Advertisement

Thyroid Hormone Metabolism

  • Stephen A. Huang
  • Luciana A. de Castro Neves
Chapter
Part of the Thyroid Function Testing book series (ENDO, volume 28)

Abstract

Thyroid hormone is a potent regulator of cellular proliferation and metabolic rate and must be maintained within an optimal range for normal development and health. The severe growth and neurologic injuries observed in children with untreated congenital hypothyroidism illustrate this. Thyroid hormone metabolism, which describes the biochemical activation and inactivation of thyroid hormones, is a powerful mechanism regulating thyroid hormone action. In this chapter, we will review the glandular synthesis of thyroid hormone and then discuss the metabolic pathways responsible for its activation and inactivation in peripheral tissues, focusing on deiodination as the dominant pathway in postnatal vertebrates and the most clinically relevant for thyroid function testing in patients. Subsequent chapters will discuss other sites of regulation, including the genes regulating thyroid hormone production and action (Chap. 2), availability of iodine (Chap. 3), and thyrotropin regulation of the thyroid gland (Chap. 4).

Keywords

Thyroid Hormone Thyroid Stimulate Hormone Iodine Deficiency Thyroid Hormone Metabolism Thyroid Hormone Synthesis 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Delange F, Burgi H, Chen ZP, Dunn JT. World status of monitoring iodine deficiency disorders control programs. Thyroid. 2002;12:915-924.CrossRefPubMedGoogle Scholar
  2. 2.
    Izumi M, Larsen PR. Triiodothyronine, thyroxine, and iodine in purified thyroglobulin from patients with Graves' disease. J Clin Invest. 1977;59:1105-1112.CrossRefPubMedGoogle Scholar
  3. 3.
    Larsen PR. Thyroidal triiodothyronine and thyroxine in Graves' disease: correlation with presurgical treatment, thyroid status, and iodine content. J Clin Endocrinol Metab. 1975;41:1098-1104.CrossRefGoogle Scholar
  4. 4.
    Moreno JC, Bikker H, Kempers MJ, et al. Inactivating mutations in the gene for thyroid oxidase 2 (THOX2) and congenital hypothyroidism. N Engl J Med. 2002;347:95-102.CrossRefPubMedGoogle Scholar
  5. 5.
    Moreno JC, Klootwijk W, van Toor H, et al. Mutations in the iodotyrosine deiodinase gene and hypothyroidism. N Engl J Med. 2008;358:1811-1818.CrossRefPubMedGoogle Scholar
  6. 6.
    Kopp P. Perspective: genetic defects in the etiology of congenital hypothyroidism. Endocrinology. 2002;143:2019-2024.CrossRefPubMedGoogle Scholar
  7. 7.
    Larsen PR, Davies TF. Thyroid physiology and diagnostic evaluation of patients with thyroid disorders. In: Kronenberg HM, Melmed S, Polonsky KS, Larsen PR, eds. Williams Textbook of Endocrinology. 11th ed. Philadelphia, PA: Saunders Elsevier; 2008:299-332.Google Scholar
  8. 8.
    Garnick MB, Larsen PR. Acute deficiency of thyroxine-binding globulin during L-asparaginase therapy. N Engl J Med. 1979;301:252-253.CrossRefPubMedGoogle Scholar
  9. 9.
    Larsen PR. Salicylate-induced increases in free triiodothyronine in human serum. Evidence of inhibition of triiodothyronine binding to thyroxine-binding globulin and thyroxine-binding prealbumin. J Clin Invest. 1972;51:1125-1134.CrossRefGoogle Scholar
  10. 10.
    Wu SY, Green WL, Huang WS, Hays MT, Chopra IJ. Alternate pathways of thyroid hormone metabolism. Thyroid. 2005;15:943-958.CrossRefPubMedGoogle Scholar
  11. 11.
    Vissor TJ. Hormone Metabolism. Thyroid Disease Manager. http://www.thyroidmanager.org/Chapter3/3c/3c-frame.htm. Updated May 20, 2008.
  12. 12.
    Moreno M, de Lange P, Lombardi A, Silvestri E, Lanni A, Goglia F. Metabolic effects of thyroid hormone derivatives. Thyroid. 2008;18:239-253.CrossRefPubMedGoogle Scholar
  13. 13.
