. Amiodarone, thyroid hormone indices, and altered thyroid function: long-term serial effects in patients with cardiac arrhythmias. Am J Cardiol. 1986;58:981.PubMedCrossRefGoogle Scholar
  136. 136.
    Martino E, Bartalena L, Bogazzi F, Braverman LE. The effects of amiodarone on the thyroid. Endocr Rev. 2001;22:240.PubMedCrossRefGoogle Scholar
  137. 137.
    Iervasi G, Cleric A, Manfredi C, Sabatino L, Biagini A, Chopra IJ. Acute effects of intravenous amiodarone on sulphate metabolites of thyroid hormones in arrhythmic patients. Clin Endocrinol (Oxford). 1997;47:699-705.CrossRefGoogle Scholar
  138. 138.
    Martino E, Aghini-Lombardi F, Mariotti S, Bartalena L, Braverman L, Pinchera A. Amiodarone: a common source of iodine-induced thyrotoxicosis. Horm Res. 1987;26:158.PubMedCrossRefGoogle Scholar
  139. 139.
    Martino E. Amiodarone iodine-induced hypothyroidism: risk factors and follow-up in 28 cases. Clin Endocrinol. 1987;26:227.CrossRefGoogle Scholar
  140. 140.
    Dunn JT. Guarding our nation’s thyroid health. J Clin Endocrinol Metab. 2002;87:486.PubMedCrossRefGoogle Scholar
  141. 141.
    Dayan CM, Daniels GH. Chronic autoimmune thyroiditis. N Engl J Med. 1996;335:99.PubMedCrossRefGoogle Scholar
  142. 142.
    Bartalena L, Brogioni S, Grasso L, Bogazzi F, Burelli A, Martino E. Treatment of amiodarone-induced thyrotoxicosis, a difficult challenge: results of a prospective study. J Clin Endocrinol Metab. 1996;81:2930-2933.PubMedCrossRefGoogle Scholar
  143. 143.
    Harjai KJ, Licata AA. Effects of amiodarone on thyroid function. Ann Intern Med. 1997;126:63.PubMedGoogle Scholar
  144. 144.
    Bartalena L, Grasso L, Brogioni S, Aghini-Lombardi F, Braverman LE, Martino E. Serum interleukin-6 in amiodarone-induced thyrotoxicosis. J Clin Endocrinol Metab. 1994;78:423-427.PubMedCrossRefGoogle Scholar
  145. 145.
    Kurnik D, Loebstein R, Farfel Z, Ezra D, Halkin H, Olchovsky D. Complex drug-drug-disease interactions between amiodarone, warfarin, and the thyroid gland. Medicine (Baltimore). 2004;83:107.CrossRefGoogle Scholar
  146. 146.
    Drvota V, Carlsson B, Haggblad J, Sylven C. Amiodarone is a dose dependent noncompetitive and competitive inhibitor of T3 binding to thyroid hormone receptor subtype beta 1, whereas disopyramide, lignocaine, propafenone, metoprolol, dl-sotalol, and verapamil have no inhibitory effect. J Cardiovasc Pharmacol. 1995;26:222-226.PubMedCrossRefGoogle Scholar
  147. 147.
    van Beeren HC, Bakker O, Wiersinga WM. Desethylamiodarone interferes with the binding of co-activator GRIP-1 to the beta 1-thyroid hormone receptor. FEBS Lett. 2000;481:213-216.PubMedCrossRefGoogle Scholar
  148. 148.
    Sherman SI, Gopal J, Haugen BR, et al. Central hypothyroidism associated with retinoid X receptor-selective ligands. N Engl J Med. 1999;340:1075-1079.PubMedCrossRefGoogle Scholar
  149. 149.
    Sharma V, Hays WR, Wood WM, et al. Effects of rexinoids on thyrotrope function and the hypothalamic-pituitary-thyroid axis. Endocrinology. 2006;147:1438-1451.PubMedCrossRefGoogle Scholar
  150. 150.
    Golden WM, Weber KB, Hernandez TL, Sherman SI, Woodmansee WW, Haugen BR. Single-dose rexinoid rapidly and specifically suppresses serum thyrotropin in normal subjects. J Clin Endocrinol Metab. 2007;92:124-130.PubMedCrossRefGoogle Scholar
  151. 151.
    Smit JW, Stokkel MP, Pereira AM, Romijn JA, Visser TJ. Bexarotene-induced hypothyroidism: bexarotene stimulates the peripheral metabolism of thyroid hormones. J Clin Endocrinol Metab. 2007;92:2496.PubMedCrossRefGoogle Scholar
  152. 152.
    Aijan RA, Watson PF, Weetman AP. Cytokines and thyroid function. Adv Neuroimmunol. 1996;6:359-386.CrossRefGoogle Scholar
  153. 153.
