Advertisement

Principles of Radiofrequency Ablation

  • Muneeb Ahmed
  • Shraga Nahum Goldberg
Chapter

Abstract

Image-guided tumor ablation is a minimally invasive strategy to treat focal tumors in the liver, lung, kidney, bone, and adrenal glands by inducing irreversible cellular injury through the application of thermal, and more recently, nonthermal energy, or chemical injection. Given the multiplicity of treatment types and potential complexity of paradigms in oncology, and the wider application of thermal ablation techniques, a thorough understanding of the basic principles and recent advances in thermal ablation is a necessary prerequisite for their effective clinical use. This chapter will review several of these key concepts related to tumor ablation including those that relate to performing a clinical ablation, such as understanding the goals of therapy and mechanisms of tissue heating or tumor destruction, and understanding the proper role of tumor ablation and the strategies that are being pursued to improve overall ablation outcome.

Keywords

Thermal Ablation Liposomal Doxorubicin Ablation Zone Tumor Destruction Ablative Margin 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. 1.
    Gervais DA, McGovern FJ, Arellano RS, McDougal WS, Mueller PR. Renal cell carcinoma: clinical experience and technical success with radio-frequency ablation of 42 tumors. Radiology. 2003;226:417–24.PubMedCrossRefGoogle Scholar
  2. 2.
    Kurup AN, Callstrom MR. Ablation of skeletal metastases: current status. J Vasc Interv Radiol. 2010;21:S242–50.PubMedCrossRefGoogle Scholar
  3. 3.
    Livraghi T, Meloni F, Goldberg SN, Lazzaroni S, Solbiati L, Gazelle GS. Hepatocellular carcinoma: radiofrequency ablation of medium and large lesions. Radiology. 2000;214:761–8.PubMedGoogle Scholar
  4. 4.
    Solbiati L, Livraghi T, Goldberg SN, Ierace T, DellaNoce M, Gazelle GS. Percutaneous radiofrequency ablation of hepatic metastases from colorectal cancer: long term results in 117 patients. Radiology. 2001;221:159–66.PubMedCrossRefGoogle Scholar
  5. 5.
    Venkatesan AM, Locklin J, Dupuy DE, Wood BJ. Percutaneous ablation of adrenal tumors. Tech Vasc Interv Radiol. 2010;13:89–99.PubMedCrossRefGoogle Scholar
  6. 6.
    Zemlyak A, Moore WH, Bilfinger TV. Comparison of survival after sublobar resections and ablative therapies for stage I non-small cell lung cancer. J Am Coll Surg. 2010;211:68–72.PubMedCrossRefGoogle Scholar
  7. 7.
    Ahmed M, Brace CL, Lee Jr FT, Goldberg SN. Principles of and advances in percutaneous ablation. Radiology. 2011;258(2):351–69.PubMedCrossRefGoogle Scholar
  8. 8.
    McWilliams JP, Yamamoto S, Raman SS, et al. Percutaneous ablation of hepatocellular carcinoma: current status. J Vasc Interv Radiol. 2010;21:S204–13.PubMedCrossRefGoogle Scholar
  9. 9.
    Dodd 3rd GD, Soulen MC, Kane RA, et al. Minimally invasive treatment of malignant hepatic tumors: at the threshold of a major breakthrough. Radiographics. 2000;20:9–27.PubMedGoogle Scholar
  10. 10.
    Shimada K, Sakamoto Y, Esaki M, Kosuge T. Role of the width of the surgical margin in a hepatectomy for small hepatocellular carcinomas eligible for percutaneous local ablative therapy. Am J Surg. 2008;195:775–81.PubMedCrossRefGoogle Scholar
  11. 11.
    Dodd 3rd GD, Frank MS, Aribandi M, Chopra S, Chintapalli KN. Radiofrequency thermal ablation: computer analysis of the size of the thermal injury created by overlapping ablations. AJR Am J Roentgenol. 2001;177:777–82.PubMedGoogle Scholar
  12. 12.
