Advertisement

Cryopreservation of Human Oocytes and Embryos

Chapter

Abstract

With the advent of assisted reproductive technology, controled ovarian hyperstimulation (COH) is usually carried out to stimulate the growth of multiple follicles and produce multiple oocytes. Accordingly, multiple embryos are transferred to the uterus to increase the chances of success. However, multiple embryos can also increase the likelihood of multiple pregnancies, which are accompanied by a whole series of complications affecting both mother and child. There has been a trend toward transferring fewer embryos during the last decade. According to Center for Disease Control and Prevention (CDC), the average number of embryos transferred to women under 35 has dropped from 4.0 in 1995 to 2.8 in 2001 in the United States (N Engl J Med 350:1639-1645, 2004). In Europe, IVF centers in many countries have reduced the number of replaced embryos to two or even one (Ann N Y Acad Sci 1034:110-116, 2004). It is, therefore, very important to have a reliable technique to effectively cryopreserve the supernumerary embryos after transfer. The first pregnancy following the transfer of a frozen-thawed human embryo was reported by Trounson et al. in 1983 (Nature 305:707-709, 1983). Since then, embryo cryopreservation has become a very important part of the clinical use of in vitro fertilization. To date, human embryos have been successfully cryopreserved at the pronuclear, cleavage, and blastocyst stages of development. Moreover, recent advances in cryopreservation techniques have expanded the female fertility preservation from embryo to oocyte and ovarian tissue.

Keywords

Cryopreservation Vitrification Cryoinjury Cryoprotectant Embryo storage 

References

  1. 1.
    Leibo SP (1984) A one-step method for direct nonsurgical transfer of frozen-thawed bovine embryos. Theriogenology 21:767-790PubMedCrossRefGoogle Scholar
  2. 2.
    Kasai M, Komi JH, Takakamo A, Tsudera H, Sakurai T, Machida T (1990) A simple method for mouse embryo cryopreservation in a low toxicity vitrification solution, without appreciable loss of viability. J Reprod Fertil 89:91-97PubMedCrossRefGoogle Scholar
  3. 3.
    Baudot A, Alger L, Boutron P (2000) Glass-forming tendency in the system water-dimethyl sulfoxide. Cryobiology 40:151-158PubMedCrossRefGoogle Scholar
  4. 4.
    Mazur P (1990) Equilibrium, quasi-equilibrium, and nonequilibrium freezing of mammalian embryos. Cell Biophys 17:53-92PubMedGoogle Scholar
  5. 5.
    Schneider U (1986) Cryobiological principles of embryo freezing. J In Vitro Fert Embryo Transf 3:3-9PubMedCrossRefGoogle Scholar
  6. 6.
    Leibo SP (1983) A one-step in situ dilution method for frozen-thawed bovine embryos. Cryo Letters 4:387-400Google Scholar
  7. 7.
    Albertini DF, Eppig JJ (1995) Unusual cytoskeletal and chromatin configurations in mouse oocytes that are atypical in meiotic progression. Dev Genet 16:13-19PubMedCrossRefGoogle Scholar
  8. 8.
    Zenzes MT, Bielecki R, Casper RF, Leibo SP (2001) Effects of chilling to 0 degrees C on the morphology of meiotic spindles in human metaphase II oocytes. Fertil Steril 75:769-777PubMedCrossRefGoogle Scholar
  9. 9.
    Songsasen N, Yu IJ, Ratterree MS, VandeVoort CA, Leibo SP (2002) Effect of chilling on the organization of tubulin and chromosomes in rhesus monkey oocytes. Fertil Steril 77:818-825PubMedCrossRefGoogle Scholar
  10. 10.
    Balasubramanian S, Rho G (2006) Effect of chilling on the development of in vitro produced bovine embryos at various cleavage stages. J Assist Reprod Genet 23:55-61PubMedCrossRefGoogle Scholar
  11. 11.
