Skip to main content

Vision, Attention Control, and Goals Creation System

  • Chapter
  • First Online:
Perception-Action Cycle

Abstract

Biological visual attention has been long studied by experts in the field of cognitive psychology. The Holy Grail of this study is the exact modeling of the interaction between the visual sensory and the process of perception. It seems that there is an informal agreement on the four important functions of the attention process: (a) the bottom-up process, which is responsible for the saliency of the input stimuli; (b) the top-down process that bias attention toward known areas or regions of predefined characteristics; (c) the attentional selection that fuses information derived from the two previous processes and enables focus; and (d) the dynamic evolution of the attentional selection process. In the following, we will outline established computational solutions for each of the four functions.

This is a preview of subscription content, log in via an institution to check access.

Access this chapter

Chapter
USD 29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD 299.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD 379.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD 379.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Institutional subscriptions

Similar content being viewed by others

Notes

  1. 1.

    http://www.nada.kth.se/cvap/actions/

  2. 2.

    http://www.irisa.fr/vista/Equipe/People/Laptev/download.html

References

  • Abrams, R.A., Christ, S.E., “Motion onset captures attention”, Psychological Science, vol. 14, pp. 427–432, 2003.

    Article  PubMed  Google Scholar 

  • Adam, A., Rivlin, E., Shimshoni, I., Reinitz, D., “Robust Real-Time Unusual Event Detection using Multiple Fixed-Location Monitors”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 30, no. 3, pp. 555–560, Mar 2008.

    Article  PubMed  Google Scholar 

  • Black, M.J., Anandan, P., “The Robust Estimation of Multiple Motions: Parametric and Piecewise-Smooth Flow Fields”, CVIU, vol. 63, no. 1, pp. 75–104, 1996.

    Google Scholar 

  • Boiman, O., Irani, M., “Detecting Irregularities in Images and in Video”, IEEE International Conference on Computer Vision (ICCV), Beijing, 2005.

    Google Scholar 

  • Bosch, A., Zisserman, A., Munoz, X., “Scene Classification via pLSA”, ECCV06, pp. 517–530, 2006.

    Google Scholar 

  • Bruce, N.D.B., Tsotsos, J.K., Saliency, attention, and visual search: An information theoretic approach. Journal of Vision, vol. 9, no. 3, pp. 1–24, 2009.

    Article  PubMed  Google Scholar 

  • Bruce, N., Tsotsos, J., “Saliency based on information maximization”, Advances in Neural Information Processing Systems, vol. 18, pp. 155–162, 2006.

    Google Scholar 

  • Csurka, G., Bray, C., Dance, C., Fan, L., “Visual categorization with bags of key-points”, pp. 1–22, Workshop on Statistical Learning in Computer Vision, ECCV, 2004.

    Google Scholar 

  • Cutsuridis, V., “A Cognitive Model of Saliency, Attention, and Picture Scanning”, Cognitive Computation, vol. 1, no. 4, pp. 292–299, Sep. 2009.

    Google Scholar 

  • Dollár, P., Rabaud, V., Cottrell, G., Belongie, S., “Behavior Recognition via Sparse Spatio-Temporal Features”, VS-PETS, pp. 65–72, Oct 2005.

    Google Scholar 

  • Duncan, J., “Selective attention and the organization of visual information”, Journal of Experimental Psychology: General, vol. 113, no. 4, pp. 501–517, 1984.

    Article  CAS  Google Scholar 

  • Evangelopoulos, G., Rapantzikos, K., Potamianos, A., Maragos, P., Zlatintsi, A., Avrithis, Y., “Movie Summarization Based On Audio-Visual Saliency Detection”, Proceedings International Conference on Image Processing (ICIP), San Diego, California, 2008.

    Google Scholar 

  • Evangelopoulos, G., Zlatintsi, A., Skoumas, G., Rapantzikos, K., Potamianos, A., Maragos, P., Avrithis, Y., “Video event detection and summarization using audio, visual and text saliency”, IEEE International Conference on Acoustics, Speech and Signal Processing (ICASSP), pp. 3553–3556, 2009.

    Google Scholar 

  • Frintrop, S., Cremers, A., “Top-down attention supports visual loop closing”, In. Proceedings Of European Conference On Mobile Robotics (ECMR’05), 2007.

    Google Scholar 

  • Frintrop, S., Backer, G., Rome, E., “Goal directed search with a top-down modulated computational attention system”, LCNS, vol. 3663, no. 117, 2005.

    Google Scholar 

  • Frintrop, S., Rome, E., Nuchter, A., Surmann, H., “A bimodal laser-based attention system”, Computer Vision and Image Understanding, vol. 100, no. 1–2, pp. 124–151, 2005.