    Gervais DA, McGovern FJ, Arellano RS, McDougal WS, Mueller PR. Radiofrequency ablation of renal cell carcinoma: part 1, Indications, results, and role in patient management over a 6-year period and ablation of 100 tumors. AJR Am J Roentgenol. 2005;185:64–71.PubMedGoogle Scholar
  13. 13.
    Lencioni R, Cioni D, Crocetti L, et al. Early-stage hepatocellular carcinoma in patients with cirrhosis: long-term results of percutaneous image-guided radiofrequency ablation. Radiology. 2005;234:961–7.PubMedCrossRefGoogle Scholar
  14. 14.
    Lencioni R, Crocetti L, Cioni R, et al. Response to radiofrequency ablation of pulmonary tumours: a prospective, intention-to-treat, multicentre clinical trial (the RAPTURE study). Lancet Oncol. 2008;9:621–8.PubMedCrossRefGoogle Scholar
  15. 15.
    Schramm W, Yang D, Haemmerich D. Contribution of direct heating, thermal conduction and perfusion during radiofrequency and microwave ablation. Conf Proc IEEE Eng Med Biol Soc. 2006;1:5013–6.PubMedCrossRefGoogle Scholar
  16. 16.
    Ahmed M, Liu Z, Humphries S, Goldberg SN. Computer modeling of the combined effects of perfusion, electrical conductivity, and thermal conductivity on tissue heating patterns in radiofrequency tumor ablation. Int J Hyperthermia. 2008;24:577–88.PubMedCrossRefGoogle Scholar
  17. 17.
    Dupuy DE, Goldberg SN, Gazelle GS, Rosenthal DI. Cooled-tip radiofrequency ablation in the vertebral body: temperature distribution in the spinal canal. Radiology. 1997;207(P):330.Google Scholar
  18. 18.
    Seegenschmiedt M, Brady L, Sauer R. Interstitial thermoradiotherapy: review on technical and clinical aspects. Am J Clin Oncol. 1990;13:352–63.PubMedCrossRefGoogle Scholar
  19. 19.
    Trembley B, Ryan T, Strohbehn J. Interstitial hyperthermia: physics, biology, and clinical aspects. In: Urano E, Douple E, editors. Hyperthermia and oncology, Vol. 3. Utrecht, The Netherlands: VSP; 1992: p. 11–98.Google Scholar
  20. 20.
    Larson T, Bostwick D, Corcia A. Temperature-correlated histopathologic changes following microwave thermoablation of obstructive tissues in patients with benign prostatic hyperplasia. Urology. 1996;47:463–9.PubMedCrossRefGoogle Scholar
  21. 21.
    Zevas N, Kuwayama A. Pathologic analysis of experimental thermal lesions: comparison of induction heating and radiofrequency electrocoagulation. J Neurosurg. 1972;37:418–22.CrossRefGoogle Scholar
  22. 22.
    Goldberg SN, Gazelle GS, Compton CC, Mueller PR, Tanabe KK. Treatment of intrahepatic malignancy with radiofrequency ablation: radiologic-pathologic correlation. Cancer. 2000;88:2452–63.PubMedCrossRefGoogle Scholar
  23. 23.
    Goldberg SN, Gazelle GS, Halpern EF, Rittman WJ, Mueller PR, Rosenthal DI. Radiofrequency tissue ablation: importance of local temperature along the electrode tip exposure in determining lesion shape and size. Acad Radiol. 1996;3:212–8.PubMedCrossRefGoogle Scholar
  24. 24.
    Mertyna P, Dewhirst MW, Halpern E, Goldberg W, Goldberg SN. Radiofrequency ablation: the effect of distance and baseline temperature on thermal dose required for coagulation. Int J Hyperthermia. 2008;24:550–9.PubMedCrossRefGoogle Scholar
  25. 25.
