Sensory Fusion

Part of the Springer Series in Cognitive and Neural Systems book series (SSCNS)


Multisensory integration is known to occur in many regions of the brain, and involves several aspects of our daily life; however, the underlying neural mechanisms are still insufficiently understood. This chapter presents two mathematical models of multisensory integration, inspired by real neurophysiological systems. The first considers the integration of visual and auditory stimuli, as it occurs in the superior colliculus (a subcortical region involved in orienting eyes and head toward external events). The second model considers the integration of tactile stimuli and visual stimuli close to the body to form the perception of the peripersonal space (the space immediately around our body, within which we can interact with the external world). Although devoted to two specific problems, the mechanisms delineated in the models (lateral inhibition and excitation, nonlinear neuron characteristics, recurrent connections, and competition) may govern more generally the fusion of senses in the brain. The models, besides improving our comprehension of brain function, may drive future neurophysiological experiments and provide valuable ideas to build artificial systems devoted to sensory fusion.


Superior Colliculus Multisensory Integration Peripersonal Space Superior Colliculus Neuron Inverse Effectiveness 
These keywords were added by machine and not by the authors. This process is experimental and the keywords may be updated as the learning algorithm improves.


  1. .
    Anastasio TJ, Patton PE (2003) A two-stage unsupervised learning algorithm reproduces multisensory enhancement in a neural network model of the corticotectal system. J Neurosci 23:6713–6727PubMedGoogle Scholar
  2. .
    Anastasio TJ, Patton PE, Belkacem-Boussaid K (2000) Using bayes rule to model multisensory enhancement in the superior colliculus. Neural Comput 12:1165–1187CrossRefPubMedGoogle Scholar
  3. .
    Avillac M, Denève S, Olivier E et al (2005) Reference frames for representing visual and tactile locations in parietal cortex. Nat Neurosci 8:941–949PubMedGoogle Scholar
  4. .
    Bermant RI, Welch RB (1976) Effect of degree of separation of visual-auditory stimulus and eye position upon spatial interaction of vision and audition. Percept Mot Skills 43:487–493Google Scholar
  5. .
    Bolognini N, Rasi F, Coccia M et al (2005) Visual search improvement in hemianopic patients after audio-visual stimulation. Brain 128:2830–2842CrossRefPubMedGoogle Scholar
  6. .
    Bonifazi S, Farnè A, Rinaldesi L et al (2007) Dynamic size-change of peri-hand space through tool-use: spatial extension or shift of the multi-sensory area. J Neuropsychol 1:101–114CrossRefPubMedGoogle Scholar
  7. .
    Bremmer F, Schlack A, Shah NJ et al (2001) Polymodal motion processing in posterior parietal and premotor cortex: a human fMRI study strongly implies equivalencies between humans and monkeys. Neuron 29:287–296CrossRefPubMedGoogle Scholar
  8. .
    Calvert GA, Spence C, Stein BE (2004) The handbook of multisensory processes. MIT, CambridgeGoogle Scholar
  9. .
    Colonius H, Diederich A (2004) Why aren’t all deep superior colliculus neurons multisensory? A Bayes’ ratio analysis. Cogn Affect Behav Neurosci 4:344–353CrossRefPubMedGoogle Scholar
  10. .
    Cooke DF, Graziano MS (2004) Sensorimotor integration in the precentral gyrus: polysensory neurons and defensive movements. J Neurophysiol 91:1648–1660CrossRefPubMedGoogle Scholar
  11. .
    Cuppini C, Ursino M, Magosso E et al (2008) A neural network model of multisensory maturation in superior colliculus neurons. Program No. 457.5. 2008 Neuroscience Meeting Planner. Washington, DC: Society for Neuroscience, 2008. OnlineGoogle Scholar