    Article  Google Scholar 

  • Frintrop, S., Klodt, M., Rome, E., “A real-time visual attention system using integral images”, In Proceedings Of the 5th International Conference on Computer Vision systems, ICVS, 2007.

    Google Scholar 

  • Hamid, R., Johnson, A., Batta, S., Bobick, A., Isbell, C., Coleman, G., “Detection and explanation of anomalous activities: representing activities as bags of event n-grams”, CVPR’05, vol. 1, pp. 1031–1038, Jun 2005.

    Google Scholar 

  • Harris, C., Stephens, M., “A combined corner and edge detector”, Alvey Vision Conference, pp. 147–152, 1988.

    Google Scholar 

  • Itti, L., Baldi, P., “A Principled Approach to Detecting Surprising Events in Video”, CVPR’05, 2005, vol. 1, pp. 631–637, 2005.

    Google Scholar 

  • Itti, L., Baldi, P., “Bayesian surprise attracts human attention”, Vision Research, vol. 49, no. 10, pp. 1295–1306, 2009.

    Article  PubMed  Google Scholar 

  • Itti, L., Koch, C., Niebur, E., “A model of saliency-based visual attention for rapid scene analysis”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 20, no. 11, pp. 1254–1259, 1998.

    Article  Google Scholar 

  • James, W., “The principles of psychology”, Cambridge, MAL Harvard UP, 1890/1981.

    Google Scholar 

  • Kadir, T., Brady, M., Saliency, scale and image description, International Journal of Computer Vision, vol. 45, no. 2, pp. 83–105, 2001.

    Article  Google Scholar 

  • Kandel, E.R., Schwartz, J.H., Jessell, T.M., “Essentials of Neural Science and Behavior”, Appleton & Lange, Stamford, Connecticut, 1995.

    Google Scholar 

  • Koch, C., Ullman, S., “Shifts in selective visual attention: towards the underlying neural circuitry”, Human Neurobiology, vol. 4, no. 4, pp. 219–227, 1985.

    CAS  PubMed  Google Scholar 

  • Koffka, K., Principles of Gestalt Psychology, Harcourt, New York, 1935.

    Google Scholar 

  • Laptev, I., Lindeberg, T., “Space-Time Interest Points”, in Proceedings of the ICCV’03, Nice, France, pp. 432–443, 2003.

    Google Scholar 

  • Laptev, I., Caputo, B., Schuldt, C., Lindeberg, T., “Local Velocity-Adapted Motion Events for Spatio-Temporal Recognition”, Computer Vision and Image Understanding, vol. 108, pp. 207–229, 2007.

    Article  Google Scholar 

  • Lee, K., Buxton, H., Feng, J., “Cue-guided search: A computational model of selective attention”, IEEE Transactions On Neural Networks, vol. 16, no. 4, pp. 910–924, 2005.

    Article  PubMed  Google Scholar 

  • Leventhal, A., “The neural basis of visual function: vision and visual dysfunction”, Nature Neuroscience, vol. 4, 1991.

    Google Scholar 

  • Lindeberg, T., “Feature detection with automatic scale selection”, International Journal of Computer Vision, vol. 30, no. 2, pp. 79–116, 1998.

    Article  Google Scholar 

  • Lowe, D., “Object recognition from local scale-invariant features”, In Proceedings of ICCV, pp. 1150–1157, 1999.

    Google Scholar 

  • Mahadevan, V., Vasconcelos, N., “Spatiotemporal Saliency in Dynamic Scenes”, IEEE Transactions on Pattern Analysis and Machine Intelligence, 2009.

    Google Scholar 

  • Ma, Y.F., Lu, L. Zhang, H.J., Li, M., “A user attention model for video summarization”, ACM Multimedia Conference, pp. 533–542, 2002.

    Google Scholar 

  • May, Y., Zhang, H., “Contrast-based image attention analysis by using fuzzy growing”, In Proceedings ACM International Conference on Multimedia, pp. 374–381, 2003.

    Google Scholar 

  • Mikolajczyk, K., Schmid, C., “An affine invariant interest point detector”, ECCV, pp. 128–142, 2002.

    Google Scholar 

  • Mikolajczyk, K., Tuytelaars, T., Schmid, C., Zisserman, A., Matas, J., Schaffalitzky, F., Kadir, T., Van Gool, L., “A comparison of affine region detectors”, International Journal of Computer Vision, vol. 65, no. 1/2, pp. 43–72, 2005.

    Article  Google Scholar 

  • Milanese, R., Gil, S., Pun, T., “Attentive mechanisms for dynamic and static scene analysis”, Optical Engineering, vol. 34 no. 8, pp. 2428–2434, 1995.

    Article  Google Scholar 

  • Navalpakkam, V., Itti, L., “An integrated model of top-down and bottom-up attention for optimal object detection”, Computer Vision and Pattern Recognition (CVPR), pp. 1–7, 2006.

