Advertisement

Gender, Spatial Abilities, and Wayfinding

  • Carol A. Lawton
Chapter

Gender, Spatial Abilities, and Wayfinding

Spatial abilities refer to the cognitive processes involved in locating targets in space, perceiving distance and directional relationships, and mentally transforming objects with respect to their position or orientation in space. These abilities are used in everyday activities (e.g., finding one’s way home after driving an unfamiliar route) and in occupations that require design and planning in two- and three-dimensional space (e.g., engineering, architecture). Spatial abilities are of interest to gender researchers because they show the clearest evidence of gender differences in cognition; in fact, few other types of cognition show anything more than minimal gender differences (Hyde, 2005). Gender differences are larger for some spatial abilities than for others, but, with one exception, men perform better on average than do women. Before examining these differences in detail, it is important to establish why we should care about the...

Keywords

Mental Rotation Congenital Adrenal Hyperplasia Spatial Ability Stereotype Threat Spatial Task 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.

References

  1. Alexander, G. M., & Evardone, M. (2008). Blocks and bodies: Sex differences in a novel version of the Mental Rotations Test. Hormones and Behavior, 53, 177–184.PubMedCrossRefGoogle Scholar
  2. Alexander, G. M., Packard, M. G., & Peterson, B. S. (2002). Sex and spatial position effects on object location memory following intentional learning of object identities. Neuropsychologia, 40, 1516–1522.PubMedCrossRefGoogle Scholar
  3. Allen, G. L. (2000). Men and women, maps and minds: Cognitive bases of sex-related differences in reading and interpreting maps. In S. Ó. Nuallàin (Ed.), Spatial cognition: Foundations and applications (pp. 3–18). Amsterdam: Benjamins.Google Scholar
  4. Allen, G. L., Kirasic, K. C., Dobson, S. H., Long, R. G., & Beck, S. (1996). Predicting environmental learning from spatial abilities: An indirect route. Intelligence, 22, 327–355.CrossRefGoogle Scholar
  5. Amponsah, B. (2000). A comparison of sex differences in visual-spatial performance from preadolescence to adulthood in Ghana and Norway. African Journal of Psychology, 30, 1–12.CrossRefGoogle Scholar
  6. Annett, M. (1992). Spatial ability in subgroups of left- and right-handers. British Journal of Psychology, 83, 493–515.PubMedGoogle Scholar
  7. Astur, R. S., Ortiz, M. L., & Sutherland, R. J. (1998). A characterization of performance by men and women in a virtual Morris water task: A large and reliable sex difference. Behavioural Brain Research, 93, 185–190.PubMedCrossRefGoogle Scholar
  8. Astur, R. S., Tropp, J., Sava, S., Constable, R. T., & Markus, E. J. (2004). Sex differences and correlations in a virtual Morris water task, a virtual radial arm maze, and mental rotation. Behavioural Brain Research, 151, 103–115.PubMedCrossRefGoogle Scholar
  9. Baenninger, M., & Newcombe, N. S. (1989). The role of experience in spatial test performance: A meta-analysis. Sex Roles, 20, 327–344.CrossRefGoogle Scholar
  10. Barkley, C. L., & Gabriel, K. I. (2007). Sex differences in cue perception in a visual scene: Investigation of cue type. Behavioral Neuroscience, 121, 291–300.PubMedCrossRefGoogle Scholar
  11. Barnfield, A. M. C. (1999). Development of sex differences in spatial memory. Perceptual & Motor Skills, 89, 339–350.Google Scholar
  12. Barsky, R. D., & Lachman, M. E. (1986). Understanding of horizontality in college women: Effects of two training procedures. International Journal of Behavioral Development, 9, 31–43.CrossRefGoogle Scholar
  13. Beatty, W. W., & Tröster, A. I. (1987). Gender differences in geographical knowledge. Sex Roles, 16, 565–590.CrossRefGoogle Scholar
  14. Beatty, W. W., & Tröster, A. I. (1988). Neuropsychology of spatial memory. In H. A. Whitaker (Ed.), Contemporary reviews in neuropsychology (pp. 77–108). New York: Springer-Verlag.Google Scholar
  15. Becker, B. J., & Hedges, L. V. (1984). Meta-analysis of cognitive gender differences: A comment on an analysis by Rosenthal and Rubin. Journal of Educational Psychology, 76, 583–587.CrossRefGoogle Scholar
  16. Becker, M. W., & Pashler, H. (2002). Volatile visual representations: Failing to detect changes in recently processed information. Psychonomic Bulletin & Review, 9, 744–750.Google Scholar
  17. Bein, F. L. (1990). Baseline geography competency test: Administered in Indiana universities. Journal of Geography, 89, 260–265.CrossRefGoogle Scholar
  18. Bennett, G. K., Seashore, H. G., & Wesman, A. G. (1947). Differential aptitude tests. San Antonio, TX: Psychological Corporation.Google Scholar
  19. Berry, J. W. (1966). Temne and Eskimo perceptual skills. International Journal of Psychology, 1, 207–229.CrossRefGoogle Scholar
  20. Berthiaume, F., Robert, M., St-Onge, R., & Pelletier, J. (1993). Absence of a gender difference in a haptic version of the water-level task. Bulletin of the Psychonomic Society, 31, 57–60.Google Scholar
  21. Blanch, R. J., Brennan, D., Condon, B., Santosh, C., & Hadley, D. (2004). Are there gender-specific neural substrates of route learning from different perspectives? Cerebral Cortex, 14, 1207–1213.PubMedCrossRefGoogle Scholar
  22. Bryant, K. J. (1982). Personality correlates of sense of direction and geographic orientation. Journal of Personality and Social Psychology, 43, 1318–1324.PubMedCrossRefGoogle Scholar
  23. Burkitt, J., Widman, D., & Saucier, D. M. (2007). Evidence for the influence of testosterone in the performance of spatial navigation in a virtual water maze in women but not in men. Hormones and Behavior, 51, 649–654.PubMedCrossRefGoogle Scholar
  24. Cánovas, R., Espínola, M., Iribarne, L., & Cimadevilla, J. M. (2008). A new virtual task to evaluate human place learning. Behavioural Brain Research, 190, 112–118.PubMedCrossRefGoogle Scholar
  25. Caplan, P. J., MacPherson, G. M., & Tobin, P. (1985). Do sex-related differences in spatial abilities exist? A multilevel critique with new data. American Psychologist, 40, 786–799.PubMedCrossRefGoogle Scholar
  26. Casey, M. B. (1996). Understanding individual differences in spatial ability within females: A nature/nurture interactionist framework. Developmental Review, 16, 241–260.CrossRefGoogle Scholar
  27. Casey, M. B., & Brabeck, M. M. (1989). Exceptions to the male advantage on a spatial task: Family handedness and college major as factors identifying women who excel. Neuropsychologia, 27, 689–696.PubMedCrossRefGoogle Scholar
  28. Casey, M. B., & Brabeck, M. M. (1990). Women who excel on a spatial task: Proposed genetic and environmental factors. Brain and Cognition, 12, 73–84.PubMedCrossRefGoogle Scholar