    Ghetler Y, Yavin S, Shalgi R, Arav A (2005) The effect of chilling on membrane lipid phase transition in human oocytes and zygotes. Hum Reprod 20:3385-3389PubMedCrossRefGoogle Scholar
  12. 12.
    Wright DL, Eroglu A, Toner M, Toth TL (2004) Use of sugars in cryopreserving human oocytes. Reprod Biomed Online 9:179-186PubMedCrossRefGoogle Scholar
  13. 13.
    Mazur P, Leibo SP, Chu EHY (1972) A two-factor hypothesis of fleezing injury. Exp Cell Res 71:345-355PubMedCrossRefGoogle Scholar
  14. 14.
    Mazur P (1984) Freezing of live cells: mechanisms and implications. Am J Physiol 247:C125-C142PubMedGoogle Scholar
  15. 15.
    Lepault J, Booy FP, Dubochet J (1983) Electron microscopy of frozen biological suspensions. J Microsc 129(Pt 1):89-102PubMedGoogle Scholar
  16. 16.
    Isachenko V, Montag M, Isachenko E, Dessole S, Nawroth F, van der Ven H (2006) Aseptic vitrification of human germinal vesicle oocytes using dimethyl sulfoxide as a cryoprotectant. Fertil Steril 85:741-747PubMedCrossRefGoogle Scholar
  17. 17.
    Vajta G, Nagy ZP (2006) Are programmable freezers still needed in the embryo laboratory? Review on vitrification. Reprod Biomed Online 12:779-796PubMedCrossRefGoogle Scholar
  18. 18.
    Hong SW, Chung HM, Lim JM, Ko JJ, Yoon TK, Yee B, Cha KY (1999) Improved human oocyte development after vitrification: a comparison of thawing methods. Fertil Steril 72:142-146PubMedCrossRefGoogle Scholar
  19. 19.
    Yeoman RR, Gerami-Naini B, Mitalipov S, Nusser KD, Widmann-Browning AA, Wolf DP (2001) Cryoloop vitrification yields superior survival of Rhesus monkey blastocysts. Hum Reprod 16:1965-1969PubMedCrossRefGoogle Scholar
  20. 20.
    Selman H, Angelini A, Barnocchi N, Brusco GF, Pacchiarotti A, Aragona C (2006) Ongoing pregnancies after vitrification of human oocytes using a combined solution of ethylene glycol and dimethyl sulfoxide. Fertil Steril 86:997-1000PubMedCrossRefGoogle Scholar
  21. 21.
    Liebermann J, Tucker MJ (2002) Effect of carrier system on the yield of human oocytes and embryos as assessed by survival and developmental potential after vitrification. Reproduction 124:483-489PubMedCrossRefGoogle Scholar
  22. 22.
    Isachenko V, Katkov II, Yakovenko S, Lulat AG, Ulug M, Arvas A, Isachenko E (2007) Vitrification of human laser treated blastocysts within cut standard straws (CSS): novel aseptic packaging and reduced concentrations of cryoprotectants. Cryobiology 54:305-309PubMedCrossRefGoogle Scholar
  23. 23.
    Chen SU, Lien YR, Cheng YY, Chen HF, Ho HN, Yang YS (2001) Vitrification of mouse oocytes using closed pulled straws (CPS) achieves a high survival and preserves good patterns of meiotic spindles, compared with conventional straws, open pulled straws (OPS) and grids. Hum Reprod 16:2350-2356PubMedCrossRefGoogle Scholar
  24. 24.
    Ambrosini G, Andrisani A, Porcu E, Rebellato E, Revelli A, Caserta D, Cosmi E, Marci R, Moscarini M (2006) Oocytes cryopreservation: state of art. Reprod Toxicol 22:250-262PubMedCrossRefGoogle Scholar
  25. 25.
    Rall WF (1987) Factors affecting the survival of mouse embryos cryopreserved by vitrification. Cryobiology 24:387-402PubMedCrossRefGoogle Scholar
  26. 26.
