Food Analysis pp 513-537 | Cite as

Gas Chromatography

  • Michael C. Qian
  • Devin G. Peterson
  • Gary A. Reineccius
Part of the Food Analysis book series (FSTS)


The first publication on gas chromatography (GC) was in 1952 (1), while the first commercial instruments were manufactured in 1956. James and Martin (1) separated fatty acids by GC, collected the column effluent, and titrated the individual fatty acids for quantitation. GC has advanced greatly since that early work and is now considered to be a mature field that is approaching theoretical limitations.


Injection Port Volatile Sulfur Compound Flame Photometric Detection Volatile Aroma Compound Adsorbent Trap 


  1. 1.
    James AT, Martin AJP (1952) Gas–liquid chromatography: the separation and microestimation of volatile fatty acids from formic acid to dodecanoic acid. Biochem J 50:679Google Scholar
  2. 2.
    Niessen WMA (2001) Current practice of gas chromatography – mass spectrometry. Marcel Dekker, New YorkCrossRefGoogle Scholar
  3. 3.
    Rood D (1999) A practical guide to the care, maintenance, and troubleshooting of capillary gas chromatographic systems, 3rd edn. Weinheim, New YorkGoogle Scholar
  4. 4.
    Schomburg G (1990) Gas chromatography: a practical course. Weinheim, New YorkGoogle Scholar
  5. 5.
    Gordon MH (1990) Principles and applications of gas chromatography in food analysis. E. Horwood, New YorkCrossRefGoogle Scholar
  6. 6.
    O’Keeffe M (2000) Residue analysis in food: principles and applications. Harwood Academic, AmsterdamGoogle Scholar
  7. 7.
    Drawert F, Heimann W, Enberger R, Tressl R (1965) Enzymatische Verandrung des naturlichen Apfelaromass bei der Aurfarbeitung. Naturwissenschaften 52:304CrossRefGoogle Scholar
  8. 8.
    Fleming HP, Fore SP, Goldblatt LA (1968) The formation of carbonyl compounds in cucumbers. J Food Sci 33:572CrossRefGoogle Scholar
  9. 9.
    Kazeniak SJ, Hall RM (1970) Flavor chemistry of tomato volatiles. J Food Sci 35:519CrossRefGoogle Scholar
  10. 10.
    Leahy MM, Reineccius GA (1984) Comparison of methods for the analysis of volatile compounds from aqueous model systems. In: Schreier P (ed) Analysis of volatiles: new methods and their application. DeGruyter, BerlinGoogle Scholar
  11. 11.
    Mresili R (1997) Techniques for analyzing food aroma. Marcel Dekker, New YorkGoogle Scholar
  12. 12.
    Mussinan CJ, Morello MJ (1998) Flavor analysis. American Chemical Society, Washington, DCCrossRefGoogle Scholar
  13. 13.
    Sapers GM, Panasiuk O, and Talley FB (1973) Flavor quality and stability of potato flakes: effects of raw material and processing. J Food Sci 38:586CrossRefGoogle Scholar
  14. 14.
    Seo EW, Joel DL (1980) Pentane production as an index of rancidity in freeze-dried pork. J Food Sci 45:26CrossRefGoogle Scholar
  15. 15.
    Buttery RG, Teranishi R (1963) Measurement of fat oxidation and browning aldehydes in food vapors by direct injection gas–liquid chromatography. J Agric Food Chem 11:504CrossRefGoogle Scholar
  16. 16.
    Buckholz LL, Withycombe DA, Daun H (1980) Application and characteristics of polymer adsorption method used to analyze flavor volatiles from peanuts. J Agric Food Chem 28:760CrossRefGoogle Scholar
  17. 17.
    Reineccius GA, Keeney PA, Weiseberger W (1972) Factors affecting the concentration of pyrazines in cocoa beans. J Agric Food Chem 20:202CrossRefGoogle Scholar
  18. 18.
    Majors RE (1986) Sample preparation for HPLC and GC using solid-phase extraction. LC-GC 4:972Google Scholar
  19. 19.
    Markel C, Hagen DF, Bunnelle VA (1991) New technologies in solid-phase extraction. LC–GC 9:332Google Scholar
  20. 20.
    Pawliszyn J (1997) Solid phase microextraction: theory and practice. VCH Publishers, New YorkGoogle Scholar
  21. 21.
    Zhang Z, Yang ML, Pawliszyn J (1994) Solid phase-microextraction: a solvent-free alternative for sample preparation. Anal Chem 66:844A–857ACrossRefGoogle Scholar
  22. 22.
    Harmon AD (1997) Solid phase microextraction for the analysis of flavors. In: Marsili R (ed) Techniques for analyzing food aroma. Marcel Dekker, New YorkGoogle Scholar
  23. 23.
    Coleman WMI (1996) A study of the behavior of Maillard reaction products analyzed by solid-phase microextraction gas chromatography-mass selective detection. J Chromatogr Sci 34:213–218CrossRefGoogle Scholar
  24. 24.
    Pfanncoch E, Whitecavage J (2002) Stir bar sorptive extraction capacity and competition effects. Gerstel Global, Baltimore, MD, pp 1–8Google Scholar
  25. 25.
    David F, Tienpont B, Sandra P (2003) Stir-bar sorptive extraction of trace organic compounds from aqueous matrices. LC-GC Europe 16:410Google Scholar