    Surks M, Sievert R. Drugs and thyroid function. N Engl J Med. 1995;33:1688-1695.Google Scholar
  154. 154.
    Burman P, Totterman TH, Orgerbg K, Karlsson FA. Thyroid autoimmunity in patients on long term therapy with leukocyte derived interferon. J Clin Endocrinol Metab. 1986;63:1086-1090.PubMedCrossRefGoogle Scholar
  155. 155.
    Baudin E, Marcellin P, Pouteau M, et al. Reversibility of thyroid dysfunction induced by recombinant alpha interferon in chronic hepatitis C. Clin Endocrinol (Oxford). 1993;39:657-661.CrossRefGoogle Scholar
  156. 156.
    Russo MW, Fried MW. Side effects of therapy for chronic hepatitis C. Gastroenterology. 2003;124:1711-1719.PubMedCrossRefGoogle Scholar
  157. 157.
    Deutsch M, Dourakis S, Manesis EK, et al. Thyroid abnormalities in chronic vital hepatitis and their relationship to interferon alfa therapy. Hepatology. 1997;26:206-210.PubMedCrossRefGoogle Scholar
  158. 158.
    Villanueva RB, Brau N. Graves opthalmopathy associated with interferon-alfa therapy for hepatitis C. Thyroid. 2002;12:737-738.PubMedCrossRefGoogle Scholar
  159. 159.
    Rotondi M, Mazziotti G, Biondi B, et al. Long-term treatment with interferon-beta therapy for multiple sclerosis and occurrence of Graves’ disease. J Endocrinol Invest. 2000;23:321-324.PubMedGoogle Scholar
  160. 160.
    Antonelli A, Ferri C, Pampana A, et al. Thyroid disorders in chronic hepatitis C. Am J Med. 2004;117(1):60-61.CrossRefGoogle Scholar
  161. 161.
    Primo J, Hinojosu J, Moles JR, et al. Development of thyroid dysfunction after α-interferon treatment for chronic hepatitis C. Am J Gastroenterol. 1993:88:1976-1977.PubMedGoogle Scholar
  162. 162.
    Schultz M, Muller R, von zur Muhlen A, Brabant G. Induction of hyperthyroidism by interferon-α-2b. Lancet. 1989;1:1452.PubMedCrossRefGoogle Scholar
  163. 163.
    Schwartzentruber DJ, White DE, Zweig MH, Wientraub BD, Rosenberg SA. Thyroid dysfunction associated with immunotherapy for patients with cancer. Cancer. 1991;68:2384-2390.PubMedCrossRefGoogle Scholar
  164. 164.
    Vialettes B, Guillaerand MA, Viens P, et al. Incidence rate and risk factors for thyroid dysfunction durgin recombinant interleukin-2 therapy in advanced malignancies. Acta Endocrinol (Copenhagen). 1993;129:31-38.Google Scholar
  165. 165.
    Vassilopoulou-Sellin R, Sella A, Dexeus FH, et al. Acute thyroid dysfunction (thyroiditis) after therapy with interleukin-2. Horm Metab Res 1992;24:434-438.PubMedCrossRefGoogle Scholar
  166. 166.
    Carella C, mazziotti G, Morisco F, et al. Long-term outcome of interferon-alpha-induced thyroid autoimmunity and prognostic influence of thyroid autoantibody pattern at the end of treatment. J Clin Endocrinol Metab. 2001;86:1925-1929.PubMedCrossRefGoogle Scholar
  167. 167.
    Durelli L, Ferrero B, Oggero A, et al. Thyroid function and autoimmunity during interferon ß-1b treatment: a multicenter prospective study. J Clin Endocrinol Metab. 2001;86:3525-3532.PubMedCrossRefGoogle Scholar
  168. 168.
    Atkins MB, Mier JW, Parkinson DR, Gould JA, Berkman EM, Kaplan MM. Hypothyrodiism after treatment with interleukin-2 and lymphokine-activated killer cells. N Engl J Med. 1988;318:1557-1563.PubMedGoogle Scholar
  169. 169.
    Kruit WHJ, Bolhuis RLH, Goey SH, et al. Interleukin-2-induced thyroid dysfunction is correlated with treatment duration but not with tumor response. J Clin Oncol. 1993;11:921-924.PubMedGoogle Scholar
  170. 170.
    Pearce EN, Farwell AP, Braverman LE. Thyroiditis. N Engl J Med. 2003;348:2646-2654.Google Scholar
  171. 171.
    Ghori F, Polder KD, Pinter-Brown LC, et al. Thyrotoxicosis after denileukin diftitox therapy in patients with mycosis fungoides. J Clin Endocrinol Metab. 2006;91:2205-2208.PubMedCrossRefGoogle Scholar
  172. 172.