    Wada I, Matson PL, Troup SA, Morroll DR, Hunt L, Lieberman BA (1993) Does elective cryopreservation of all embryos from women at risk of ovarian hyperstimulation syndrome reduce the incidence of the condition? Br J Obstet Gynaecol 100:265-269PubMedGoogle Scholar
  27. 27.
    Jain T, Missmer SA, Homstein MD (2004) Trents in embryo-transfer practice and in outcomes of the use of assisted reprodnctive technology in the United States N Engl J Med 350: 1639-1645PubMedCrossRefGoogle Scholar
  28. 28.
    Burlow DH, Beard HK, William AC (2004) Assisted reproductive technologies in europe encompass diverse and complex ethical viewprints issues to be considered in repoting research in human reproduction. Ann NY Acad Sci 1034: 110-111CrossRefGoogle Scholar
  29. 29.
    Anderson AR, Wilkinson SS, Price S, Crain JL (2005) Reduction of high order multiples in frozen embryo transfers. Reprod Biomed Online 10:402-405PubMedCrossRefGoogle Scholar
  30. 30.
    Trounson A, Mohr L (1983) Human pregnancy following cryopreservation, thawing and transfer of an eight-cell embryo. Nature 305:707-709PubMedCrossRefGoogle Scholar
  31. 31.
    Lassalle B, Testart J, Renard JP (1985) Human embryo features that influence the success of cryopreservation with the use of 1, 2 propanediol. Fertil Steril 44:645-651PubMedGoogle Scholar
  32. 32.
    Testart J, Lassalle B, Belaisch-Allart J, Hazout A, Forman R, Rainhorn JD, Frydman R (1986) High pregnancy rate after early human embryo freezing. Fertil Steril 46:268-272PubMedGoogle Scholar
  33. 33.
    Mandelbaum J, Junca AM, Plachot M, Alnot MO, Salat-Baroux J, Alvarez S, Tibi C, Cohen J, Debache C, Tesquier L (1988) Cryopreservation of human embryos and oocytes. Hum Reprod 3:117-119PubMedGoogle Scholar
  34. 34.
    Edgar DH, Bourne H, Jericho H, McBain JC (2000) The developmental potential of cryopreserved human embryos. Mol Cell Endocrinol 169:69-72PubMedCrossRefGoogle Scholar
  35. 35.
    Fauser BC, Bouchard P, Coelingh Bennink HJ, Collins JA, Devroey P, Evers JL, van Steirteghem A (2002) Alternative approaches in IVF. Hum Reprod Update 8:1-9PubMedCrossRefGoogle Scholar
  36. 36.
    Balakier H, Cabaca O, Bouman D, Shewchuk AB, Laskin C, Squire JA (2000) Spontaneous blastomere fusion after freezing and thawing of early human embryos leads to polyploidy and chromosomal mosaicism. Hum Reprod 15:2404-2410PubMedCrossRefGoogle Scholar
  37. 37.
    Hu Y, Maxson WS, Hoffman DI, Ory SJ, Eager S (1999) A comparison of post-thaw results between cryopreserved embryos derived from intracytoplasmic sperm injection and those from conventional IVF. Fertil Steril 72:1045-1048PubMedCrossRefGoogle Scholar
  38. 38.
    Tang R, Catt J, Howlett D (2006) Towards defining parameters for a successful single embryo transfer in frozen cycles. Hum Reprod 21:1179-1183PubMedCrossRefGoogle Scholar
  39. 39.
    Tucker MJ, Morton PC, Sweitzer CL, Wright G (1995) Cryopreservation of human embryos and oocytes. Curr Opin Obstet Gynecol 7:188-192PubMedCrossRefGoogle Scholar
  40. 40.
    Archer J, Gook DA, Edgar DH (2003) Blastocyst formation and cell numbers in human frozen-thawed embryos following extended culture. Hum Reprod 18:1669-1673PubMedCrossRefGoogle Scholar
  41. 41.