  29. Casey, M. B., Colön, D., & Goris, Y. (1992). Family handedness as a predictor of mental rotation ability among minority girls in a math-science training program. Brain and Cognition, 18, 88–96.PubMedCrossRefGoogle Scholar
  30. Casey, M. B., Erkut, S., Ceder, I., & Young, J. M. (2008). Use of a storytelling context to improve girls’ and boys’ geometry skills in kindergarten. Journal of Applied Developmental Psychology, 29, 29–48.CrossRefGoogle Scholar
  31. Casey, M. B., Nuttall, R. L., & Pezaris, E. (1997). Mediators of gender differences in mathematics college entrance test scores: A comparison of spatial skills with internalized beliefs and anxieties. Developmental Psychology, 33, 669–680.PubMedCrossRefGoogle Scholar
  32. Casey, M. B., Nuttall, R. L., & Pezaris, E. (1999). Evidence in support of a model that predicts how biological and environmental factors interact to influence spatial skills. Developmental Psychology, 35, 1237–1247.PubMedCrossRefGoogle Scholar
  33. Casey, M. B., Nuttall, R. L., & Pezaris, E. (2001). Spatial-mechanical reasoning skills versus mathematical self-confidence as mediators of gender differences on mathematics subtests using cross-national gender-based items. Journal for Research in Mathematics Education, 32, 28–57.CrossRefGoogle Scholar
  34. Casey, M. B., Nuttall, R. L., Pezaris, E., & Benbow, C. P. (1995). The influence of spatial ability on gender differences in mathematics college entrance test scores across diverse samples. Developmental Psychology, 31, 697–705.CrossRefGoogle Scholar
  35. Casey, M. B., Winner, E., Brabeck, M. M., & Sullivan, K. (1990). Visual-spatial abilities in art, math, and science majors: Effects of sex, family handedness, and spatial experience. In K. J. Gilhooly, M. T. G. Keane, R. H. Logie, & G. Erdos (Eds.), Lines of thinking: Reflections on the psychology of thought (vol. 2, pp. 275–294). New York: Wiley.Google Scholar
  36. Cerone, L. J., & McKeever, W. F. (1998). Mental rotation test performances and familial sinistrality in dextrals, with special reference to the bent twig theory. Learning and Individual Differences, 10, 1–12.CrossRefGoogle Scholar
  37. Chabanne, V., Péruch, P., & Thinus-Blanc, C. (2004). Sex differences and women’s hormonal cycle effects on spatial performance in a virtual environment navigation task. Current Psychology of Cognition, 22, 351–375.Google Scholar
  38. Chang, K. T., & Antes, J. R. (1987). Sex and cultural differences in map reading. American Cartographer, 14, 29–42.CrossRefGoogle Scholar
  39. Charleston, S. I. (2008). The International Wayfinding Strategy scale: Evidence for cross-cultural use with as sample from the UK. Perceptual & Motor Skills, 106, 881–882.CrossRefGoogle Scholar
  40. Cherney, I. D., & Collaer, M. L. (2005). Sex differences in line judgment: Relation to mathematics preparation and strategy use. Perceptual & Motor Skills, 100, 615–627.CrossRefGoogle Scholar
  41. Cherney, I. D., & Neff, N. L. (2004). Role of strategies and prior exposure in mental rotation. Perceptual & Motor Skills, 98, 1269–1282.Google Scholar
  42. Chiarello, C., McMahon, M. A., & Schaefer, K. (1989). Visual cerebral lateralization over phases of the menstrual cycle: A preliminary investigation. Brain and Cognition, 11, 18–36.PubMedCrossRefGoogle Scholar
  43. Choi, J., & L’Hirondelle, N. (2005). Object location memory: A direct test of the verbal memory hypothesis. Learning and Individual Differences, 15, 237–245.CrossRefGoogle Scholar
  44. Choi, J., McKillop, E., Ward, M., & L’Hirondelle, N. (2006). Sex-specific relationships between route-learning strategies and abilities in a large-scale environment. Environment and Behavior, 38, 791–801.CrossRefGoogle Scholar
  45. Choi, J., & Silverman, I. (2003). Processes underlying sex differences in route-learning strategies in children and adolescents. Personality and Individual Differences, 34, 1153–1166.CrossRefGoogle Scholar
  46. Collaer, M. L., & Hill, E. M. (2006). Large sex difference in adolescents on a timed line judgment task: Attentional contributors and task relationship to mathematics. Perception, 35, 561–572.PubMedCrossRefGoogle Scholar
  47. Collaer, M. L., & Nelson, J. D. (2002). Large visuospatial sex difference in line judgment: Possible role of attentional factors. Brain and Cognition, 49, 1–12.PubMedCrossRefGoogle Scholar
  48. Collins, D. W., & Kimura, D. (1997). A large sex difference on a two-dimensional mental rotation task. Behavioral Neuroscience, 111, 845–849.PubMedCrossRefGoogle Scholar
  49. Coluccia, E., Bosco, A., & Brandimonte, M. A. (2007). The role of visuo-spatial working memory in map learning: New findings from a map drawing paradigm. Psychological Research/Psychologische Forschung, 71, 359–372.CrossRefGoogle Scholar
  50. Contreras, M. J., Colom, R., Shih, P. C., Álava, M. J., & Santacreu, J. (2001). Dynamic spatial performance: Sex and educational differences. Personality and Individual Differences, 30, 117–126.CrossRefGoogle Scholar
  51. Contreras, M. J., Rubio, V. J., Peña, D., Colom, R., & Santacreu, J. (2007). Sex differences in dynamic spatial ability: The unsolved question of performance factors. Memory & Cognition, 35, 297–303.Google Scholar
  52. Crawford, M., Herrmann, D. J., Holdsworth, M. J., Randall, E. P., & Robbins, D. (1989). Gender and beliefs about memory. British Journal of Psychology, 80, 391–401.Google Scholar
  53. Cutmore, T. R. H., Hine, T. J., Maberly, K. J., Langford, N. M., & Hawgood, G. (2000). Cognitive and gender factors influencing navigation in a virtual environment. International Journal of Human-Computer Studies, 53, 223–249.CrossRefGoogle Scholar
  54. Dabbs, J. M., Jr., Chang, E. L., Strong, R. A., & Milun, R. (1998). Spatial ability, navigation strategy, and geographic knowledge among men and women. Evolution and Human Behavior, 19, 89–98.CrossRefGoogle Scholar
  55. De Lisi, R., & Wolford, J. L. (2002). Improving children’s mental rotation accuracy with computer game playing. Journal of Genetic Psychology, 163, 272–282.PubMedCrossRefGoogle Scholar
  56. Devlin, A. S., & Bernstein, J. (1995). Interactive wayfinding: Use of cues by men and women. Journal of Environmental Psychology, 15, 23–38.CrossRefGoogle Scholar
  57. Devlin, A. S., & Bernstein, J. (1997). Interactive way-finding: Map style and effectiveness. Journal of Environmental Psychology, 17, 99–110.CrossRefGoogle Scholar
  58. Duff, S. J., & Hampson, E. (2001). A sex differences on a novel spatial working memory task in humans. Brain and Cognition, 47, 470–493.PubMedCrossRefGoogle Scholar
  59. Eals, M., & Silverman, I. (1994). The hunter-gatherer theory of spatial sex differences: Proximate factors mediating the female advantage in recall of object arrays. Ethology & Sociobiology, 15, 95–105.CrossRefGoogle Scholar