    Kraiem Z, Sobel E, Sadeh O, et al. Effects of gamma-interferon on DR antigen expression, growth, 3,5,3′-triiodothyronine sercretion, iodide uptake and cyclic adenosine 3′,5′-monophosphate accumulation in cultured human thyroid cells. J Clin Endocrinol Metab. 1990;71:817-824.PubMedCrossRefGoogle Scholar
  173. 173.
    Kasuga Y, Masubayashi S, Akasu F, Miller N, Jamieson C, Volpe R. Effects of recombinant human interleukin-2 and tumor necrosis factor-alpha with or without interferon-gamma on human thyroid tissues from patients with Graves’ disease and from normal subjects xenografted into nude mice. J Clin Endocrinolo Metab. 1991;72:1296-1301.CrossRefGoogle Scholar
  174. 174.
    Mannavola D, Coco P, Vannucchi G, et al. A novel tyrosine-kinase selective inhibitor, sunitinib, induces transient hypothyroidism by blocking iodine uptake. J Clin Endocrinol Metab. 2007;92:3531-3534.PubMedCrossRefGoogle Scholar
  175. 175.
    Desai J, Yassa L, Marqusee E, et al. Hypothyroidism after sunitinib treatment for patients with gastrointestinal stromal tumors. Ann Intern Med. 2006;145:660-664.PubMedGoogle Scholar
  176. 176.
    Vetter Ml, Kaul S, Iqbal N. Tyrosine kinase inhibitors and the thyroid as both an unintended and an intended target. Endocr Pract. July-August 2008;14(5):618-624.PubMedGoogle Scholar
  177. 177.
    Faris JE, Moore AF, Daniels GH. Sunitinib (Sutent)-induced thyrotoxicosis due to destructive thyroiditis: a case report. Thyroid. 2007;17:1-3.CrossRefGoogle Scholar
  178. 178.
    Wong E, Rosen LS, Mulay M, et al. Sunitinib induces hypothyroidism in advanced cancer patients and may inhibit thyroid peroxidase activity. Thyroid. 2007;17:351-355.PubMedCrossRefGoogle Scholar
  179. 179.
    Salem AK, Fenton MS, Marion KM, Hershman JM. Effect of sunitinib on growth and function of FRTL-5 thyroid cells. Thyroid. 2008;18:631-635.PubMedCrossRefGoogle Scholar
  180. 180.
    de Groot JW, Links TP, van Der Graaf WT. Tyrosine kinase inhibitors causing hypothyroidism in a patient on levothyroxine. Ann Oncol. 2006;17:1719-1720.PubMedCrossRefGoogle Scholar
  181. 181.
    de Groot JW, Zonnenberg BA, Plukker JT, van Der Graaf WT, Links TP. Imatinib induces hypothyroidism in patients receiving levoythyroxine. Clin Pharmacol Ther. 2005;78:433-438.PubMedCrossRefGoogle Scholar
  182. 182.
    Sherman SI, Wirth LJ, Droz JP, et al. Motesanib diphosphate in progressive differentiated thyroid cancer. N Engl J Med. 2008;359:31-42.PubMedCrossRefGoogle Scholar
  183. 183.
    Alexander IRW. Acute myxoedema. BMJ. 1961;ii:1434.CrossRefGoogle Scholar
  184. 184.
    Lillicrap DA. Myxoedema after thalidomide (Distaval). BMJ. 1962;i:477.CrossRefGoogle Scholar
  185. 185.
    Badros AZ, Siegel E, Bodenner D, et al. Hypothyroidism in patients with multiple myeloma following treatment with thalidomide. Am J Med. 2002;112:412-413.PubMedCrossRefGoogle Scholar
  186. 186.
    Calabrese L, Fleischer AL. Thalidomide: current and potential clinical applications. Am J Med. 2000;108:487-495.PubMedCrossRefGoogle Scholar
  187. 187.
    Somers GF. Pharmacological properties of thalidomide, a new sedative hypnotic drug. Br J Pharmacol. 1960;15:111-116.Google Scholar
  188. 188.
    Kelly DL, Conley RR. Thyroid function in treatment-resistant schizophrenia patients treated with quetiapine, risperidone or fluphenazine. J Clin Psychiatry. 2005;66:1334-1335.CrossRefGoogle Scholar
  189. 189.
    Dobbs RL. Thyroid function alterations following quetiapine initiation in a developmentally disabled adolescent. Ann Pharmacother. 2004;38:1541-1542.PubMedCrossRefGoogle Scholar
  190. 190.
    Benvenga S, Bartolone L, Squadrito S, Lo Giudice F, Trimarchi F. Delayed intestinal absorption of levothyroxine. Thyroid. 1995;5:249-253.PubMedCrossRefGoogle Scholar
  191. 191.
    Sperber AD, Liel Y. Evidence for interference with the intestinal absorption of levothyroxine by aluminum hydroxide. Arch Intern Med. 1992;152:183-184.PubMedCrossRefGoogle Scholar
  192. 192.