    Google Scholar 

  • Navalpakkam, V., Itti, L., “Modeling the influence of task on attention”, Vision Research, vol. 45, no. 2, pp. 205–231, 2005.

    Article  PubMed  Google Scholar 

  • Niebles, J.C., Wang, H., Fei-Fei, L., “Unsupervised Learning of Human Action Categories Using Spatial-Temporal Words”, British Machine Vision Conference (BMVC), Edinburgh, 2006.

    Google Scholar 

  • Okamoto, H., Yasugi, Y., Babaguchi, N., Kitahashi, T., “Video clustering using spatiotemporal image with fixed length”, ICME’02, pp. 2002–2008, 2002.

    Google Scholar 

  • Oliver, N.M., Rosario, B., Pentland, A.P., “A Bayesian computer vision system for modeling human interactions”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 22, no. 8, Aug 2000.

    Google Scholar 

  • Park, S., Shin, J., Lee, M., “Biologically inspired saliency map model for bottom-up visual attention”, Lectrure Notes in Computer Science, pp. 418–426, 2002.

    Google Scholar 

  • Rapantzikos, K., Avrithis, Y., “An enhanced spatiotemporal visual attention model for sports video analysis”, International Workshop on Content-based Multimedia indexing (CBMI’05), Riga, Latvia, Jun 2005.

    Google Scholar 

  • Rapantzikos, K., Tsapatsoulis, N., “Enhancing the robustness of skin-based face detection schemes through a visual attention architecture”, Proceedings of the IEEE International Conference on Image Processing (ICIP), Genova, Italy, vol. 2, pp. 1298–1301, 2005.

    Google Scholar 

  • Rapantzikos, K., Tsapatsoulis, N., Avrithis, Y., Kollias, S., “A Bottom-Up Spatiotemporal Visual Attention Model for Video Analysis”, IET Image Processing, vol. 1, no. 2, pp. 237–248, 2007.

    Article  Google Scholar 

  • Rapantzikos, K., Avrithis, Y., Kollias, S., “Dense saliency-based spatiotemporal feature points for action recognition”, Conference on Computer Vision and Pattern Recognition (CVPR), 2009.

    Google Scholar 

  • Rapantzikos, K., Tsapatsoulis, N., Avrithis, Y., Kollias, S., “Spatiotemporal saliency for video classification”, Signal Processing: Image Communication, vol. 24, no. 7, pp. 557–571, 2009.

    Article  Google Scholar 

  • Rensink, R.A., “Seeing, sensing, and scrutinizing”, Vision Research, vol. 40, no. 10–12, pp. 1469–1487, 2000.

    Article  CAS  PubMed  Google Scholar 

  • Ristivojević, M., Konrad, J., “Space-time image sequence analysis: object tunnels and occlusion volumes”, IEEE Transactions Of Image Processings, vol. 15, pp. 364–376, Feb. 2006.

    Google Scholar 

  • Rothenstein, A., Tsotsos, J., “Attention links sensing to recognition”, Image and Vision Computing, vol. 26, no. 1, pp. 114–126, 2008.

    Article  Google Scholar 

  • Rutishauer, U. Walther, D., Koch, C., Perona, P., “Is bottom-up attention useful for object recognition?”, Computer Vision and Pattern Recognition (CVPR), vol. 2, 2004.

    Google Scholar 

  • Rybak, I., Gusakova, V., Golovan, A., Podladchikova, L., Shevtsova, N., “A model of attention-guided visual perception and recognition”, Vision Research, vol. 38, no. 15, pp. 2387–2400, 1998.

    Article  CAS  PubMed  Google Scholar 

  • Shao, L., Kadir, T., Brady, M., “Geometric and photometric invariant distinctive regions detection”, Information Sciences 177, vol. 4, pp. 1088–1122, 2007.

    Google Scholar 

  • Siagian, C., Itti, L., “Biologically inspired robotics vision monte-carlo localization in the outdoor environment, In Proceedings of the IEEE/RSJ International Conference on Intelligent Robots and Systems, IROS, 2007.

    Google Scholar 

  • Sillito, A., Jones, H., “Context-dependent interactions and visual processing in V1”, Journal of Physiology-Paris, vol. 90, no. 3–4, pp. 205–209, 1996.

    Article  CAS  Google Scholar 

  • Stauffer, C., Grimson, E., “Learning Patterns of Activity Using Real-Time Tracking”, IEEE Transactions on Pattern Analysis and Machine Intelligence, vol. 22, no. 8, pp. 747–757, Aug 2000.

    Article  Google Scholar 

  • Sternberg, R., “Cognitive Psychology,” Wadsworth Publishing, 2006.