  60. Ecuyer-Dab, I., & Robert, M. (2004a). Have sex differences in spatial ability evolved from male competition for mating and female concern for survival? Cognition, 91, 221–257.Google Scholar
  61. Ecuyer-Dab, I., & Robert, M. (2004b). Spatial ability and home-range size: Examining the relationship in western men and women (Homo sapiens). Journal of Comparative Psychology, 118, 217–231.Google Scholar
  62. Ecuyer-Dab, I., & Robert, M. (2007). The female advantage in object location memory according to the foraging hypothesis: A critical analysis. Human Nature, 18, 365–385.CrossRefGoogle Scholar
  63. Ehrlich, S. B., Levine, S. C., & Goldin-Meadow, S. (2006). The importance of gesture in children’s spatial reasoning. Developmental Psychology, 42, 1259–1268.PubMedCrossRefGoogle Scholar
  64. Eve, R. A., Price, B., & Counts, M. (1994). Geographic illiteracy among college students. Youth & Society, 25, 408–427.CrossRefGoogle Scholar
  65. Feingold, A. (1988). Cognitive gender differences are disappearing. American Psychologist, 43, 95–103.CrossRefGoogle Scholar
  66. Feingold, A. (1993). Cognitive gender differences: A developmental perspective. Sex Roles, 29, 91–112.CrossRefGoogle Scholar
  67. Feng, J., Spence, I., & Pratt, J. (2007). Playing an action video game reduces gender differences in spatial cognition. Psychological Science, 18, 850–855.PubMedCrossRefGoogle Scholar
  68. Fennema, E. (1975). Spatial ability, mathematics, and the sexes. In E. Fennema (Ed.), Mathematics learning: What research says about sex differences (pp. 33–43). Columbus, OH: ERIC Center for Science, Mathematics, and Environmental Education.Google Scholar
  69. Fields, A. W., & Shelton, A. L. (2006). Individual skill differences and large-scale environmental learning. Journal of Experimental Psychology: Learning, Memory, and Cognition, 32, 506–515.PubMedCrossRefGoogle Scholar
  70. Galea, L. A., & Kimura, D. (1993). Sex differences in route-learning. Personality and Individual Differences, 14, 53–65.CrossRefGoogle Scholar
  71. Gaulin, S. J., & FitzGerald, R. W. (1989). Sexual selection for spatial-learning ability. Animal Behaviour, 37, 322–331.CrossRefGoogle Scholar
  72. Gaulin, S. J., FitzGerald, R. W., & Wartell, M. S. (1990). Sex differences in spatial ability and activity in two vole species (Microtus ochrogaster and M. pennsylvanicus). Journal of Comparative Psychology, 104, 88–93.PubMedCrossRefGoogle Scholar
  73. Geary, D. C. (1995). Sexual selection and sex differences in spatial cognition. Learning and Individual Differences, 7, 289–301.CrossRefGoogle Scholar
  74. Geary, D. C., Saults, S. J., Liu, F., & Hoard, M. K. (2000). Sex differences in spatial cognition, computational fluency, and arithmetical reasoning. Journal of Experimental Child Psychology, 77, 337–353.PubMedCrossRefGoogle Scholar
  75. Geiger, J. F., & Litwiller, R. M. (2005). Spatial working memory and gender differences in science. Journal of Instructional Psychology, 32, 49–57.Google Scholar
  76. Gilmartin, P. P. (1986). Maps, mental imagery, and gender in the recall of geographical information. The American Cartographer, 13, 335–344.CrossRefGoogle Scholar
  77. Glück, J., & Fitting, S. (2003). Spatial strategy selection: Interesting incremental information. International Journal of Testing, 3, 293–308.CrossRefGoogle Scholar
  78. Goldstein, D., Haldane, D., & Mitchell, C. (1990). Sex differences in visual-spatial ability: The role of performance factors. Memory & Cognition, 18, 546–550.Google Scholar
  79. Grön, G., Wunderlich, A. P., Spitzer, M., Tomczak, R., & Riepe, M. W. (2000). Brain activation during human navigation: Gender-different neural networks as substrate of performance. Nature Neuroscience, 3, 404–408.PubMedCrossRefGoogle Scholar
  80. Gur, R. C., Alsop, D., Glahn, D., Petty, R., Swanson, C. L., Maldjian, J. A., et al. (2000). An fMRI study of sex differences in regional activation to a verbal and a spatial task. Brain and Language, 74, 157–170.PubMedCrossRefGoogle Scholar
  81. Halari, R., Hines, M., Kumari, V., Mehrotra, R., Wheeler, M., Ng, V., et al. (2005). Sex differences and individual differences in cognitive performance and their relationship to endogenous gonadal hormones and gonadotropins. Behavioral Neuroscience, 119, 104–117.PubMedCrossRefGoogle Scholar
  82. Halpern, D. F. (2000). Sex differences in cognitive abilities (3rd ed.). Mahwah, NJ: Erlbaum.Google Scholar
  83. Halpern, D. F., & Tan, U. (2001). Stereotypes and steroids: Using a psychobiosocial model to understand cognitive sex differences. Brain and Cognition, 45, 392–414.PubMedCrossRefGoogle Scholar
  84. Halpern, D. F., & Wright, T. M. (1996). A process-oriented model of cognitive sex differences. Learning & Individual Differences, 8, 3–24.CrossRefGoogle Scholar
  85. Hampson, E. (1990a). Estrogen-related variations in human spatial and articulatory-motor skills. Psychoneuroendocrinology, 15, 97–111.Google Scholar
  86. Hampson, E. (1990b). Variations in sex-related cognitive abilities across the menstrual cycle. Brain and Cognition, 14, 26–43.Google Scholar
  87. Hampson, E., & Kimura, D. (1988). Reciprocal effects of hormonal fluctuations on human motor and perceptual-spatial skills. Behavioral Neuroscience, 102, 456–459.PubMedCrossRefGoogle Scholar
  88. Hand, L. L., Uttal, D. H., Marulis, L., Newcombe, N. S., Warren, C., & Lewis, A. A meta-analysis of training effects on spatial skills: What works, for whom, and why? (under review).Google Scholar
  89. Harrell, W. A., Bowlby, J. W., & Hall-Hoffarth, D. (2000). Directing wayfinders with maps: The effects of gender, age, route complexity, and familiarity with the environment. Journal of Social Psychology, 140, 169–178.PubMedCrossRefGoogle Scholar
  90. Hart, R. (1979). Children’s experience of place. Oxford: Irvington.Google Scholar
  91. Hegarty, M., Montello, D. R., Richardson, A. E., Ishikawa, T., & Lovelace, K. (2006). Spatial abilities at different scales: Individual differences in aptitude-test performance and spatial-layout learning. Intelligence, 34, 151–176.CrossRefGoogle Scholar
  92. Heil, M., & Jansen-Osmann, P. (2008). Sex differences in mental rotation with polygons of different complexity: Do men utilize holistic processes, whereas women prefer piecemeal ones? Quarterly Journal of Experimental Psychology, 61, 683–689.CrossRefGoogle Scholar
  93. Henrie, R. L., Aron, R. H., Nelson, B. D., & Poole, D. A. (1997). Gender-related knowledge variations within geography. Sex Roles, 36, 605–623.CrossRefGoogle Scholar
  94. Herman, J. F., Heins, J. A., & Cohen, D. S. (1987). Children’s spatial knowledge of their neighborhood environment. Journal of Applied Developmental Psychology, 8, 1–15.CrossRefGoogle Scholar
  95. Herman, J. F., Kail, R. V., & Siegel, A. W. (1979). Cognitive maps of a college campus: A new look at freshman orientation. Bulletin of the Psychonomic Society, 13, 183–186.Google Scholar