    El-Toukhy T, Khalaf Y, Al-Darazi K, Andritsos V, Taylor A, Braude P (2003) Effect of blastomere loss on the outcome of frozen embryo replacement cycles. Fertil Steril 79:1106-1111PubMedCrossRefGoogle Scholar
  42. 42.
    Edgar DH, Archer J, Gook DA, Jericho H, Wilton L, Bourne H (2004) Survival and developmental potential of stored human early cleavage stage embryos. Eur J Obstet Gynecol Reprod Biol 115(Suppl 1):S8-S11PubMedCrossRefGoogle Scholar
  43. 43.
    Hardarson T, Löfman C, Coull G, Sjögren A, Hamberger L, Edwards RG (2002) Internalization of cellular fragments in a human embryo: time-lapse recordings. Reprod Biomed Online 5:36-38PubMedCrossRefGoogle Scholar
  44. 44.
    Houghton FD, Barr KJ, Walter G, Gabriel HD, Grümmer R, Traub O, Leese HJ, Winterhager E, Kidder GM (2002) Functional significance of gap junctional coupling in preimplantation development. Biol Reprod 66:1403-1412PubMedCrossRefGoogle Scholar
  45. 45.
    Rienzi L, Nagy ZP, Ubaldi F, Iacobelli M, Anniballo R, Tesarik J, Greco E (2002) Laser-assisted removal of necrotic blastomeres from cryopreserved embryos that were partially damaged. Fertil Steril 77:1196-1201PubMedCrossRefGoogle Scholar
  46. 46.
    Rienzi L, Ubaldi F, Iacobelli M, Minasi MG, Romano S, Ferrero S, Sapienza F, Baroni E, Tesarik J, Greco E (2005) Developmental potential of fully intact and partially damaged cryopreserved embryos after laser-assisted removal of necrotic blastomeres and post-thaw culture selection. Fertil Steril 84:888-894PubMedCrossRefGoogle Scholar
  47. 47.
    Nagy ZP, Taylor T, Elliott T, Massey JB, Kort HI, Shapiro DB (2005) Removal of lysed blastomeres from frozen-thawed embryos improves implantation and pregnancy rates in frozen embryo transfer cycles. Fertil Steril 84:1606-1612PubMedCrossRefGoogle Scholar
  48. 48.
    Van der Elst J, Van den Abbeel E, Vitrier S, Camus M, Devroey P, Van Steirteghem AC (1997) Selective transfer of cryopreserved human embryos with further cleavage after thawing increases delivery and implantation rates. Hum Reprod 12:1513-1521PubMedCrossRefGoogle Scholar
  49. 49.
    Guerif F, Bidault R, Cadoret V, Couet ML, Lansac J, Royere D (2002) Parameters guiding selection of best embryos for transfer after cryopreservation: a reappraisal. Hum Reprod 17:1321-1326PubMedCrossRefGoogle Scholar
  50. 50.
    Mukaida T, Wada S, Takahashi K et al (1998) Vitrification of human embryos based on the assessment of suitable conditions for X-cell mouse embryos. Hum Reprod 13:2874-2879PubMedGoogle Scholar
  51. 51.
    El-Danasouri I, Solman H (2001) Successful pregnancies and deliveries after a simple vitrilk;ition protcK-ol for day 3 human embryos. Fertil Steril 76:400-402PubMedCrossRefGoogle Scholar
  52. 52.
    Rama Raju GA, Haranath GB, Krishna KM et al (2005) Vitrification of human 8-cell embryos, a modified protocol for better pregnancy rates. Reprod Biomed Online 11:434-437PubMedCrossRefGoogle Scholar
  53. 53.