  26. 26.
    Dupuy HP, Fore SP, Goldbatt LA (1971) Elution and analysis of volatiles in vegetable oils by gas chromatography. J Am Oil Chem Soc 48:876CrossRefGoogle Scholar
  27. 27.
    Legendre MG, Fisher GS, Fuller WH, Dupuy HP, Rayner ET (1979) Novel technique for the analysis of volatiles in aqueous and nonaqueous systems. J Am Oil Chem Soc 56:552CrossRefGoogle Scholar
  28. 28.
    Widmer HM (1990) Recent developments in instrumental analysis. In: Bessiere Y, Thomas AF (eds) Flavor science and technology. Wiley, Chichester, p 181Google Scholar
  29. 29.
    Malowicki SMM, Martin R, Qian MC (2008) Volatile composition in raspberry cultivars grown in the Pacific Northwest determined by stir bar sorptive extraction-gas chromatography-mass spectrometry. J Agric Food Chem 56:4128–4133CrossRefGoogle Scholar
  30. 30.
    Du X, Qian M (2008) Quantification of 2,5-dimethyl-4-hydroxy-3(2H)-furanone using solid-phase extraction and direct microvial insert thermal desorption gas chromatography-mass spectrometry. J Chromatogr A 1208:197–201CrossRefGoogle Scholar
  31. 31.
    Fang Y, Qian MC (2006) Quantification of selected aroma-active compounds in Pinot noir wines from different grape maturities. J Agric Food Chem 54:8567–8573CrossRefGoogle Scholar
  32. 32.
    Fang Y, Qian MC (2005) Sensitive quantification of sulfur compounds in wine by headspace solid-phase microextraction technique. J Chromatogr A 1080:177–185CrossRefGoogle Scholar
  33. 33.
    Amirav A, Jing H (1995) Pulsed flame photometer detector for gas chromatography. Anal Chem 67:3305–3318CrossRefGoogle Scholar
  34. 34.
    Buffington R, Wilson MK (1987) Detectors for gas chromatography. Hewlett-Packard Corp., Avondale, PAGoogle Scholar
  35. 35.
    Shellie R, Marriott P (2003) Opportunities for ultra-high resolution analysis of essential oils using comprehensive two-dimensional gas chromatography: a review. Flavour Fragrance J 18:179–191CrossRefGoogle Scholar
  36. 36.
    Merritt C (1971) Application in flavor research. In: Zlatkis A, Pretorius V (Eds) Preparative gas chromatography. Wiley-Interscience, New York, pp 235–276Google Scholar
  37. 37.
    Kempfert KD (1989) Evaluation of apparent sensitivity enhancement in GC/FTIR using multidimensional GC techniques. J Chromatogr Sci 27:63–70CrossRefGoogle Scholar
  38. 38.
    Phillips JB, Xu J (1995) Comprehensive multi- dimensional gas chromatography (Review). J Chromatogr A 703:327–334CrossRefGoogle Scholar
  39. 39.
    Shellie R, Mondello L, Marriott P, Dugo G (2002) Characterization of lavender essential oils by using gas chromatography-mass spectrometry with correlation of linear retention indices and comparison with comprehensive two-dimensional gas chromatography. J Chromatogr 970(1/2):225–234CrossRefGoogle Scholar
  40. 40.
    Adahchour M, Brandt M, Baier H-U, Vreuls RJJ, Batenburg AM, Brinkman UAT (2005) Comprehensive two-dimensional gas chromatography coupled to a rapid-scanning quadrupole mass spectrometer: principles and applications. J Chromatogr A 1067:245–254CrossRefGoogle Scholar
  41. 41.
    Hodges K (1991) Sensory-directed analytical concentration techniques for aroma-flavor characterization and quantification. In: Risch SJ, Hotchkiss JH (eds) Food packaging interactions II. American Chemical Society, Washington, DC, p 174CrossRefGoogle Scholar
  42. 42.
    Bernreuther A, Epperlein U, Koppenhoefer B (1997) In: Marsili R (ed) Techniques for analyzing food aroma. Marcel Dekker, New York, p 143Google Scholar
  43. 43.
    Woodrow JE, McChesney MM, Seiber JN (1995) Determination of ethylene oxide in spices using headspace gas chromatography. J Agric Food Chem 43:2126CrossRefGoogle Scholar
  44. 44.
    Keeney PG, Patton S (1956) The coconut-like flavor defect of milk fat. I. Isolation of the flavor compounds from butter oil and its identification as delta-decalactone. J Dairy Sci 39:1104–1113Google Scholar
  45. 45.
    Ryan D, Shellie R, Tranchida P, Casilli A, Mondello L, Marriott P (2004) Analysis of roasted coffee bean volatiles by using comprehensive two-dimensional gas chromatography-time-of-flight mass spectrometry. J Chromatogr A 1054:57–65CrossRefGoogle Scholar
  46. 46.
    Peterson DG, Reineccius GA (2002) Determination of the aroma impact compounds in heated sweet cream butter. Flavour Fragrance J 18:320–324CrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Michael C. Qian
    • 1
  • Devin G. Peterson
    • 2
  • Gary A. Reineccius
    • 2
  1. 1.Department of Food Science and TechnologyOregon State UniversityCorvallisUSA
  2. 2.Department of Food Science and NutritionUniversity of MinnesotaSt. PaulUSA

Personalised recommendations