    Scanlan TS, Suchland KL, Hart ME, et al. 3-Iodothyronamine is an endogenous and rapid-acting derivative of thyroid hormone. Nat Med. 2004;10:638-642.CrossRefPubMedGoogle Scholar
  14. 14.
    Chiellini G, Frascarelli S, Ghelardoni S, et al. Cardiac effects of 3-iodothyronamine: a new aminergic system modulating cardiac function. FASEB J. 2007;21:1597-1608.CrossRefPubMedGoogle Scholar
  15. 15.
    Huang SA. Physiology and pathophysiology of type 3 deiodinase in humans. Thyroid. 2005;15:875-881.CrossRefPubMedGoogle Scholar
  16. 16.
    Brown DD. The role of deiodinases in amphibian metamorphosis. Thyroid. 2005;15:815-821.CrossRefPubMedGoogle Scholar
  17. 17.
    Dentice M, Bandyopadhyay A, Gereben B, et al. The Hedgehog-inducible ubiquitin ligase subunit WSB-1 modulates thyroid hormone activation and PTHrP secretion in the developing growth plate. Nat Cell Biol. 2005;7:698-705.CrossRefPubMedGoogle Scholar
  18. 18.
    Hernandez A, Martinez ME, Fiering S, Galton VA, St Germain D. Type 3 deiodinase is critical for the maturation and function of the thyroid axis. J Clin Invest. 2006;116:476-484.CrossRefPubMedGoogle Scholar
  19. 19.
    Simonides WS, Mulcahey MA, Redout EM, et al. Hypoxia-inducible factor induces local thyroid hormone inactivation during hypoxic-ischemic disease in rats. J Clin Invest. 2008;118:975-983.Google Scholar
  20. 20.
    Dentice M, Luongo C, Huang S, et al. Sonic hedgehog-induced type 3 deiodinase blocks thyroid hormone action enhancing proliferation of normal and malignant keratinocytes. Proc Natl Acad Sci U S A. 2007;104:14466-14471.CrossRefPubMedGoogle Scholar
  21. 21.
    Bianco AC, Salvatore D, Gereben B, Berry MJ, Larsen PR. Biochemistry, cellular and molecular biology, and physiological roles of the iodothyronine selenodeiodinases. Endocr Rev. 2002;23:38-89.CrossRefPubMedGoogle Scholar
  22. 22.
    Gereben B, Zavacki AM, Ribich S, et al. Cellular and molecular basis of deiodinase-regulated thyroid hormone signaling. Endocr Rev. 2008;29:898-938.CrossRefPubMedGoogle Scholar
  23. 23.
    Bianco AC, Kim BW. Deiodinases: implications of the local control of thyroid hormone action. J Clin Invest. 2006;116:2571-2579.CrossRefPubMedGoogle Scholar
  24. 24.
    Saberi M, Sterling FH, Utiger RD. Reduction in extrathyroidal triiodothyronine production by propylthiouracil in man. J Clin Invest. 1975;55:218-223.CrossRefPubMedGoogle Scholar
  25. 25.
    Geffner DL, Azukizawa M, Hershman JM. Propylthiouracil blocks extrathyroidal conversion of thyroxine to triiodothyronine and augments thyrotropin secretion in man. J Clin Invest. 1975;55:224-229.CrossRefPubMedGoogle Scholar
  26. 26.
    Abuid J, Larsen PR. Triiodothyronine and thyroxine in hyperthyroidism. Comparison of the acute changes during therapy with antithyroid agents. J Clin Invest. 1974;54:201-208.CrossRefPubMedGoogle Scholar
  27. 27.
    Silva JE, Larsen PR. Pituitary nuclear 3,5,3′-triiodothyronine and thyrotropin secretion: an explanation for the effect of thyroxine. Science. 1977;198:617-620.CrossRefPubMedGoogle Scholar
  28. 28.
    Bianco AC, Silva JE. Cold exposure rapidly induces virtual saturation of brown adipose tissue nuclear T3 receptors. Am J Physiol. 1988;255:E496-E503.PubMedGoogle Scholar
  29. 29.
    de Jesus LA, Carvalho SD, Ribeiro MO, et al. The type 2 iodothyronine deiodinase is essential for adaptive thermogenesis in brown adipose tissue. J Clin Invest. 2001;108:1379-1385.PubMedGoogle Scholar
  30. 30.