    Liebermann J, Tucker MJ, Graham JR, Han T, Davis A, Levy MJ (2002) Blastocyst development after vitrification of multipronuclear zygotes using the Flexipet denuding pipette. Reprod Biomed Online 4:146-150PubMedCrossRefGoogle Scholar
  54. 54.
    Desai N, Blackmon H, Szeptycki J, Goldfarb J (2007) Cryoloop vitrification of human day 3 cleavage-stage embryos: post-vitrification development, pregnancy outcomes and live births. Reprod Biomed Online 14:208-213PubMedCrossRefGoogle Scholar
  55. 55.
    Hardy K, Handyside AH, Winston RM (1989) The human blastocyst: cell number, death and allocation during late preimplantation development in vitro. Development 107:597-604PubMedGoogle Scholar
  56. 56.
    Vanderzwalmen P, Bertin G, Debauche Ch, Standaert V, van Roosendaal E, Vandervorst M, Bollen N, Zech H, Mukaida T, Takahashi K, Schoysman R (2002) Births after vitrification at morula and blastocyst stages: effect of artificial reduction of the blastocoelic cavity before vitrification. Hum Reprod 17:744-751PubMedCrossRefGoogle Scholar
  57. 57.
    Guerif F, Cadoret V, Poindron J, Lansac J, Royere D (2003) Overnight incubation improves selection of frozen-thawed blastocysts for transfer: preliminary study using supernumerary embryos. Theriogenology 60:1457-1466PubMedCrossRefGoogle Scholar
  58. 58.
    Kosasa TS, McNamee PI, Morton C, Huang TT (2005) Pregnancy rates after transfer of cryopreserved blastocysts cultured in a sequential media. Am J Obstet Gynecol 192:2035-2040PubMedCrossRefGoogle Scholar
  59. 59.
    Desai N, Goldfarb J (2005) Examination of frozen cycles with replacement of a single thawed blastocyst. Reprod Biomed Online 11:349-354PubMedCrossRefGoogle Scholar
  60. 60.
    Veeck LL, Bodine R, Clarke RN, Berrios R, Libraro J, Moschini RM, Zaninovic N, Rosenwaks Z (2004) High pregnancy rates can be achieved after freezing and thawing human blastocysts. Fertil Steril 82:1418-1427PubMedCrossRefGoogle Scholar
  61. 61.
    Offenberg H, Thomsen PD (2005) Functional challenge affects aquaporin mRNA abundance in mouse blastocysts. Mol Reprod Dev 71:422-430PubMedCrossRefGoogle Scholar
  62. 62.
    Shu YM, Watt J, Gebhardt J, Applying J, Behr B (2009) The value of fast blastocoele re-expansion in the selection of a shows ­blastocyst for transfer. Fert Steril 91: 401-406CrossRefGoogle Scholar
  63. 63.
    Gardner DK, Pawelczynski M, Trounson AO (1996) Nutrient uptake and utilization can be used to select viable day 7 bovine blastocysts after cryopreservation. Mol Reprod Dev 44:472-475PubMedCrossRefGoogle Scholar
  64. 64.
    Gardner DK, Lane M, Stevens J, Schoolcraft WB (2003) Changing the start temperature and cooling rate in a slow-freezing protocol increases human blastocyst viability. Fertil Steril 79:407-410PubMedCrossRefGoogle Scholar
  65. 65.
    Menezo Y, Nicollet B, Herbaut N, Andre D (1992) Freezing co-cultured human blastocysts. Fertil Steril 58:977-980PubMedGoogle Scholar
  66. 66.
    Menezo Y, Veiga A (1997) Cryopreservation of blastocysts. In: Proceedings of the 10th World Congress on IVF and Assisted Reproduction, Vancouver, Canada, 24-28 May 1997. Monduzzi Editore, Bologna, Italy, pp 41-45Google Scholar
  67. 67.
    Troup SA, Matson PL, Critchlow JD, Morroll DR, Lieberman BA, Burslem RW (1991) Cryopreservation of human embryos at the pronucleate, early cleavage, or expanded blastocyst stages. Eur J Obstet Gynecol Reprod Biol 38:133-139PubMedCrossRefGoogle Scholar
  68. 68.