    Mertyna P, Hines-Peralta A, Liu ZJ, Halpern E, Goldberg W, Goldberg SN. Radiofrequency ablation: variability in heat sensitivity in tumors and tissues. J Vasc Interv Radiol. 2007;18:647–54.PubMedCrossRefGoogle Scholar
  26. 26.
    Pennes H. Analysis of tissue and arterial blood temperatures in the resting human forearm. J Appl Physiol. 1948;1:93–122.PubMedGoogle Scholar
  27. 27.
    Goldberg SN, Gazelle GS, Mueller PR. Thermal ablation therapy for focal malignancy: a unified approach to underlying principles, techniques, and diagnostic imaging guidance. Am J Radiol. 2000;174:323–31.Google Scholar
  28. 28.
    Goldberg SN, Gazelle GS, Dawson SL, Rittman WJ, Mueller PR, Rosenthal DI. Tissue ablation with radiofrequency: effect of probe size, gauge, duration, and temperature on lesion volume. Acad Radiol. 1995;2:399–404.PubMedCrossRefGoogle Scholar
  29. 29.
    Goldberg SN, Gazelle GS, Dawson SL, Mueller PR, Rittman WJ, Rosenthal DI. Radiofrequency tissue ablation using multiprobe arrays: greater tissue destruction than multiple probes operating alone. Acad Radiol. 1995;2:670–4.PubMedCrossRefGoogle Scholar
  30. 30.
    Bangard C, Rosgen S, Wahba R, et al. Large-volume multi-tined expandable RF ablation in pig livers: comparison of 2D and volumetric measurements of the ablation zone. Eur Radiol. 2010;20:1073–8.PubMedCrossRefGoogle Scholar
  31. 31.
    Rossi S, Buscarini E, Garbagnati F. Percutaneous treatment of small hepatic tumors by an expandable RF needle electrode. AJR Am J Roentgenol. 1998;170:1015–22.PubMedGoogle Scholar
  32. 32.
    Siperstein AE, Rogers SJ, Hansen PD, Gitomirsky A. Laparoscopic thermal ablation of hepatic neuroendocrine tumor metastases. Surgery. 1997;122:1147–55.PubMedCrossRefGoogle Scholar
  33. 33.
    Leveen RF. Laser hyperthermia and radiofrequency ablation of hepatic lesions. Semin Interv Radiol. 1997;12:313–24.Google Scholar
  34. 34.
    Appelbaum L, Sosna J, Pearson R, et al. Algorithm optimization for multitined radiofrequency ablation: comparative study in ex vivo and in vivo bovine liver. Radiology. 2010;254(2):430–40.PubMedCrossRefGoogle Scholar
  35. 35.
    McGahan JP, Gu WZ, Brock JM, Tesluk H, Jones CD. Hepatic ablation using bipolar radiofrequency electrocautery. Acad Radiol. 1996;3:418–22.PubMedCrossRefGoogle Scholar
  36. 36.
    Desinger K, Stein T, Muller G, Mack M, Vogl T. Interstitial bipolar RF-thermotherapy (REITT) therapy by planning by computer simulation and MRI-monitoring – a new concept for minimally invasive procedures. Proc SPIE. 1999;3249:147–60.CrossRefGoogle Scholar
  37. 37.
    Lee JM, Han JK, Kim SH, et al. Bipolar radiofrequency ablation using wet-cooled electrodes: an in vitro experimental study in bovine liver. AJR Am J Roentgenol. 2005;184:391–7.PubMedGoogle Scholar
  38. 38.
    Seror O, N’Kontchou G, Ibraheem M, et al. Large (> or =5.0-cm) HCCs: multipolar RF ablation with three internally cooled bipolar electrodes–initial experience in 26 patients. Radiology. 2008;248:288–96.PubMedCrossRefGoogle Scholar
  39. 39.
    Lee JM, Han JK, Kim HC, et al. Multiple-electrode radiofrequency ablation of in vivo porcine liver: comparative studies of consecutive monopolar, switching monopolar versus multipolar modes. Invest Radiol. 2007;42:676–83.PubMedCrossRefGoogle Scholar
  40. 40.