  12. .
    Dalton P, Doolittle N, Nagata H et al (2000) The merging of the senses: integration of subthreshold taste and smell. Nat Neurosci 3:431–432CrossRefPubMedGoogle Scholar
  13. .
    Denève S, Latham PE, Pouget A (2001) Efficient computation and cue integration with noisy population codes. Nat Neurosci 4:826–831CrossRefPubMedGoogle Scholar
  14. .
    di Pellegrino G, Làdavas E, Farnè A (1997) Seeing where your hands are. Nature 388:730Google Scholar
  15. .
    Driver J, Spence C (2000) Multisensory perception: beyond modularity and convergence. Curr Biol 10:R731-R735CrossRefPubMedGoogle Scholar
  16. .
    Duhamel JR, Colby CL, Goldberg ME (1998) Ventral intraparietal area of the macaque: congruent visual and somatic response properties. J Neurophysiol 79:126–136PubMedGoogle Scholar
  17. .
    Edwards SB, Ginsburgh CL, Henkel CK et al (1979) Sources of subcortical projections to the superior colliculus in the cat. J Comp Neurol 184:309–330CrossRefPubMedGoogle Scholar
  18. .
    Farnè A, Làdavas E (2000) Dynamic size-change of hand peripersonal space following tool use. Neuroreport 11:1645–1649CrossRefPubMedGoogle Scholar
  19. .
    Farnè A, Iriki A, Làdavas E (2005) Shaping multisensory action-space with tools: evidence from patients with cross-modal extinction. Neuropsychologia 43:238–248CrossRefPubMedGoogle Scholar
  20. .
    Farnè A, Serino A, Làdavas E (2007) Dynamic size-change of peri-hand space following tool-use: determinants and spatial characteristics revealed through cross-modal extinction. Cortex 43:436–443CrossRefPubMedGoogle Scholar
  21. .
    Fogassi L, Gallese V, Fadiga L et al (1996) Coding of peripersonal space in inferior premotor cortex (area F4). J Neurophysiol 76:141–157PubMedGoogle Scholar
  22. .
    Ghazanfar AA, Schroeder CE (2006) Is neocortex essentially multisensory? Trends Cogn Sci 10:278–285CrossRefPubMedGoogle Scholar
  23. .
    Graziano MS, Cooke DF (2006) Parieto-frontal interactions, personal space, and defensive behavior. Neuropsychologia 44:2621–2635CrossRefPubMedGoogle Scholar
  24. .
    Graziano MS, Yap GS, Gross CG (1994) Coding of visual space by premotor neurons. Science 266:1054–1057CrossRefPubMedGoogle Scholar
  25. .
    Graziano MS, Hu XT, Gross CG (1997) Visuospatial properties of ventral premotor cortex. J Neurophysiol 77:2268–2292PubMedGoogle Scholar
  26. .
    Hihara S, Notoya T, Tanaka M et al (2006) Extension of corticocortical afferents into the anterior bank of the intraparietal sulcus by tool-use training in adult monkeys. Neuropsychologia 44:2636–2646CrossRefPubMedGoogle Scholar
  27. .
    Hillis AE, Chang S, Heidler-Gary J et al (2006) Neural correlates of modality-specific spatial extinction. J Cogn Neurosci 18:1889–1898CrossRefPubMedGoogle Scholar
  28. .
    Huerta MF, Harting JK (1984) The mammalian superior colliculus: studies of its morphology and connections. In: Vanegas H (ed) Comparative neurology of the optic tectum. Plenum, New YorkGoogle Scholar
  29. .
    Iriki A, Tanaka M, Iwamura Y (1996) Coding of modified body schema during tool use by macaque postcentral neurones. Neuroreport 7:2325–2330CrossRefPubMedGoogle Scholar
  30. .
    Ishibashi H, Hihara S, Takahashi M et al (2002) Tool-use learning selectively induces expression of brain-derived neurotrophic factor, its receptor trkB, and neurotrophin 3 in the intraparietal mutlisensorycortex of monkeys. Brain Res Cogn Brain Res 14:3–9CrossRefPubMedGoogle Scholar
  31. .
    Jiang W, Stein BE (2003) Cortex controls multisensory depression in superior colliculus. J Neurophysiol 90:2123–2135CrossRefPubMedGoogle Scholar