    Pantos K, Stefanidis K, Pappas K, Kokkinopoulos P, Petroutsou G, Kokkali G, Stavrou D, Tzigounisv V (2001) Cryopreservation of embryos, blastocysts, and pregnancy rates of blastocysts derived from frozen-thawed embryos and frozen-thawed blastocysts. J Assist Reprod Genet 18:579-582PubMedCrossRefGoogle Scholar
  69. 69.
    Behr B, Gebhardt J, Lyon J, Milki AA (2002) Factors relating to a successful cryopreserved blastocyst transfer program. Fertil Steril 77:697-699PubMedCrossRefGoogle Scholar
  70. 70.
    Ménézo Y, Veiga A, Benkhalifa M (1998) Improved methods for blastocyst formation and culture. Hum Reprod 13(Suppl 4):256-265PubMedGoogle Scholar
  71. 71.
    Boni R, Tosti E, Roviello S, Dale B (1999) Intercellular communications in in vivo- and in vitro-produced bovine embryos. Biol Reprod 61:1050-1055PubMedCrossRefGoogle Scholar
  72. 72.
    Leibo SP, Loskutoff NM (1993) Cryobiology of in vitro-derived bovine embryos. Theriogenology 39:81-94CrossRefGoogle Scholar
  73. 73.
    Zhu SE, Zeng SM, Yu WL, Li SJ, Zhang ZC, Chen YF (2001) Vitrification of in vivo and in vitro produced ovine blastocysts. Anim Biotechnol 12:193-203PubMedCrossRefGoogle Scholar
  74. 74.
    Fair T, Lonergan P, Dinnyes A, Cottell DC, Hyttel P, Ward FA, Boland MP (2001) Ultrastructure of bovine blastocysts following cryopreservation: effect of method of blastocyst production. Mol Reprod Dev 58:186-195PubMedCrossRefGoogle Scholar
  75. 75.
    Shapiro BS, Richter KS, Harris DC, Daneshmand ST (2001) A comparison of day 5 and day 6 blastocyst transfers. Fertil Steril 75:1126-1130PubMedCrossRefGoogle Scholar
  76. 76.
    Liebermann J, Tucker MJ (2006) Comparison of vitrification and conventional cryopreservation of day 5 and day 6 blastocysts during clinical application. Fertil Steril 86:20-26PubMedCrossRefGoogle Scholar
  77. 77.
    Utsunomiya T, Ito H, Hirai K, Otsu E, Watanabe H, Mori T (2006) Developmentally retarded frozen blastocysts can be rescued by synchronizing culture prior to transfer. Reprod Biomed Online 12:622-629PubMedCrossRefGoogle Scholar
  78. 78.
    Richter KS, Shipley SK, McVearry I, Tucker MJ, Widra EA (2006) Cryopreserved embryo transfers suggest that endometrial receptivity may contribute to reduced success rates of later developing embryos. Fertil Steril 86:862-866PubMedCrossRefGoogle Scholar
  79. 79.
    Yokota Y, Sato S, Yokota M, Ishikawa Y, Makita M, Asada T, Araki Y (2000) Successful pregnancy following blastocyst vitrification. Hum Reprod 15:1802-1803PubMedCrossRefGoogle Scholar
  80. 80.
    Mukaida T, Nakamura S, Tomiyama T, Wada S, Kasai M, Takahashi K (2001) Successful birth after transfer of vitrified human blastocysts with use of a cryoloop containerless technique. Fertil Steril 76:618-620PubMedCrossRefGoogle Scholar
  81. 81.
    Son WY, Yoon SH, Yoon HJ, Lee SM, Lim JH (2003) Pregnancy outcome following transfer of human blastocysts vitrified on electron microscopy grids after induced collapse of the blastocoele. Hum Reprod 18:137-139PubMedCrossRefGoogle Scholar
  82. 82.