    Goldberg SN, Gazelle GS, Solbiati L, Rittman WJ, Mueller PR. Radiofrequency tissue ablation: increased lesion diameter with a perfusion electrode. Acad Radiol. 1996;3:636–44.PubMedCrossRefGoogle Scholar
  41. 41.
    Goldberg SN, Solbiati L, Hahn PF, et al. Large-volume tissue ablation with radiofrequency by using a clustered, internally-cooled electrode technique: laboratory and clinical experience in liver metastases. Radiology. 1998;209:371–9.PubMedGoogle Scholar
  42. 42.
    Cha J, Choi D, Lee MW, et al. Radiofrequency ablation zones in ex vivo bovine and in vivo porcine livers: comparison of the use of internally cooled electrodes and internally cooled wet electrodes. Cardiovasc Intervent Radiol. 2009;32:1235–40.PubMedCrossRefGoogle Scholar
  43. 43.
    Hines-Peralta A, Hollander CY, Solazzo S, Horkan C, Liu ZJ, Goldberg SN. Hybrid radiofrequency and cryoablation device: preliminary results in an animal model. J Vasc Interv Radiol. 2004;15:1111–20.PubMedGoogle Scholar
  44. 44.
    Goldberg SN, Stein M, Gazelle GS, Sheiman RG, Kruskal JB, Clouse ME. Percutaneous radiofrequency tissue ablation: optimization of pulsed-RF technique to increase coagulation necrosis. J Vasc Interv Radiol. 1999;10:907–16.PubMedCrossRefGoogle Scholar
  45. 45.
    Gulesserian T, Mahnken AH, Schernthaner R, et al. Comparison of expandable electrodes in percutaneous radiofrequency ablation of renal cell carcinoma. Eur J Radiol. 2006;59:133–9.PubMedCrossRefGoogle Scholar
  46. 46.
    McGahan JP, Loh S, Boschini FJ, et al. Maximizing parameters for tissue ablation by using an internally cooled electrode. Radiology. 2010;256:397–405.PubMedCrossRefGoogle Scholar
  47. 47.
    Brace CL, Sampson LA, Hinshaw JL, Sandhu N, Lee Jr FT. Radiofrequency ablation: simultaneous application of multiple electrodes via switching creates larger, more confluent ablations than sequential application in a large animal model. J Vasc Interv Radiol. 2009;20:118–24.PubMedCrossRefGoogle Scholar
  48. 48.
    Laeseke PF, Sampson LA, Haemmerich D, et al. Multiple-electrode radiofrequency ablation creates confluent areas of necrosis: in vivo porcine liver results. Radiology. 2006;241:116–24.PubMedCrossRefGoogle Scholar
  49. 49.
    Brace CL, Laeseke PF, Sampson LA, Frey TM, Mukherjee R, Lee Jr FT. Radiofrequency ablation with a high-power generator: device efficacy in an in vivo porcine liver model. Int J Hyperthermia. 2007;23:387–94.PubMedCrossRefGoogle Scholar
  50. 50.
    Solazzo SA, Ahmed M, Liu Z, Hines-Peralta AU, Goldberg SN. High-power generator for radiofrequency ablation: larger electrodes and pulsing algorithms in bovine ex vivo and porcine in vivo settings. Radiology. 2007;242:743–50.PubMedCrossRefGoogle Scholar
  51. 51.
    Laeseke PF, Lee Jr FT, Sampson LA, van der Weide DW, Brace CL. Microwave ablation versus radiofrequency ablation in the kidney: high-power triaxial antennas create larger ablation zones than similarly sized internally cooled electrodes. J Vasc Interv Radiol. 2009;20:1224–9.PubMedCrossRefGoogle Scholar
  52. 52.