  96. Herrmann, D. J., Crawford, M., & Holdsworth, M. (1992). Gender-linked differences in everyday memory performance. British Journal of Psychology, 83, 221–231.PubMedGoogle Scholar
  97. Hines, M. (2007). Do sex differences in cognition cause the shortage of women in science? In S. J. Ceci & W. M. Williams (Eds.), Why aren’t more women in science? Top researchers debate the evidence (pp. 101–112). Washington, DC: American Psychological Association.CrossRefGoogle Scholar
  98. Holding, C. S. (1992). Clusters of reference points in cognitive representations of the environment. Journal of Environmental Psychology, 12, 45–55.CrossRefGoogle Scholar
  99. Holding, C. S., & Holding, D. H. (1989). Acquisition of route network knowledge by males and females. Journal of General Psychology, 116, 29–41.CrossRefGoogle Scholar
  100. Hugdahl, K., Thomsen, T., & Ersland, L. (2006). Sex differences in visuo-spatial processing: An fMRI study of mental rotation. Neuropsychologia, 44, 1575–1583.PubMedCrossRefGoogle Scholar
  101. Hyde, J. S. (1981). How large are cognitive gender differences? A meta-analysis using ω² and d. American Psychologist, 36, 892–901.CrossRefGoogle Scholar
  102. Hyde, J. S. (2005). The gender similarities hypothesis. American Psychologist, 60, 581–592.PubMedCrossRefGoogle Scholar
  103. Iachini, T., Sergi, I., Ruggiero, G., & Gnisci, A. (2005). Gender differences in object location memory in real three-dimensional environment. Brain and Cognition, 59, 52–59.PubMedCrossRefGoogle Scholar
  104. Isgor, C., & Sengelaub, D. R. (1998). Prenatal gonadal steroids affect adult spatial behavior, CA1 and CA3 pyramidal cell morphology in rats. Hormones and Behavior, 34, 183–198.PubMedCrossRefGoogle Scholar
  105. Jacobs, L. F., & Schenk, F. (2003). Unpacking the cognitive map: The parallel map theory of hippocampal function. Psychological Review, 110, 285–315.PubMedCrossRefGoogle Scholar
  106. James, T. W., & Kimura, D. (1997). Sex differences in remembering the locations of objects in an array: Location-shifts versus location-exchanges. Evolution and Human Behavior, 18, 155–163.CrossRefGoogle Scholar
  107. Jansen-Osmann, P., & Wiedenbauer, G. (2004). The representation of landmarks and routes in children and adults: A study in a virtual environment. Journal of Environmental Psychology, 24, 347–357.CrossRefGoogle Scholar
  108. Johnson, B. W., McKenzie, K. J., & Hamm, J. P. (2002). Cerebral asymmetry for mental rotation: Effects of response hand, handedness, and gender. Neuroreport, 13, 1929–1932.PubMedCrossRefGoogle Scholar
  109. Jonasson, Z. (2005). Meta-analysis of sex differences in rodent models of learning and memory: A review of behavioral and biological data. Neuroscience & Biobehavioral Reviews, 28, 811–825.CrossRefGoogle Scholar
  110. Jones, C. M., Braithwaite, V. A., & Healy, S. D. (2003). The evolution of sex differences in spatial ability. Behavioral Neuroscience, 117, 403–411.PubMedCrossRefGoogle Scholar
  111. Jordan, K., Wüstenberg, T., Heinze, H. J., Peters, M., & Jäncke, L. (2002). Women and men exhibit different cortical activation patterns during mental rotation tasks. Neuropsychologia, 40, 2397–2408.PubMedCrossRefGoogle Scholar
  112. Jovanovic, J., & Lerner, R. M. (1994). Individual-contextual relationships and mathematics performance: Comparing American and Serbian young adolescents. Journal of Early Adolescence, 14, 449–470.CrossRefGoogle Scholar
  113. Kail, R., Carter, P., & Pellegrino, J. W. (1979). The locus of sex differences in spatial ability. Perception & Psychophysics, 26, 182–186.Google Scholar
  114. Kass, S. J., Ahlers, R. H., & Dugger, M. (1998). Eliminating gender differences through practice in an applied visual spatial task. Human Performance, 11, 337–349.CrossRefGoogle Scholar
  115. Kaufman, S. B. (2007). Sex differences in mental rotation and spatial visualization ability: Can they be accounted for by differences in working memory capacity? Intelligence, 35, 211–223.CrossRefGoogle Scholar
  116. Kelly, D. M., & Bischof, W. F. (2005). Reorienting in images of a three-dimensional environment. Journal of Experimental Psychology: Human Perception and Performance, 31, 1391–1403.PubMedCrossRefGoogle Scholar
  117. Kempel, P., Gohlke, B., Klempau, J., Zinsberger, P., Reuter, M., & Hennig, J. (2005). Second-to-fourth digit length, testosterone, and spatial ability. Intelligence, 33, 215–230.CrossRefGoogle Scholar
  118. Kersker, J. L., Epley, M. L., & Wilson, J. F. (2003). Sex differences in landmark learning by children aged 5–12 years. Perceptual & Motor Skills, 96, 329–338.CrossRefGoogle Scholar
  119. Kinsey, B. L., Towle, E., O’Brien, E. J., & Bauer, C. F. (2008). Analysis of self-efficacy and ability related to spatial tasks and the effect on retention for students in engineering. International Journal of Engineering Education, 24, 488–494.Google Scholar
  120. Korol, D. L., & Kolo, L. L. (2002). Estrogen-induced changes in place and response learning in young adult female rats. Behavioral Neuroscience, 116, 411–420.PubMedCrossRefGoogle Scholar
  121. Korol, D. L., Malin, E. L., Borden, K. A., Busby, R. A., & Couper-Leo, J. (2004). Shifts in preferred learning strategy across the estrous cycle in female rats. Hormones and Behavior, 45, 330–338.PubMedCrossRefGoogle Scholar
  122. Kramer, G. A., & Smith, R. M. (2001). An investigation of gender differences in the components influencing the difficulty of spatial ability items. Journal of Applied Measurement, 2, 65–77.PubMedGoogle Scholar
  123. Kuhlman, J. S., & Beitel, P. A. (1991). Videogame experience: A possible explanation for differences in anticipation of coincidence. Perceptual & Motor Skills, 72, 483–488.CrossRefGoogle Scholar
  124. Kyllonen, P. C., Lohman, D. F., & Woltz, D. J. (1984). Componential modeling of alternative strategies for performing spatial tasks. Journal of Educational Psychology, 76, 1325–1345.CrossRefGoogle Scholar
  125. Lajoie, S. P. (2003). Individual differences in spatial ability: Developing technologies to increase strategy awareness and skills. Educational Psychologist, 38, 115–125.CrossRefGoogle Scholar
  126. Lambrey, S., & Berthoz, A. (2007). Gender differences in the use of external landmarks versus spatial representations updated by self-motion. Journal of Integrative Neuroscience, 6, 379–402.PubMedCrossRefGoogle Scholar
  127. Law, D. J., Pellegrino, J. W., & Hunt, E. B. (1993). Comparing the tortoise and the hare: Gender differences and experience in dynamic spatial reasoning tasks. Psychological Science, 4, 35–40.CrossRefGoogle Scholar
  128. Law, D. J., Pellegrino, J. W., Mitchell, S. R., Fischer, S. C., McDonald, T. P., & Hunt, E. B. (1993). Perceptual and cognitive factors governing performance in comparative arrival-time judgments. Journal of Experimental Psychology: Human Perception and Performance, 19, 1183–1199.PubMedCrossRefGoogle Scholar