    Liel Y, Sperber AD, Shany S. Nonspecific intestinal adsorption of levothyroxine by aluminum hydroxide. Am J Med. 1994;97:363-365.PubMedCrossRefGoogle Scholar
  193. 193.
    Sherman SI, Tielens ET, Ladenson PW. Sucralfate causes malabsorption of L-thyroxine. Am J Med. 1994;96:531-535.PubMedCrossRefGoogle Scholar
  194. 194.
    Campbell JA, Schmidt BA, Bantle JP. Sucralfate and the absorption of L- thyroxine. Ann Intern Med. 1994;121:152-152.PubMedGoogle Scholar
  195. 195.
    Ananthakrishnan S, Braverman LE, Levin R, Magnani B, Pearce EN. The effect of famotidine, esomeprazole, and ezetimibe on levothyroxine absorption. Thyroid. 2008;18:493-498.PubMedCrossRefGoogle Scholar
  196. 196.
    Centanni M, Gargano L, Canettieri G, et al. Thyroxine in goiter, Helicobacter pylori infection, and chronic gastritis. N Engl J Med. 2006;354:1787-1795.PubMedCrossRefGoogle Scholar
  197. 197.
    Dietrich JW, Gieselbrecht K, Holl RW, Boehm BO. Absorption kinetics of levothyroxine is not altered by proton-pump inhibitor therapy. Horm Metab Res. 2006;38:57-59.PubMedCrossRefGoogle Scholar
  198. 198.
    Sachmechi I, Reich DM, Aninyei M, Wibowo F, Gupta G, Kim PJ. Effect of proton pump inhibitors on serum thyroid-stimulating hormone level in euthyroid patients treated with levothyroxine for hypothyroidism. Endocr Pract. 2007;13:345-349.PubMedGoogle Scholar
  199. 199.
    Campbell NRC, Hasinoff BB, Stalts H, Rao B, Wong NC. Ferrous sulfate reduces thyroxine efficacy in patients with hypothyroidism. Ann Intern Med. 1992;117:1010-1013.PubMedGoogle Scholar
  200. 200.
    Singh N, Singh PN, Hershman JM. Effect of calcium carbonate on the absorption of levothyroxine. JAMA. 2000;283:2822-2825.PubMedCrossRefGoogle Scholar
  201. 201.
    Singh N, Weisler SL, Hershman JM. The acute effect of calcium carbonate on the intestinal absorption of levothyrxoine. Thyroid. 2001;11:967-971.PubMedCrossRefGoogle Scholar
  202. 202.
    John-Kalarickal J, Pearlman G, Carlson HE. New medications which decrease levothyroxine absorption. Thyroid. 2007;17:763-765.PubMedCrossRefGoogle Scholar
  203. 203.
    Weitzman SP, Ginsburg KC, Carlson HE. New medications which interfere with the absorption of levothyroxine. Paper presented at: 90th Annual Meeting of Endocrine Society; June 2008 Stony Brook University, San Francisco, CA.Google Scholar
  204. 204.
    Siraj ES, Gupta MK, Reddy SSK. Raloxifene causing malabsorption of levothyroxine. Arch Intern Med. 2003;163:1387-137.CrossRefGoogle Scholar
  205. 205.
    Harmon SM, Seifert CF. Levothyroxine-cholestyramine interaction reemphasized. Ann Intern Med. 1991;115:658-659.PubMedGoogle Scholar
  206. 206.
    Witztum JL, Jacobs LS, Schonfeld G. Thyroid hormone and thyrotropin levels in patients placed on colestipol hydrochloride. J Clin Endocrinol Metab. 1978;46:838-840.CrossRefGoogle Scholar
  207. 207.
    Shakir KMM, Michaels RD, Hays JH, Potter BB. The use of bile acid sequestrants to lower serum thyroid hormones in iatrogenic hyperthyroidism. Ann Intern Med. 1993;118:112-113.PubMedGoogle Scholar
  208. 208.
    Newman CM, Price A, Davies DW, Gray TW, Weetman AP. Amiodarone and the thyroid: a practical guide to the management of thyroid dysfunction induced by amiodarone therapy. Heart. 1998;79:121-127.PubMedGoogle Scholar
  209. 209.
    Cappelli C, Rotundi M, Pirola I, Agosit B, Gandossi E, Valentini U, DeMartino E, Cimino A, Chiovato L, Agabiti-Rosei E, Castellano M. TSH-lowering effect of metformin in type 2 diabetic patients: differences between euthyroid, untreated hypothyroid and euthyroid on L-T4 therapy patients. Diabetes Care. 2009 Sep;32(9):1589-1590.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Medicine/Section of Endocrinology, Diabetes and NutritionBoston University School of MedicineBostonUSA

Personalised recommendations