    Cheng Z, Xiao Q, Wang Y, Sun Y, Lu T, Liang P. 915 MHz microwave ablation with implanted internal cooled-shaft antenna: initial experimental study in in vivo porcine livers [published online ahead of print January 12, 2010]. Eur J Radiol. 2010;79(1):131–5. doi: 10.1016/j.ejrad.2009.12.013.PubMedCrossRefGoogle Scholar
  53. 53.
    He N, Wang W, Ji Z, Li C, Huang B. Microwave ablation: an experimental comparative study on internally cooled antenna versus non-internally cooled antenna in liver models. Acad Radiol. 2010;17:894–9.PubMedCrossRefGoogle Scholar
  54. 54.
    Lin SM, Lin CC, Chen WT, Chen YC, Hsu CW. Radiofrequency ablation for hepatocellular carcinoma: a prospective comparison of four radiofrequency devices. J Vasc Interv Radiol. 2007;18:1118–25.PubMedCrossRefGoogle Scholar
  55. 55.
    Lu DS, Raman SS, Limanond P, et al. Influence of large peritumoral vessels on outcome of radiofrequency ablation of liver tumors. J Vasc Interv Radiol. 2003;14:1267–74.PubMedGoogle Scholar
  56. 56.
    Patterson EJ, Scudamore CH, Owen DA, Nagy AG, Buczkowski AK. Radiofrequency ablation of porcine liver in vivo: effects of blood flow and treatment time on lesion size. Ann Surg. 1998;227:559–65.PubMedCrossRefGoogle Scholar
  57. 57.
    Goldberg SN, Hahn PF, Halpern EF, Fogle R, Gazelle GS. Radiofrequency tissue ablation: effect of pharmacologic modulation of blood flow on coagulation diameter. Radiology. 1998;209:761–9.PubMedGoogle Scholar
  58. 58.
    Horkan C, Ahmed M, Liu Z, et al. Radiofrequency ablation: effect of pharmacologic modulation of hepatic and renal blood flow on coagulation diameter in a VX2 tumor model. J Vasc Interv Radiol. 2004;15:269–74.PubMedGoogle Scholar
  59. 59.
    Hines-Peralta A, Sukhatme V, Regan M, Signoretti S, Liu ZJ, Goldberg SN. Improved tumor destruction with arsenic trioxide and radiofrequency ablation in three animal models. Radiology. 2006;240:82–9.PubMedCrossRefGoogle Scholar
  60. 60.
    Hakime A, Hines-Peralta A, Peddi H, et al. Combination of radiofrequency ablation with antiangiogenic therapy for tumor ablation efficacy: study in mice. Radiology. 2007;244:464–70.PubMedCrossRefGoogle Scholar
  61. 61.
    Mostafa EM, Ganguli S, Faintuch S, Mertyna P, Goldberg SN. Optimal strategies for combining transcatheter arterial chemoembolization and radiofrequency ablation in rabbit VX2 hepatic tumors. J Vasc Interv Radiol. 2008;19:1740–8.PubMedCrossRefGoogle Scholar
  62. 62.
    Goldberg SN, Ahmed M, Gazelle GS, et al. Radiofrequency thermal ablation with adjuvant saline injection: effect of electrical conductivity on tissue heating and coagulation. Radiology. 2001;219:157–65.PubMedGoogle Scholar
  63. 63.
    Aube C, Schmidt D, Brieger J, et al. Influence of NaCl concentrations on coagulation, temperature, and electrical conductivity using a perfusion radiofrequency ablation system: an ex vivo experimental study. Cardiovasc Intervent Radiol. 2007;30:92–7.PubMedCrossRefGoogle Scholar
  64. 64.
    Miao Y, Ni Y, Yu J, Marchal G. A comparative study on validation of a novel cooled-wet electrode for radiofrequency liver ablation. Invest Radiol. 2000;35:438–44.PubMedCrossRefGoogle Scholar
  65. 65.
    Gillams AR, Lees WR. CT mapping of the distribution of saline during radiofrequency ablation with perfusion electrodes. Cardiovasc Intervent Radiol. 2005;28:476–80.PubMedCrossRefGoogle Scholar
  66. 66.