    Roti E, Fang SL, Green K, Emerson CH, Braverman LE. Human placenta is an active site of thyroxine and 3,3′,5-triiodothyronine tyrosyl ring deiodination. J Clin Endocrinol Metab. 1981;53:498-501.CrossRefPubMedGoogle Scholar
  31. 31.
    Mortimer RH, Galligan JP, Cannell GR, Addison RS, Roberts MS. Maternal to fetal thyroxine transmission in the human term placenta is limited by inner ring deiodination. J Clin Endocrinol Metab. 1996;81:2247-2249.CrossRefPubMedGoogle Scholar
  32. 32.
    Huang SA, Dorfman DM, Genest DR, Salvatore D, Larsen PR. Type 3 iodothyronine deiodinase is highly expressed in the human uteroplacental unit and in fetal epithelium. J Clin Endocrinol Metab. 2003;88:1384-1388.CrossRefPubMedGoogle Scholar
  33. 33.
    Zimmermann MB, Jooste PL, Pandav CS. Iodine-deficiency disorders. Lancet. 2008;372:1251-1262.CrossRefPubMedGoogle Scholar
  34. 34.
    Bianchi R, Zucchelli GC, Giannessi D, et al. Evaluation of triiodothyronine (T3) kinetics in normal subjects, in hypothyroid, and hyperthyroid patients using specific antiserum for the determination of labeled T3 in plasma. J Clin Endocrinol Metab. 1978;46:203-214.CrossRefPubMedGoogle Scholar
  35. 35.
    Brown ME, Refetoff S. Transient elevation of serum thyroid hormone concentration after initiation of replacement therapy in myxedema. Ann Intern Med. 1980;92:491-495.PubMedGoogle Scholar
  36. 36.
    Mandel SJ, Brent GA, Larsen PR. Levothyroxine therapy in patients with thyroid disease. Ann Intern Med. 1993;119:492-502.PubMedGoogle Scholar
  37. 37.
    Tu HM, Legradi G, Bartha T, Salvatore D, Lechan RM, Larsen PR. Regional expression of the type 3 iodothyronine deiodinase messenger ribonucleic acid in the rat central nervous system and its regulation by thyroid hormone. Endocrinology. 1999;140:784-790.CrossRefPubMedGoogle Scholar
  38. 38.
    Kaplan MM, Larsen PR, Crantz FR, Dzau VJ, Rossing TH, Haddow JE. Prevalence of abnormal thyroid function test results in patients with acute medical illnesses. Am J Med. 1982;72:9-16.CrossRefPubMedGoogle Scholar
  39. 39.
    Adler SM, Wartofsky L. The nonthyroidal illness syndrome. Endocrinol Metab Clin North Am. 2007;36:657-672, vi.CrossRefPubMedGoogle Scholar
  40. 40.
    De Groot LJ. Dangerous dogmas in medicine: the nonthyroidal illness syndrome. J Clin Endocrinol Metab. 1999;84:151-164.CrossRefPubMedGoogle Scholar
  41. 41.
    Brent GA, Hershman JM. Thyroxine therapy in patients with severe nonthyroidal illnesses and low serum thyroxine concentration. J Clin Endocrinol Metab. 1986;63:1-8.CrossRefPubMedGoogle Scholar
  42. 42.
    Yu J, Koenig RJ. Regulation of hepatocyte thyroxine 5′-deiodinase by T3 and nuclear receptor coactivators as a model of the sick euthyroid syndrome. J Biol Chem. 2000;275:38296-38301.CrossRefPubMedGoogle Scholar
  43. 43.
    Yu J, Koenig RJ. Induction of type 1 iodothyronine deiodinase to prevent the nonthyroidal illness syndrome in mice. Endocrinology. 2006;147:3580-3585.CrossRefPubMedGoogle Scholar
  44. 44.
    Peeters RP, Wouters PJ, Kaptein E, van Toor H, Visser TJ, Van Den Berghe G. Reduced activation and increased inactivation of thyroid hormone in tissues of critically ill patients. J Clin Endocrinol Metab. 2003;88:3202-3211.CrossRefPubMedGoogle Scholar
  45. 45.