  129. Lawton, C. A. (1994). Gender differences in way-finding strategies: Relationship to spatial ability and spatial anxiety. Sex Roles, 30, 765–779.CrossRefGoogle Scholar
  130. Lawton, C. A. (1996). Strategies for indoor wayfinding: The role of orientation. Journal of Environmental Psychology, 16, 137–145.CrossRefGoogle Scholar
  131. Lawton, C. A. (2001). Gender and regional differences in spatial referents used in direction giving. Sex Roles, 44, 321–337.CrossRefGoogle Scholar
  132. Lawton, C. A., & Kallai, J. (2002). Gender differences in wayfinding strategies and anxiety about wayfinding: A cross-cultural comparison. Sex Roles, 47, 389–401.CrossRefGoogle Scholar
  133. Lawton, C. A., & Morrin, K. A. (1999). Gender differences in pointing accuracy in computer-simulated 3D mazes. Sex Roles, 40, 73–92.CrossRefGoogle Scholar
  134. Levine, S. C., Huttenlocher, J., Taylor, A., & Langrock, A. (1999). Early sex differences in spatial skill. Developmental Psychology, 35, 940–949.PubMedCrossRefGoogle Scholar
  135. Levine, S. C., Vasilyeva, M., Lourenco, S. F., Newcombe, N. S., & Huttenlocher, J. (2005). Socioeconomic status modifies the sex difference in spatial skill. Psychological Science, 16, 841–845.PubMedCrossRefGoogle Scholar
  136. Levy, L. J., Astur, R. S., & Frick, K. M. (2005). Men and women differ in object memory but not performance of a virtual radial maze. Behavioral Neuroscience, 119, 853–862.PubMedCrossRefGoogle Scholar
  137. Lewin, C., Wolgers, G., & Herlitz, A. (2001). Sex differences favoring women in verbal but not in visuospatial episodic memory. Neuropsychology, 15, 165–173.PubMedCrossRefGoogle Scholar
  138. Liben, L. S. (1978). Performance on Piagetian spatial tasks as a function of sex, field dependence, and training. Merrill-Palmer Quarterly, 24, 97–110.Google Scholar
  139. Liben, L. S. (2006). Education for spatial thinking. In K. A. Renninger, I. E. Sigel, W. Damon & R. M. Lerner (Eds.), Handbook of child psychology (6th ed., vol. 4, pp. 197–247). Hoboken, NJ: Wiley.Google Scholar
  140. Liben, L. S., & Golbeck, S. L. (1980). Sex differences in performance on Piagetian spatial tasks: Differences in competence or performance? Child Development, 51, 594–597.CrossRefGoogle Scholar
  141. Liben, L. S., & Golbeck, S. L. (1984). Performance on Piagetian horizontality and verticality tasks: Sex-related differences in knowledge of relevant physical phenomena. Developmental Psychology, 20, 595–606.CrossRefGoogle Scholar
  142. Liben, L. S., Susman, E. J., Finkelstein, J. W., Chinchilli, V. M., Kunselman, S., Schwab, J., et al. (2002). The effects of sex steroids on spatial performance: A review and an experimental clinical investigation. Developmental Psychology, 38, 236–253.PubMedCrossRefGoogle Scholar
  143. Linn, M. C., & Petersen, A. C. (1985). Emergence and characterization of sex differences in spatial ability: A meta-analysis. Child Development, 56, 1479–1498.PubMedCrossRefGoogle Scholar
  144. Loring-Meier, S., & Halpern, D. F. (1999). Sex differences in visuospatial working memory: Components of cognitive processing. Psychonomic Bulletin & Review, 6, 464–471.Google Scholar
  145. Lövdén, M., Hellitz, A., Schellenbach, M., Grossman-Hunter, B., Kruger, A., & Lindenberger, U. (2007). Quantitative and qualitative sex differences in spatial navigation. Scandinavian Journal of Educational Research, 48, 353–358.Google Scholar
  146. Maccoby, E. E., & Jacklin, C. N. (1974). The psychology of sex differences. Stanford, CA: Stanford University.Google Scholar
  147. MacFadden, A., Elias, L., & Saucier, D. (2003). Males and females scan maps similarly, but give directions differently. Brain and Cognition, 53, 297–300.PubMedCrossRefGoogle Scholar
  148. Malinowski, J. C., & Gillespie, W. T. (2001). Individual differences in performance on a large-scale, real-world wayfinding task. Journal of Environmental Psychology, 21, 73–82.CrossRefGoogle Scholar
  149. Mann, V. A., Sasanuma, S., Sakuma, N., & Masaki, S. (1990). Sex differences in cognitive abilities: A cross-cultural perspective. Neuropsychologia, 28, 1063–1077.PubMedCrossRefGoogle Scholar
  150. Massa, L. J., Mayer, R. E., & Bohon, L. M. (2005). Individual differences in gender role beliefs influence spatial ability test performance. Learning and Individual Differences, 15, 99–111.CrossRefGoogle Scholar
  151. Masters, M. S. (1998). The gender difference on the Mental Rotations Test is not due to performance factors. Memory & Cognition, 26, 444–448.Google Scholar
  152. Masters, M. S., & Sanders, B. (1993). Is the gender difference in mental rotation disappearing? Behavior Genetics, 23, 337–341.PubMedCrossRefGoogle Scholar
  153. Matthews, M. H. (1986). Gender, graphicacy, and geography. Educational Review, 38, 259–271.CrossRefGoogle Scholar
  154. McBurney, D. H., Gaulin, S. J. C., Devineni, T., & Adams, C. (1997). Superior spatial memory of women: Stronger evidence for the gathering hypothesis. Evolution and Human Behavior, 18, 165–174.CrossRefGoogle Scholar
  155. McGlone, J. (1980). Sex differences in human brain asymmetry: A critical survey. Behavioral and Brain Sciences, 3, 215–263.CrossRefGoogle Scholar
  156. McGlone, M. S., & Aronson, J. (2006). Stereotype threat, identity salience, and spatial reasoning. Journal of Applied Developmental Psychology, 27, 486–493.CrossRefGoogle Scholar
  157. Meehan, A. M., & Overton, W. F. (1986). Gender differences in expectancies for success and performance on Piagetian spatial tasks. Merrill-Palmer Quarterly, 32, 427–441.Google Scholar
  158. Miles, C., Green, R., Sanders, G., & Hines, M. (1998). Estrogen and memory in a transsexual population. Hormones and Behavior, 34, 199–208.PubMedCrossRefGoogle Scholar
  159. Miller, L. K., & Santoni, V. (1986). Sex differences in spatial abilities: Strategic and experiential correlates. Acta Psychologica, 62, 225–235.PubMedCrossRefGoogle Scholar
  160. Moody, M. S. (1997). Changes in scores on the Mental Rotations Test during the menstrual cycle. Perceptual & Motor Skills, 84, 955–961.Google Scholar
  161. Moore, D. S., & Johnson, S. P. (2008). Mental rotation in human infants: A sex difference. Psychological Science, 19, 1063–1066.PubMedCrossRefGoogle Scholar
  162. Newcombe, N. S. (2007). Taking science seriously: Straight thinking about spatial sex differences. In S. J. Ceci & W. M. Williams (Eds.), Why aren’t more women in science? Top researchers debate the evidence (pp. 69–77). Washington, DC: American Psychological Association.CrossRefGoogle Scholar
  163. Newcombe, N. S., & Dubas, J. S. (1992). A longitudinal study of predictors of spatial ability in adolescent females. Child Development, 63, 37–46.PubMedCrossRefGoogle Scholar