    Liu Z, Lobo SM, Humphries S, et al. Radiofrequency tumor ablation: insight into improved efficacy using computer modeling. AJR Am J Roentgenol. 2005;184:1347–52.PubMedGoogle Scholar
  67. 67.
    Laeseke PF, Sampson LA, Winter 3rd TC, Lee Jr FT. Use of dextrose 5% in water instead of saline to protect against inadvertent radiofrequency injuries. AJR Am J Roentgenol. 2005;184:1026–7.PubMedGoogle Scholar
  68. 68.
    Liu Z, Ahmed M, Weinstein Y, Yi M, Mahajan RL, Goldberg SN. Characterization of the RF ablation-induced ‘oven effect’: the importance of background tissue thermal conductivity on tissue heating. Int J Hyperthermia. 2006;22:327–42.PubMedCrossRefGoogle Scholar
  69. 69.
    Ahmed M, Goldberg SN. Combination radiofrequency thermal ablation and adjuvant IV liposomal doxorubicin increases tissue coagulation and intratumoural drug accumulation. Int J Hyperthermia. 2004;20:781–802.PubMedCrossRefGoogle Scholar
  70. 70.
    Horkan C, Dalal K, Coderre JA, et al. Reduced tumor growth with combined radiofrequency ablation and radiation therapy in a rat breast tumor model. Radiology. 2005;235:81–8.PubMedCrossRefGoogle Scholar
  71. 71.
    Goldberg SN, Hahn PF, Tanabe KK, et al. Percutaneous radiofrequency tissue ablation: does perfusion-mediated tissue cooling limit coagulation necrosis? J Vasc Interv Radiol. 1998;9:101–11.PubMedCrossRefGoogle Scholar
  72. 72.
    Goldberg SN, Kamel IR, Kruskal JB, et al. Radiofrequency ablation of hepatic tumors: increased tumor destruction with adjuvant liposomal doxorubicin therapy. AJR Am J Roentgenol. 2002;179:93–101.PubMedGoogle Scholar
  73. 73.
    Head HW, Dodd 3rd GD, Bao A, et al. Combination radiofrequency ablation and intravenous radiolabeled liposomal Doxorubicin: imaging and quantification of increased drug delivery to tumors. Radiology. 2010;255:405–14.PubMedCrossRefGoogle Scholar
  74. 74.
    Kang SG, Yoon CJ, Jeong SH, et al. Single-session combined therapy with chemoembolization and radiofrequency ablation in hepatocellular carcinoma less than or equal to 5 cm: a preliminary study. J Vasc Interv Radiol. 2009;20:1570–7.PubMedCrossRefGoogle Scholar
  75. 75.
    Ahrar K, Newman RA, Pang J, Vijjeswarapu MK, Wallace MJ, Wright KC. Dr. Gary J. Becker Young Investigator Award: relative thermosensitivity of cytotoxic drugs used in transcatheter arterial chemoembolization. J Vasc Interv Radiol. 2004;2004(15):901–5.Google Scholar
  76. 76.
    Lee MW, Kim YJ, Park SW, et al. Percutaneous radiofrequency ablation of small hepatocellular carcinoma invisible on both ultrasonography and unenhanced CT: a preliminary study of combined treatment with transarterial chemoembolisation. Br J Radiol. 2009;82:908–15.PubMedCrossRefGoogle Scholar
  77. 77.
    Morimoto M, Numata K, Kondou M, Nozaki A, Morita S, Tanaka K. Midterm outcomes in patients with intermediate-sized hepatocellular carcinoma: a randomized controlled trial for determining the efficacy of radiofrequency ablation combined with transcatheter arterial chemoembolization. Cancer. 2010;166(23):5452–60.CrossRefGoogle Scholar
  78. 78.