    Koenig RJ. Regulation of type 1 iodothyronine deiodinase in health and disease. Thyroid. 2005;15:835-840.CrossRefPubMedGoogle Scholar
  46. 46.
    Mebis L, Langouche L, Visser TJ, Van Den Berghe G. The type II iodothyronine deiodinase is up-regulated in skeletal muscle during prolonged critical illness. J Clin Endocrinol Metab. 2007;92:3330-3333.CrossRefGoogle Scholar
  47. 47.
    Berry MJ, Grieco D, Taylor BA, et al. Physiological and genetic analyses of inbred mouse strains with a type I iodothyronine 5′ deiodinase deficiency. J Clin Invest. 1993;92:1517-1528.CrossRefPubMedGoogle Scholar
  48. 48.
    St Germain DL, Hernandez A, Schneider MJ, Galton VA. Insights into the role of deiodinases from studies of genetically modified animals. Thyroid. 2005;15:905-916.CrossRefGoogle Scholar
  49. 49.
    Christoffolete MA, Arrojo e Drigo R, Gazoni F, et al. Mice with impaired extrathyroidal thyroxine to 3,5,3′-triiodothyronine conversion maintain normal serum 3,5,3′-triiodothyronine concentrations. Endocrinology. 2007;148:954-960.CrossRefPubMedGoogle Scholar
  50. 50.
    Huang SA, Bianco AC. Reawakened interest in type III iodothyronine deiodinase in critical illness and injury. Nat Clin Pract. 2008;4:148-155.CrossRefGoogle Scholar
  51. 51.
    Peeters RP, Wouters PJ, van Toor H, Kaptein E, Visser TJ, Van Den Berghe G. Serum 3,3′,5′-triiodothyronine (rT3) and 3,5,3′-triiodothyronine/rT3 are prognostic markers in critically ill patients and are associated with postmortem tissue deiodinase activities. J Clin Endocrinol Metab. 2005;90:4559-4565.CrossRefPubMedGoogle Scholar
  52. 52.
    Janssen OE, Golcher HM, Grasberger H, Saller B, Mann K, Refetoff S. Characterization of T(4)-binding globulin cleaved by human leukocyte elastase. J Clin Endocrinol Metab. 2002;87:1217-1222.CrossRefPubMedGoogle Scholar
  53. 53.
    Jirasakuldech B, Schussler GC, Yap MG, Drew H, Josephson A, Michl J. A characteristic serpin cleavage product of thyroxine-binding globulin appears in sepsis sera. J Clin Endocrinol Metab. 2000;85:3996-3999.CrossRefPubMedGoogle Scholar
  54. 54.
    Chopra IJ, Teco GN, Nguyen AH, Solomon DH. In search of an inhibitor of thyroid hormone binding to serum proteins in nonthyroid illnesses. J Clin Endocrinol Metab. 1979;49:63-69.CrossRefPubMedGoogle Scholar
  55. 55.
    den Brinker M, Joosten KF, Visser TJ, et al. Euthyroid sick syndrome in meningococcal sepsis: the impact of peripheral thyroid hormone metabolism and binding proteins. J Clin Endocrinol Metab. 2005;90:5613-5620.CrossRefGoogle Scholar
  56. 56.
    Iervasi G, Clerico A, Bonini R, et al. Acute effects of amiodarone administration on thyroid function in patients with cardiac arrhythmia. J Clin Endocrinol Metab. 1997;82:275-280.CrossRefPubMedGoogle Scholar
  57. 57.
    Surks MI, Sievert R. Drugs and thyroid function. N Engl J Med. 1995;333:1688-1694.CrossRefPubMedGoogle Scholar
  58. 58.
    Cooper DS, Daniels GH, Ladenson PW, Ridgway EC. Hyperthyroxinemia in patients treated with high-dose propranolol. Am J Med. 1982;73:867-871.CrossRefPubMedGoogle Scholar
  59. 59.
    Schneider MJ, Fiering SN, Thai B, et al. Targeted disruption of the type 1 selenodeiodinase gene (Dio1) results in marked changes in thyroid hormone economy in mice. Endocrinology. 2006;147:580-589.CrossRefPubMedGoogle Scholar
  60. 60.