  32. .
    Jiang W, Wallace MT, Jiang H et al (2001) Two cortical areas mediate multisensory integration in superior colliculus neurons. J Neurophysiol 85:506–522PubMedGoogle Scholar
  33. .
    Kadunce DC, Vaughan JW, Wallace MT et al (1997) Mechanisms of within- and cross-modality suppression in the superior colliculus. J Neurophysiol 78:2834–2847PubMedGoogle Scholar
  34. .
    Kadunce DC, Vaughan JW, Wallace MT et al (2001) The influence of visual and auditory receptive field organization on multisensory integration in the superior colliculus. Exp Brain Res 139:303–310CrossRefPubMedGoogle Scholar
  35. .
    Kennett S, Taylor-Clarke M, Haggard P (2001) Noninformative vision improves the spatial resolution of touch in humans. Curr Biol 11:1188–1191CrossRefPubMedGoogle Scholar
  36. .
    Làdavas E (2002) Functional and dynamic properties of visual peripersonal space. Trends Cogn Sci 6:17–22CrossRefGoogle Scholar
  37. .
    Làdavas E (2008) Multisensory-based approach to the recovery of unisensory deficit. Ann N Y Acad Sci 1124:98–110CrossRefPubMedGoogle Scholar
  38. .
    Làdavas E, Farnè A (2004) Visuo-tactile representation of near-the-body space. J Physiol Paris 98:161–170CrossRefPubMedGoogle Scholar
  39. .
    Làdavas E, di Pellegrino G, Farnè A et al (1998) Neuropsychological evidence of an integrated visuotactile representation of peripersonal space in humans. J Cogn Neurosci 10:581–589CrossRefPubMedGoogle Scholar
  40. .
    Làdavas E, Farnè A, Zeloni G et al (2000) Seeing or not seeing where your hands are. Exp Brain Res 131:458–467CrossRefPubMedGoogle Scholar
  41. .
    Legrand D, Brozzoli C, Rossetti Y et al (2007) Close to me: multisensory space representations for action and pre-reflexive consciousness of oneself-in-the-world. Conscious Cogn 16:687–699CrossRefPubMedGoogle Scholar
  42. .
    Macaluso E, Frith CD, Driver J (2000) Modulation of human visual cortex by crossmodal spatial attention. Science 289:1206–1208CrossRefPubMedGoogle Scholar
  43. .
    Magosso E, Cuppini C, Serino A et al (2008) A theoretical study of multisensory integration in the superior colliculus by a neural network model. Neural Netw 21:817–829CrossRefPubMedGoogle Scholar
  44. .
    Magosso E, Ursino M, di Pellegrino G et al (2010a) Neural bases of peri-hand space plasticity through tool-use: insights from a combined computational-experimental approach. Neuropsychologia 48:812–830CrossRefPubMedGoogle Scholar
  45. .
    Magosso E, Zavaglia M, Serino A et al (2010b) Visuotactile representation of peripersonal space: a neural network study. Neural Comput 22:190–243CrossRefPubMedGoogle Scholar
  46. .
    Makin TR, Holmes NP, Zohary E (2007) Is that near my hand? Multisensory representation of peripersonal space in human intraparietal sulcus. J Neurosci 27:731–740CrossRefPubMedGoogle Scholar
  47. .
    Maravita A, Husain M, Clarke K et al (2001) Reaching with a tool extends visual-tactile interactions into far space: evidence from cross-modal extinction. Neuropsychologia 39:580–585CrossRefPubMedGoogle Scholar
  48. .
    Mattingley JB, Driver J, Beschin N et al (1997) Attentional competition between modalities: extinction between touch and vision after right hemisphere damage. Neuropsychologia 35: 867–880CrossRefPubMedGoogle Scholar
  49. .
    Meredith MA, Stein BE (1996) Spatial determinants of multisensory integration in cat superior colliculus neurons. J Neurophysiol 75:1843–1857PubMedGoogle Scholar
  50. .
    Patton PE, Anastasio TJ (2003) Modelling cross-modal enhancement and modality-specific suppression in multisensory neurons. Neural Comput 15:783–810CrossRefPubMedGoogle Scholar
  51. .