    Yang W, Chen MH, Wang MQ, et al. Combination therapy of radiofrequency ablation and transarterial chemoembolization in recurrent hepatocellular carcinoma after hepatectomy compared with single treatment. Hepatol Res. 2009;39:231–40.PubMedCrossRefGoogle Scholar
  79. 79.
    Wang W, Shi J, Xie WF. Transarterial chemoembolization in combination with percutaneous ablation therapy in unresectable hepatocellular carcinoma: a meta-analysis. Liver Int. 2010;30:741–9.PubMedCrossRefGoogle Scholar
  80. 80.
    Goldberg SN, Saldinger PF, Gazelle GS, et al. Percutaneous tumor ablation: increased coagulation necrosis with combined radiofrequency and percutaneous doxorubicin injection. Radiology. 2001;220:420–7.PubMedGoogle Scholar
  81. 81.
    Ahmed M, Liu Z, Lukyanov AN, et al. Combination radiofrequency ablation with intratumoral liposomal doxorubicin: effect on drug accumulation and coagulation in multiple tissues and tumor types in animals. Radiology. 2005;235:469–77.PubMedCrossRefGoogle Scholar
  82. 82.
    Vaage J, Barbara E. Tissue uptake and therapeutic effects of stealth doxorubicin. In: Lasic D, Martin F, editors. Stealth liposomes. Boca Raton, FL: CRC Press; 1995.Google Scholar
  83. 83.
    Gabizon A, Shiota R, Papahadjopoulos D. Pharmacokinetics and tissue distribution of doxorubicin encapsulated in stable liposomes with long circulation times. J Natl Cancer Inst. 1989;81:1484–8.PubMedCrossRefGoogle Scholar
  84. 84.
    Yarmolenko PS, Zhao Y, Landon C, et al. Comparative effects of thermosensitive doxorubicin-containing liposomes and hyperthermia in human and murine tumours. Int J Hyperthermia. 2010;26(5):485–98.PubMedCrossRefGoogle Scholar
  85. 85.
    Ranson MR, Carmichael J, O’Byrne K, Stewart S, Smith D, Howell A. Treatment of advanced breast cancer with sterically stabilized liposomal doxorubicin: results of a multicenter phase II trial. J Clin Oncol. 1997;15:3185–91.PubMedGoogle Scholar
  86. 86.
    Gordon AN, Granai CO, Rose PG, et al. Phase II study of liposomal doxorubicin in platinum- and paclitaxel-refractory epithelial ovarian cancer. J Clin Oncol. 2000;18:3093–100.PubMedGoogle Scholar
  87. 87.
    Rivera E, Valero V, Arun B, et al. Phase II study of pegylated liposomal doxorubicin in combination with gemcitabine in patients with metastatic breast cancer. J Clin Oncol. 2003;21:3249–54.PubMedCrossRefGoogle Scholar
  88. 88.
    Ahmed M, Monsky WE, Girnun G, et al. Radiofrequency thermal ablation sharply increases intratumoral liposomal doxorubicin accumulation and tumor coagulation. Cancer Res. 2003;63:6327–33.PubMedGoogle Scholar
  89. 89.
    Monsky WL, Kruskal JB, Lukyanov AN, et al. Radio-frequency ablation increases intratumoral liposomal doxorubicin accumulation in a rat breast tumor model. Radiology. 2002;224:823–9.PubMedCrossRefGoogle Scholar
  90. 90.
    Poon RT, Borys N. Lyso-thermosensitive liposomal doxorubicin: a novel approach to enhance efficacy of thermal ablation of liver cancer. Expert Opin Pharmacother. 2009;10:333–43.PubMedCrossRefGoogle Scholar
  91. 91.
    Solazzo S, Ahmed M, Schor-Bardach R, et al. Liposomal doxorubicin increases radiofrequency ablation-induced tumor destruction by increasing cellular oxidative and nitrative stress and accelerating apoptotic pathways. Radiology. 2010;255(1):62–74.PubMedCrossRefGoogle Scholar
  92. 92.