  164. Newcombe, N. S., Mathason, L., & Terlecki, M. (2002). Maximization of spatial competence: More important than finding the cause of sex differences. In A. McGillicuddy-De Lisi & R. De Lisi (Eds.), Biology, society, and behavior: The development of sex differences in cognition (pp. 183–206). Westport, CT: Ablex.Google Scholar
  165. Newhouse, P., Newhouse, C., & Astur, R. S. (2007). Sex differences in visual-spatial learning using a virtual water maze in pre-pubertal children. Behavioural Brain Research, 183, 1–7.PubMedCrossRefGoogle Scholar
  166. Newson, J., & Newson, E. (1987). Family and sex roles in middle childhood. In D. J. Hargreaves & A. M. Colley (Eds.), The psychology of sex roles (pp. 142–158). Washington, DC: Hemisphere.Google Scholar
  167. Ohnishi, T., Matsuda, H., Hirakata, M., & Ugawa, Y. (2006). Navigation ability dependent neural activation in the human brain: An fMRI study. Neuroscience Research, 55, 361–369.PubMedCrossRefGoogle Scholar
  168. Ozel, S., Molinaro, C., & Larue, J. (2001). Influence of sport on gender differences in spatial imagery. Homeostasis in Health and Disease, 41, 169–175.Google Scholar
  169. Parameswaran, G. (1995). Gender differences in horizontality performance before and after training. Journal of Genetic Psychology, 156, 105–113.PubMedCrossRefGoogle Scholar
  170. Parameswaran, G. (2003). Age, gender, and training in children’s performance of Piaget’s horizontality task. Educational Studies, 29, 307–319.CrossRefGoogle Scholar
  171. Parameswaran, G., & De Lisi, R. (1996). Improvements in horizontality performance as a function of type of training. Perceptual & Motor Skills, 82, 595–603.Google Scholar
  172. Park, J., Carter, G., Butler, S., Slykhuis, D., & Reid-Griffin, A. (2008). Re-dimensional thinking in Earth science: From 3-D virtual reality panoramas to 2-D contour maps. Journal of Interactive Learning Research, 19, 75–90.Google Scholar
  173. Parsons, T. D., Larson, P., Kratz, K., Thiebaux, M., Bluestein, B., Buckwalter, J. G., et al. (2004). Sex differences in mental rotation and spatial rotation in a virtual environment. Neuropsychologia, 42, 555–562.PubMedCrossRefGoogle Scholar
  174. Peña, D., Contreras, M. J., Shih, P. C., & Santacreu, J. (2008). Solution strategies as possible explanations of individual and sex differences in a dynamic spatial task. Acta Psychologica, 128, 1–14.PubMedCrossRefGoogle Scholar
  175. Peters, M., Laeng, B., Latham, K., Jackson, M., Zaiyouna, R., & Richardson, C. (1995). A redrawn Vandenberg and Kuse Mental Rotations Test: Different versions and factors that affect performance. Brain and Cognition, 28, 39–58.PubMedCrossRefGoogle Scholar
  176. Peters, M., Manning, J., & Reimers, S. (2007). The effects of sex, sexual orientation, and digit ratio (2D:4D) on mental rotation performance. Archives of Sexual Behavior, 36, 251–260.PubMedCrossRefGoogle Scholar
  177. Piaget, J., & Inhelder, B. (1956). The child’s conception of space (F. J. Langdon & J. L. Lunzer, Trans.). New York: Norton.Google Scholar
  178. Postma, A., Izendoorn, R., & De Haan, E. H. F. (1998). Sex differences in object location memory. Brain and Cognition, 36, 334–345.PubMedCrossRefGoogle Scholar
  179. Postma, A., Jager, G., Kessels, R. P. C., Koppeschaar, H. P. F., & van Honk, J. (2004). Sex differences for selective forms of spatial memory. Brain and Cognition, 54, 24–34.PubMedCrossRefGoogle Scholar
  180. Postma, A., Meyer, G., Tuiten, A., van Honk, J., Kessels, R. P. C., & Thijssen, J. (2000). Effects of testosterone administration on selective aspects of object-location memory in healthy young women. Psychoneuroendocrinology, 25, 563–575.PubMedCrossRefGoogle Scholar
  181. Postma, A., Winkel, J., Tuiten, A., & van Honk, J. (1999). Sex differences and menstrual cycle effects in human spatial memory. Psychoneuroendocrinology, 24, 175–192.PubMedCrossRefGoogle Scholar
  182. Prestopnik, J. L., & Roskos-Ewoldsen, B. (2000). The relations among wayfinding strategy use, sense of direction, sex, familiarity, and wayfinding ability. Journal of Environmental Psychology, 20, 177–191.CrossRefGoogle Scholar
  183. Puts, D. A., McDaniel, M. A., Jordan, C. L., & Breedlove, S. M. (2008). Spatial ability and prenatal androgens: Meta-analyses of congenital adrenal hyperplasia and digit ratio (2D:4D) studies. Archives of Sexual Behavior, 37, 100–111.PubMedCrossRefGoogle Scholar
  184. Quaiser-Pohl, C., & Lehmann, W. (2002). Girls’ spatial abilities: Charting the contributions of experiences and attitudes in different academic groups. British Journal of Educational Psychology, 72, 245–260.PubMedCrossRefGoogle Scholar
  185. Quinn, P. C., & Liben, L. S. (2008). A sex difference in mental rotation in young infants. Psychological Science, 19, 1067–1070.PubMedCrossRefGoogle Scholar
  186. Rafi, A., Anuar, K., Samad, A., Hayati, M., & Mahadzir, M. (2005). Improving spatial ability using a web-based virtual environment (WbVE). Automation in Construction, 14, 707–715.CrossRefGoogle Scholar
  187. Rahman, Q., Abrahams, S., & Jussab, F. (2005). Sex differences in a human analogue of the radial arm maze: The “17-Box Maze Test.” Brain and Cognition, 58, 312–317.PubMedCrossRefGoogle Scholar
  188. Reinking, R., Goldstein, G., & Houston, B. K. (1974). Cognitive style, proprioceptive skills, task set, stress, and the Rod-and-Frame Test of field orientation. Journal of Personality and Social Psychology, 30, 807–811.PubMedCrossRefGoogle Scholar
  189. Rilea, S. L., Roskos-Ewoldsen, B., & Boles, D. (2004). Sex differences in spatial ability: A lateralization of function approach. Brain and Cognition, 56, 332–343.PubMedCrossRefGoogle Scholar
  190. Robert, M., & Chevrier, E. (2003). Does men’s advantage in mental rotation persist when real three-dimensional objects are either felt or seen? Memory & Cognition, 31, 1136.Google Scholar
  191. Robert, M., & Harel, F. (1996). The gender difference in orienting liquid surfaces and plumb-lines: Its robustness, its correlates, and the associated knowledge of simple physics. Canadian Journal of Experimental Psychology, 50, 280–314.PubMedGoogle Scholar
  192. Robert, M., & Héroux, G. (2004). Visuo-spatial play experience: Forerunner of visuo-spatial achievement in preadolescent and adolescent boys and girls? Infant and Child Development, 13, 49–78.CrossRefGoogle Scholar
  193. Robert, M., & Longpré, S. (2005). Sensory and postural input in the occurrence of a gender difference in orienting liquid surfaces. Psychological Record, 55, 67–89.Google Scholar
  194. Robert, M., & Morin, P. (1993). Gender differences in horizontality and verticality representation in relation to initial position of the stimuli. Canadian Journal of Experimental Psychology, 47, 507–522.PubMedGoogle Scholar
  195. Robert, M., Pelletier, J., St-Onge, R., & Berthiaume, F. (1994). Women’s deficiency in water-level representation: Present in visual conditions yet absent in haptic contexts. Acta Psychologica, 87, 19–32.PubMedCrossRefGoogle Scholar