    Patton PE, Belkacem-Boussaid K, Anastasio TJ (2002) Multimodality in the superior colliculus: an information theoretic analysis. Brain Res Cogn Brain Res 14:10–19CrossRefPubMedGoogle Scholar
  52. .
    Perrault TJ Jr, Vaughan JW, Stein BE et al (2005) Superior colliculus neurons use distinct operational modes in the integration of multisensory stimuli. J Neurophysiol 93:2575–2586CrossRefPubMedGoogle Scholar
  53. .
    Pouget A, Sejnowski JT (1997) Spatial transformations in the parietal cortex using basis functions. J Cogn Neurosci 9:222–237CrossRefGoogle Scholar
  54. .
    Pouget A, Deneve S, Duhamel JR (2002) A computational perspective on the neural basis of multisensory spatial representations. Nat Rev Neurosci 3:741–747CrossRefPubMedGoogle Scholar
  55. .
    Press C, Taylor-Clarke M, Kennett S et al (2004) Visual enhancement of touch in spatial body representation. Exp Brain Res 154:238–245CrossRefPubMedGoogle Scholar
  56. .
    Rizzolatti G, Scandolara C, Matelli M et al (1981) Afferent properties of periarcuate neurons in macaque monkeys. II. Visual responses. Behav Brain Res 2:147–163Google Scholar
  57. .
    Rizzolatti G, Fadiga L, Fogassi L et al (1997) The space around us. Science 277:190–191CrossRefPubMedGoogle Scholar
  58. .
    Rizzolatti G, Luppino G, Matelli M (1998) The organization of the cortical motor system: new concepts. Electroencephalogr Clin Neurophysiol 106:283–296CrossRefPubMedGoogle Scholar
  59. .
    Salinas E, Abbott LF (1995) Transfer of coded information from sensory to motor networks. J Neurosci 15:6461–6474PubMedGoogle Scholar
  60. .
    Sarri M, Blankenburg F, Driver J (2006) Neural correlates of crossmodal visual-tactile extinction and of tactile awareness revealed by fMRI in a right-hemisphere stroke patient. Neuropsychologia 44:2398–2410CrossRefPubMedGoogle Scholar
  61. .
    Schroeder CE, Foxe J (2005) Multisensory contributions to low-level, ‘unisensory’ processing. Curr Opin Neurobiol 15:454–458CrossRefPubMedGoogle Scholar
  62. .
    Sereno MI, Huang RS (2006) A human parietal face area contains aligned head-centered visual and tactile maps. Nat Neurosci 9:1337–1343CrossRefPubMedGoogle Scholar
  63. .
    Stein BE (2005) The development of a dialogue between cortex and midbrain to integrate multisensory information. Exp Brain Res 166:305–315CrossRefPubMedGoogle Scholar
  64. .
    Stein BE, Meredith MA (1993) The merging of the senses. MIT, CambridgeGoogle Scholar
  65. .
    Taylor-Clarke M, Kennett S, Haggard P (2002) Vision modulates somatosensory cortical processing. Curr Biol 12:233–236CrossRefPubMedGoogle Scholar
  66. .
    Tipper SP, Lloyd D, Shorland B et al (1998) Vision influences tactile perception without proprioceptive orienting. Neuroreport 9:1741–1744CrossRefPubMedGoogle Scholar
  67. .
    Ursino M, Cuppini C, Magosso E et al (2009) Multisensory integration in the superior colliculus: a neural network model. J Comput Neurosci 26:55–73CrossRefPubMedGoogle Scholar
  68. .
    Wallace MT, Meredith MA, Stein BE (1993) Converging influences from visual, auditory, and somatosensory cortices onto output neurons of the superior colliculus. J Neurophysiol 69: 1797–1809PubMedGoogle Scholar
  69. .
    Wallace MT, Meredith MA, Stein BE (1998) Multisensory integration in the Superior Colliculus of the alert cat. J Neurophysiol 80:1006–1010PubMedGoogle Scholar
  70. .
    Woods TM, Recanzone GH (2004) Visually induced plasticity of auditory spatial perception in macaques. Curr Biol 14:1559–1564CrossRefPubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2011

Authors and Affiliations

  1. 1.Department of Electronics, Computer Science and SystemsUniversity of BolognaBolognaItaly

Personalised recommendations