    Vainionpaa LK, Mikkonen K, Rattya J, et al. Thyroid function in girls with epilepsy with carbamazepine, oxcarbazepine, or valproate monotherapy and after withdrawal of medication. Epilepsia. 2004;45:197-203.CrossRefPubMedGoogle Scholar
  61. 61.
    Mori K, Yoshida K, Kayama T, et al. Thyroxine 5-deiodinase in human brain tumors. J Clin Endocrinol Metab. 1993;77:1198-1202.CrossRefPubMedGoogle Scholar
  62. 62.
    Tannahill LA, Visser TJ, McCabe CJ, et al. Dysregulation of iodothyronine deiodinase enzyme expression and function in human pituitary tumours. Clin Endocrinol. 2002;56:735-743.CrossRefGoogle Scholar
  63. 63.
    Huang SA, Tu HM, Harney JW, et al. Severe hypothyroidism caused by type 3 iodothyronine deiodinase in infantile hemangiomas. N Engl J Med. 2000;343:185-189.CrossRefPubMedGoogle Scholar
  64. 64.
    Huang SA, Fish SA, Dorfman DM, et al. A 21-year-old woman with consumptive hypothyroidism due to a vascular tumor expressing type 3 iodothyronine deiodinase. J Clin Endocrinol Metab. 2002;87:4457-4461.CrossRefPubMedGoogle Scholar
  65. 65.
    Ruppe MD, Huang SA, Jan de Beur SM. Consumptive hypothyroidism caused by paraneoplastic production of type 3 iodothyronine deiodinase. Thyroid. 2005;15:1369-1372.CrossRefPubMedGoogle Scholar
  66. 66.
    Balazs AE, Athanassaki I, Gunn SK, et al. Rapid resolution of consumptive hypothyroidism in a child with hepatic hemangioendothelioma following liver transplantation. Ann Clin Lab Sci. 2007;37:280-284.PubMedGoogle Scholar
  67. 67.
    Kim BW, Daniels GH, Harrison BJ, et al. Overexpression of type 2 iodothyronine deiodinase in follicular carcinoma as a cause of low circulating free thyroxine levels. J Clin Endocrinol Metab. 2003;88:594-598.CrossRefPubMedGoogle Scholar
  68. 68.
    Miyauchi A, Takamura Y, Ito Y, et al. 3,5,3′-Triiodothyronine thyrotoxicosis due to increased conversion of administered levothyroxine in patients with massive metastatic follicular thyroid carcinoma. J Clin Endocrinol Metab. 2008;93:2239-2242.CrossRefPubMedGoogle Scholar
  69. 69.
    Jochum F, Terwolbeck K, Meinhold H, Behne D, Menzel H, Lombeck I. Effects of a low selenium state in patients with phenylketonuria. Acta Paediatr. 1997;86:775-777.CrossRefPubMedGoogle Scholar
  70. 70.
    DePalo D, Kinlaw WB, Zhao C, Engelberg-Kulka H, St Germain DL. Effect of selenium deficiency on type I 5′-deiodinase. J Biol Chem. 1994;269:16223-16228.PubMedGoogle Scholar
  71. 71.
    Vanderpas JB, Contempre B, Duale NL, et al. Selenium deficiency mitigates hypothyroxinemia in iodine-deficient subjects. Am J Clin Nutr. 1993;57:271S-275S.PubMedGoogle Scholar
  72. 72.
    Dumitrescu AM, Liao XH, Abdullah MS, et al. Mutations in SECISBP2 result in abnormal thyroid hormone metabolism. Nat Genet. 2005;37:1247-1252.CrossRefPubMedGoogle Scholar
  73. 73.
    Schomburg L, Dumitrescu AM, Liao XH, et al. Selenium supplementation fails to correct the selenoprotein synthesis defect in subjects with sequence binding protein 2 gene mutations. Thyroid. 2009;19:277-281.CrossRefPubMedGoogle Scholar
  74. 74.
    Schneider MJ, Fiering SN, Pallud SE, Parlow AF, St Germain DL, Galton VA. Targeted disruption of the type 2 selenodeiodinase gene (DIO2) results in a phenotype of pituitary resistance to T4. Mol Endocrinol. 2001;15:2137-2148.CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Division of EndocrinologyChildren’s Hospital Boston, Harvard Medical SchoolBostonUSA

Personalised recommendations