  196. Robert, M., & Tremblay, S. (1992). Gender differences in water-level representation as a function of information on state of liquid. Journal of Genetic Psychology, 153, 231–235.Google Scholar
  197. Roof, R. L., & Havens, M. D. (1992). Testosterone improves maze performance and induces development of a male hippocampus in females. Brain Research, 572, 310–313.PubMedCrossRefGoogle Scholar
  198. Rosenthal, R., & Rubin, D. B. (1982). Further meta-analytic procedures for assessing cognitive gender differences. Journal of Educational Psychology, 74, 708–712.CrossRefGoogle Scholar
  199. Ross, S. P., Skelton, R. W., & Mueller, S. C. (2006). Gender differences in spatial navigation in virtual space: Implications when using virtual environments in instruction and assessment. Virtual Reality, 10, 175–184.CrossRefGoogle Scholar
  200. Sandstrom, N. J., Kaufman, J., & Huettel, S. A. (1998). Males and females use different distal cues in a virtual environment navigation task. Cognitive Brain Research, 6, 351–360.PubMedCrossRefGoogle Scholar
  201. Saucier, D., Bowman, M., & Elias, L. (2003). Sex differences in the effect of articulatory or spatial dual-task interference during navigation. Brain and Cognition, 53, 346–350.PubMedCrossRefGoogle Scholar
  202. Saucier, D., Lisoway, A., Green, S., & Elias, L. (2007). Female advantage for object location memory in peripersonal but not extrapersonal space. Journal of the International Neuropsychological Society, 13, 683–686.PubMedCrossRefGoogle Scholar
  203. Saucier, D. M., Green, S. M., Leason, J., MacFadden, A., Bell, S., & Elias, L. J. (2002). Are sex differences in navigation caused by sexually dimorphic strategies or by differences in the ability to use the strategies? Behavioral Neuroscience, 116, 403–410.PubMedCrossRefGoogle Scholar
  204. Saucier, D. M., Shultz, S. R., Keller, A. J., Cook, C. M., & Binsted, G. (2008). Sex differences in object location memory and spatial navigation in Long-Evans rats. Animal Cognition, 11, 129–137.PubMedCrossRefGoogle Scholar
  205. Sharps, M. J., Price, J. L., & Williams, J. K. (1994). Spatial cognition and gender: Instructional and stimulus influences on mental image rotation performance. Psychology of Women Quarterly, 18, 413–425.CrossRefGoogle Scholar
  206. Sharps, M. J., Welton, A. L., & Price, J. L. (1993). Gender and task in the determination of spatial cognitive performance. Psychology of Women Quarterly, 17, 71–83.CrossRefGoogle Scholar
  207. Shea, D. L., Lubinski, D., & Benbow, C. P. (2001). Importance of assessing spatial ability in intellectually talented young adolescents: A 20-year longitudinal study. Journal of Educational Psychology, 93, 604–614.CrossRefGoogle Scholar
  208. Shepard, R. N., & Metzler, J. (1971). Mental rotation of three-dimensional objects. Science, 171, 701–703.PubMedCrossRefGoogle Scholar
  209. Sherman, J. A. (1967). Problem of sex differences in space perception and aspects of intellectual functioning. Psychological Review, 74, 290–299.PubMedCrossRefGoogle Scholar
  210. Sholl, M. J., Acacio, J. C., Makar, R. O., & Leon, C. (2000). The relation of sex and sense of direction to spatial orientation in an unfamiliar environment. Journal of Environmental Psychology, 20, 17–28.CrossRefGoogle Scholar
  211. Shrestha, A. B., & Mishra, R. C. (1996). Sex differences in cognitive style of Brahmin and Gurung children from the hills and plains of Nepal. In J. Pandey, D. Sinha, & D. P. Bhawuk (Eds.), Asian contributions to cross-cultural psychology (pp. 165–174). Thousand Oaks, CA: Sage.Google Scholar
  212. Signorella, M. L., & Jamison, W. (1986). Masculinity, femininity, androgyny, and cognitive performance: A meta-analysis. Psychological Bulletin, 100, 207–228.CrossRefGoogle Scholar
  213. Signorella, M. L., Jamison, W., & Krupa, M. H. (1989). Predicting spatial performance from gender stereotyping in activity preferences and in self-concept. Developmental Psychology, 25, 89–95.CrossRefGoogle Scholar
  214. Silverman, I., & Choi, J. (2006). Non-Euclidean navigational strategies of women: Compensatory response or evolved dimorphism? Evolutionary Psychology, 4, 75–84.Google Scholar
  215. Silverman, I., Choi, J., Mackewn, A., Fisher, M., Moro, J., & Olshansky, E. (2000). Evolved mechanisms underlying wayfinding: Further studies on the hunter-gatherer theory of spatial sex differences. Evolution and Human Behavior, 21, 201–213.PubMedCrossRefGoogle Scholar
  216. Silverman, I., Choi, J., & Peters, M. (2007). The hunter-gatherer theory of sex differences in spatial abilities: Data from 40 countries. Archives of Sexual Behavior, 36, 261–268.PubMedCrossRefGoogle Scholar
  217. Silverman, I., & Eals, M. (1992). Sex differences in spatial abilities: Evolutionary theory and data. In J. H. Barkow, L. Cosmides, & J. Tooby (Eds.), The adapted mind: Evolutionary psychology and the generation of culture (pp. 533–549). London: Oxford University Press.Google Scholar
  218. Silverman, I., & Phillips, K. (1993). “Effects of estrogen changes during the menstrual cycle on spatial performance”: Erratum. Ethology & Sociobiology, 14, 380.CrossRefGoogle Scholar
  219. Silverman, I., Phillips, K., & Silverman, L. K. (1996). Homogeneity of effect sizes for sex across spatial tests and cultures: Implications for hormonal theories. Brain and Cognition, 31, 90–94.PubMedCrossRefGoogle Scholar
  220. Snyder, P. J., & Harris, L. J. (1996). Where in the world am I? Sex and handedness differences in knowledge of geography. Perceptual & Motor Skills, 82, 1379–1385.Google Scholar
  221. Sorby, S. A., & Baartmans, B. J. (2000). The development and assessment of a course for enhancing the 3-D spatial visualization skills of first year engineering students. Journal of Engineering Education, 89, 301–307.Google Scholar
  222. Spetch, M. L., & Parent, M. B. (2006). Age and sex differences in children’s spatial search strategies. Psychonomic Bulletin & Review, 13, 807–812.Google Scholar
  223. Steele, C. M., & Aronson, J. (1995). Stereotype threat and the intellectual test performance of African Americans. Journal of Personality and Social Psychology, 69, 797–811.PubMedCrossRefGoogle Scholar
  224. Stumpf, H. (1993). Performance factors and gender-related differences in spatial ability: Another assessment. Memory & Cognition, 21, 828–836.Google Scholar
  225. Stumpf, H., & Klieme, E. (1989). Sex-related differences in spatial ability: More evidence for convergence. Perceptual & Motor Skills, 69, 915–921.Google Scholar
  226. Terlecki, M. S., & Newcombe, N. S. (2005). How important is the digital divide? The relation of computer and videogame usage to gender differences in mental rotation ability. Sex Roles, 53, 433–441.CrossRefGoogle Scholar