    Yang W, Ahmed M, Elian M, et al. Do liposomal apoptotic enhancers increase tumor coagulation and end-point survival in percutaneous radiofrequency ablation of tumors in a rat tumor model? Radiology. 2010;257(3):685–96.PubMedCrossRefGoogle Scholar
  93. 93.
    Yang W, Ahmed M, Tasawwar B, et al. Radiofrequency (RF) ablation combined with adjuvant liposomal quercetin-induced heat shock protein suppression increases tumor destruction and end-point survival in a rat animal model. In: Proceedings from the 27th Annual Meeting of the Society of Thermal Medicine; 2010 April 23–26; Clearwater Beach, Florida. Abstract.Google Scholar
  94. 94.
    Dromi S, Frenkel V, Luk A, et al. Pulsed-high intensity focused ultrasound and low temperature-sensitive liposomes for enhanced targeted drug delivery and antitumor effect. Clin Cancer Res. 2007;13:2722–7.PubMedCrossRefGoogle Scholar
  95. 95.
    Danila D, Partha R, Elrod DB, Lackey M, Casscells SW, Conyers JL. Antibody-labeled liposomes for CT imaging of atherosclerotic plaques: in vitro investigation of an anti-ICAM antibody-labeled liposome containing iohexol for molecular imaging of atherosclerotic plaques via computed tomography. Tex Heart Inst J. 2009;36:393–403.PubMedGoogle Scholar
  96. 96.
    Erdogan S, Torchilin VP. Gadolinium-loaded polychelating polymer-containing tumor-targeted liposomes. Methods Mol Biol. 2010;605:321–34.PubMedCrossRefGoogle Scholar
  97. 97.
    Dupuy DE, DiPetrillo T, Gandhi S, et al. Radiofrequency ablation followed by conventional radiotherapy for medically inoperable stage I non-small cell lung cancer. Chest. 2006;129:738–45.PubMedCrossRefGoogle Scholar
  98. 98.
    Algan O, Fosmire H, Hynynen K, et al. External beam radiotherapy and hyperthermia in the treatment of patients with locally advanced prostate carcinoma. Cancer. 2000;89:399–403.PubMedCrossRefGoogle Scholar
  99. 99.
    Solazzo S, Mertyna P, Peddi H, Ahmed M, Horkan C, Goldberg SN. RF ablation with adjuvant therapy: comparison of external beam radiation and liposomal doxorubicin on ablation efficacy in an animal tumor model. Int J Hyperthermia. 2008;24:560–7.PubMedCrossRefGoogle Scholar
  100. 100.
    Chan MD, Dupuy DE, Mayo-Smith WW, Ng T, Dipetrillo TA. Combined radiofrequency ablation and high-dose rate brachytherapy for early-stage non-small-cell lung cancer [published online ahead of print August 24, 2010]. Brachytherapy. 2011;10(3):253–9. doi: 10.1016.j.brachy.2010.07.002.PubMedCrossRefGoogle Scholar
  101. 101.
    Grieco CA, Simon CJ, Mayo-Smith WW, DiPetrillo TA, Ready NE, Dupuy DE. Percutaneous image-guided thermal ablation and radiation therapy: outcomes of combined treatment for 41 patients with inoperable stage I/II non-small-cell lung cancer. J Vasc Interv Radiol. 2006;17:1117–24.PubMedCrossRefGoogle Scholar
  102. 102.
    Mayer R, Hamilton-Farrell MR, van der Kleij AJ, et al. Hyperbaric oxygen and radiotherapy. Strahlenther Onkol. 2005;181:113–23.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2012

Authors and Affiliations

  1. 1.Section of Interventional RadiologyBeth Israel Deaconess Medical Center, Harvard Medical SchoolBostonUSA
  2. 2.Department of RadiologyHebrew University-Hadassah Medical CenterJerusalemIsrael
  3. 3.Department of RadiologyBeth Israel Deaconess Medical Center, Harvard Medical SchoolBostonUSA

Personalised recommendations