    Google Scholar 

  • Sun, Y., Fisher, R., “Object-based visual attention for computer vision”, Artificial Intelligence, vol. 146, no. 1, pp. 77–123, 2003.

    Article  Google Scholar 

  • Taylor, J.G., “Attentional movement: the control basis for consciousness”, Society for Neuroscience Abstracts, vol. 26, no. 2231, 2000.

    Google Scholar 

  • Taylor, J.G., “CODAM: A neural network model of consciousness”, Neural Networks, vol. 20, no. 9, pp. 983–992, Nov 2007.

    Article  CAS  PubMed  Google Scholar 

  • Taylor, J.G., “On the neurodoynamics of the creation of consciousness”, Cognitive Neurodynamics, vol. 1, no. 2, Jun 2007.

    Google Scholar 

  • Taylor, J.G., “Paying attention to consciousness”, Progress in Neurobiology, vol. 71, pp. 305–335, 2003.

    Article  PubMed  Google Scholar 

  • Taylor, J.G., Hartley, M., Taylor, N., Panchev, C., Kasderidis, S., “A hierarchical attention-based neural network architecture, based on human brain guidance, for perception, conceptualisation, action and reasoning”, Image and Vision Computing, vol. 27, no. 11, pp. 1641–1657, 2009.

    Article  Google Scholar 

  • Torralba, A., “Contextual priming for object detection”, International Journal of Computer Vision, vol. 53, no. 2, pp. 169–191, 2003.

    Article  Google Scholar 

  • Torralba, A., Oliva, A., Castelahno, M., Henderson, J., “Contextual guidance of eye movements and attention in real-world scenes: the role of global features in object search”, Psychological Review, vol. 113, no. 4, pp. 766–786, 2006.

    Article  PubMed  Google Scholar 

  • Treisman, A.M., Gelade, G., “A feature integration theory of attention”, Cognitive Psychology, vol. 12, no. 1, pp. 97–136, 1980.

    Article  CAS  PubMed  Google Scholar 

  • Tsotsos, J.K., Culhane, S.M., Wai, W.Y.K., Lai, Y., Davis, N., Nuflo, F., “Modelling visual attention via selective tuning”, Artifficial Intelligence, vol. 78, pp. 507–545, 1995.

    Article  Google Scholar 

  • Walther, D., Koch, C., “Modelling attention to salient proto-objects”, Neural Networks, vol. 19, no. 9, pp. 1395–1407, 2006.

    Article  PubMed  Google Scholar 

  • Walther, D., Rutishauer, U., Koch, C., Perona, P., “On the uselfuness of attention for object recognition”, In Workshop of Attention for Object Recognition at ECCV, pp. 96–103, 2004.

    Google Scholar 

  • Walther, D., Rutishauer, U., Koch, C., Perona, P., “Selective visual attention enables learning and recognition of multiple objects in cluttered scenes, Computer Vision and Image Understanding (CVIU), vol. 100, no. 1–2, pp. 41–63, 2005.

    Google Scholar 

  • Wang, Y., Jiang, H., Drew, M.S., Li, Z., Mori, G., “Unsupervised Discovery of Action Classes”. In Proceedings of CVPR’06, vol. 2, pp. 17–22, 2006.

    Google Scholar 

  • Wertheimer, M., “Laws of Organization in Perceptual Forms”, First published as “Untersuchungen zur Lehre von der Gestalt II, in Psycologische Forschung, vol. 4, pp. 301–350, 1923.

    Google Scholar 

  • Wolfe, J.M., “Guided search 2.0: A revised model of visual search”, Psychonomic Bulletin & Review 1, vol. 2, pp. 202–238, 1994.

    Google Scholar 

  • Wolfe, J.M., “Guided search 4.0: current progress with a model of visual search”, Integrated Models of Cognitive Systems, pp. 99–119, 2007.

    Google Scholar 

  • Wolfe, J.M., Cave, K.R., Franzel, S.L., “Guided search: an alternative to the feature integration model for visual search”, Journal of Experimental Psychology: Human Perception and Performance, vol. 15, no. 3, pp. 419–433, 1989.

    Article  CAS  PubMed  Google Scholar 

  • Zhong, H., Shi, J., Visontai, M., “Detecting Unusual Activity in Video”, CVPR’04, Washington, DC, vol. 2, pp. 819–826, Jun 2004.

    Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Konstantinos Rapantzikos .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2011 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Rapantzikos, K., Avrithis, Y., Kolias, S. (2011). Vision, Attention Control, and Goals Creation System. In: Cutsuridis, V., Hussain, A., Taylor, J. (eds) Perception-Action Cycle. Springer Series in Cognitive and Neural Systems. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1452-1_11

Download citation

Publish with us

Policies and ethics