  227. Terlecki, M. S., Newcombe, N. S., & Little, M. (2008). Durable and generalized effects of spatial experience on mental rotation: Gender differences in growth patterns. Applied Cognitive Psychology, 22, 996–1013.CrossRefGoogle Scholar
  228. Thomas, H., Jamison, W., & Hummel, D. D. (1973). Observation is insufficient for discovering that the surface of still water is invariantly horizontal. Science, 181, 173–174.PubMedCrossRefGoogle Scholar
  229. Thomsen, T., Hugdahl, K., Ersland, L., Barndon, R., Lundervold, A., Smievoll, et al. (2000). Functional magnetic resonance imaging (fMRI) study of sex differences in a mental rotation task. Medical Science Monitor, 6, 1186–1196.PubMedGoogle Scholar
  230. Thurstone, T. G. (1958). Changing concepts of intelligence: Implications for test construction. In Proceedings of the 1956 Invitational conference on testing problems (pp. 26–37). Princeton, NJ: Educational Testing Service.Google Scholar
  231. Tlauka, M., Brolese, A., Pomeroy, D., & Hobbs, W. (2005). Gender differences in spatial knowledge acquired through simulated exploration of a virtual shopping centre. Journal of Environmental Psychology, 25, 111–118.CrossRefGoogle Scholar
  232. Tremblay, L., Elliott, D., & Starkes, J. L. (2004). Gender differences in perception of self-orientation: Software or hardware? Perception, 33, 329–337.PubMedCrossRefGoogle Scholar
  233. Van Goozen, S. H. M., Cohen-Kettenis, P. T., Gooren, L. J. G., Frijda, N. H., & van de Poll, N. E. (1995). Gender differences in behaviour: Activating effects of cross-sex hormones. Psychoneuroendocrinology, 20, 343–363.PubMedCrossRefGoogle Scholar
  234. Van Goozen, S. H. M., Slabbekoorn, D., Gooren, L. J. G., Sanders, G., & Cohen-Kettenis, P. T. (2002). Organizing and activating effects of sex hormones in homosexual transsexuals. Behavioral Neuroscience, 116, 982–988.PubMedCrossRefGoogle Scholar
  235. Vandenberg, S. G., & Kuse, A. R. (1978). Mental rotations, a group test of three-dimensional spatial visualization. Perceptual & Motor Skills, 47, 599–604.Google Scholar
  236. Vasta, R., & Gaze, C. E. (1996). Can spatial training erase the gender differences on the water-level task? Psychology of Women Quarterly, 20, 549–567.CrossRefGoogle Scholar
  237. Vasta, R., Lightfoot, C., & Cox, B. D. (1993). Understanding gender differences on the water-level problem: The role of spatial perception. Merrill-Palmer Quarterly, 39, 391–414.Google Scholar
  238. Vasta, R., Rosenberg, D., Knott, J. A., & Gaze, C. E. (1997). Experience and the water-level task revisited: Does expertise exact a price? Psychological Science, 8, 336–339.CrossRefGoogle Scholar
  239. Vecchi, T., & Girelli, L. (1998). Gender differences in visuo-spatial processing: The importance of distinguishing between passive storage and active manipulation. Acta Psychologica, 99, 1–16.PubMedCrossRefGoogle Scholar
  240. Vederhus, L., & Krekling, S. (1996). Sex differences in visual spatial ability in 9-year-old children. Intelligence, 23, 33–43.CrossRefGoogle Scholar
  241. Viaud-Delmon, I., Ivanenko, Y. P., Berthoz, A., & Jouvent, R. (1998). Sex, lies, and virtual reality. Nature Neuroscience, 1, 15–16.PubMedCrossRefGoogle Scholar
  242. Voyer, D., & Bryden, M. P. (1993). Masking and visual field effects on a lateralized rod-and-frame test. Canadian Journal of Experimental Psychology/Revue Canadienne de Psychologie Expérimentale, 47, 26–37.CrossRefGoogle Scholar
  243. Voyer, D., & Hou, J. (2006). Type of items and the magnitude of gender differences on the Mental Rotations Test. Canadian Journal of Experimental Psychology/Revue Canadienne de Psychologie Expérimentale, 60, 91–100.CrossRefGoogle Scholar
  244. Voyer, D., Nolan, C., & Voyer, S. (2000). The relation between experience and spatial performance in men and women. Sex Roles, 43, 891–915.CrossRefGoogle Scholar
  245. Voyer, D., Postma, A., Brake, B., & Imperato-McGinley, J. (2007). Gender differences in object location memory: A meta-analysis. Psychonomic Bulletin & Review, 14, 23–38.Google Scholar
  246. Voyer, D., Voyer, S., & Bryden, M. P. (1995). Magnitude of sex differences in spatial abilities: A meta-analysis and consideration of critical variables. Psychological Bulletin, 117, 250–270.PubMedCrossRefGoogle Scholar
  247. Waller, D., Knapp, D., & Hunt, E. (2001). Spatial representations of virtual mazes: The role of visual fidelity and individual differences. Human Factors, 43, 147–158.PubMedCrossRefGoogle Scholar
  248. Ward, S. L., Newcombe, N. S., & Overton, W. F. (1986). Turn left at the church, or three miles north: A study of direction giving and sex differences. Environment and Behavior, 18, 192–213.CrossRefGoogle Scholar
  249. Webley, P., & Whalley, A. (1987). Sex differences in children’s environmental cognition. Journal of Social Psychology, 127, 223–225.CrossRefGoogle Scholar
  250. Wechsler, D. (1949). Wechsler Intelligence Scale for Children manual. Oxford: Psychological Corporation.Google Scholar
  251. Wechsler, D. (1955). Manual for the Wechsler Adult Intelligence Scale. Oxford: Psychological Corporation.Google Scholar
  252. Williams, C. L., Barnett, A. M., & Meck, W. H. (1990). Organizational effects of early gonadal secretions on sexual differentiation in spatial memory. Behavioral Neuroscience, 104, 84–97.PubMedCrossRefGoogle Scholar
  253. Williams, C. L., & Meck, W. H. (1991). The organizational effects of gonadal steroids on sexually dimorphic spatial ability. Psychoneuroendocrinology, 16, 155–176.PubMedCrossRefGoogle Scholar
  254. Witkin, H. A., & Asch, S. E. (1948). Studies in space orientation III: Perception of the upright in the absence of a visual field. Journal of Experimental Psychology, 38, 603–614.PubMedCrossRefGoogle Scholar
  255. Wittig, M. A., & Allen, M. J. (1984). Measurement of adult performance on Piaget’s water horizontality task. Intelligence, 8, 305–313.CrossRefGoogle Scholar
  256. Wraga, M., Duncan, L., Jacobs, E. C., Helt, M., & Church, J. (2006). Stereotype susceptibility narrows the gender gap in imagined self-rotation performance. Psychonomic Bulletin & Review, 13, 813–819.Google Scholar
  257. Wright, R., Thompson, W. L., Ganis, G., Newcombe, N. S., & Kosslyn, S. M. (2008). Training generalized spatial skills. Psychonomic Bulletin & Review, 15, 763–771.CrossRefGoogle Scholar
  258. Zinser, O., Palmer, D. L., & Miller, C. R. (2004). Site distance, gender, and knowledge of geographic sites. Sex Roles, 51, 661–686.CrossRefGoogle Scholar
  259. Zurkovsky, L., Brown, S. L., & Korol, D. L. (2006). Estrogen modulates place learning through estrogen receptors in the hippocampus. Neurobiology of Learning and Memory, 86, 336–343.PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  • Carol A. Lawton
    • 1
  1. 1.Indiana University-Purdue UniversityFort WayneUSA

Personalised recommendations