    Cremades N, Sousa M, Silva J, Viana P, Sousa S, Oliveira C, Teixeira da Silva J, Barros A (2004) Experimental vitrification of human compacted morulae and early blastocysts using fine diameter plastic micropipettes. Hum Reprod 19:300-305PubMedCrossRefGoogle Scholar
  83. 83.
    Hiraoka K, Hiraoka K, Kinutani M, Kinutani K (2004) Blastocoele collapse by micropipetting prior to vitrification gives excellent survival and pregnancy outcomes for human day 5 and 6 expanded blastocysts. Hum Reprod 19:2884-2888PubMedCrossRefGoogle Scholar
  84. 84.
    Stehlik E, Stehlik J, Katayama KP, Kuwayama M, Jambor V, Brohammer R, Kato O (2005) Vitrification demonstrates significant improvement versus slow freezing of human blastocysts. Reprod Biomed Online 11:53-57PubMedCrossRefGoogle Scholar
  85. 85.
    Martin JA, Hamilton BE, Ventura SJ, Menacker F, Park MM, Sutton PD (2002) Births: final data for 2001. Natl Vital Stat Rep 51:1-102PubMedGoogle Scholar
  86. 86.
    American Cancer Society (2001) Cancer facts and figures—2001. American Cancer Society, Atlanta, GAGoogle Scholar
  87. 87.
    National Cancer Institute (1999) SEER*Stat software, version 2.0, National Cancer Institute, SEER cancer incidence public-use database, 1973-1996, August 1998 submission. Bethesda, MDGoogle Scholar
  88. 88.
    Ries LAG, Percy CL, Bunin GR (1999) Introduction. In: Ries LAG, Smith MA, Gurney JG, Linet M, Tamra T, Young JL, Bunin GR (eds) Cancer incidence and survival among children and adolescents: United States SEER Program 1975-1995 [NIH Pub. No. 99-4649]. National Cancer Institute, Bethesda, MD, pp 1-15Google Scholar
  89. 89.
    Jemal A, Clegg LX, Ward E, Ries LA, Wu X, Jamison PM, Wingo PA, Howe HL, Anderson RN, Edwards BK (2004) Annual report to the nation on the status of cancer, 1975-2001, with a special feature regarding survival. Cancer 101:3-27PubMedCrossRefGoogle Scholar
  90. 90.
    Jain JK, Paulson RJ (2006) Oocyte cryopreservation. Fertil Steril 86(Suppl 4):1037-1046PubMedCrossRefGoogle Scholar
  91. 91.
    Chen C (1986) Pregnancy after human oocyte cryopreservation. Lancet 330:884-886CrossRefGoogle Scholar
  92. 92.
    Al-Hasani S, Diedrich K, van der Ven H, Reinecke A, Hartje M, Krebs D (1987) Cryopreservation of human oocytes. Hum Reprod 2:695-700PubMedGoogle Scholar
  93. 93.
    van Uem JF, Siebzehnrübl ER, Schuh B, Koch R, Trotnow S, Lang N (1987) Birth after cryopreservation of unfertilized oocytes. Lancet 329:752-753CrossRefGoogle Scholar
  94. 94.
    Shaw JM, Oranratnachai A, Trounson AO (2000) Fundamental cryobiology of mammalian oocytes and ovarian tissue. Theriogenology 53:59-72PubMedCrossRefGoogle Scholar
  95. 95.
    Pickering SJ, Johnson MH (1987) The influence of cooling on the organization of the meiotic spindle of the mouse oocyte. Hum Reprod 2:207-216PubMedGoogle Scholar
  96. 96.
    Matson PL, Graefling J, Junk SM, Yovich JL, Edirisinghe WR (1997) Cryopreservation of oocytes and embryos: use of a mouse model to investigate effects upon zona hardness and formulate treatment strategies in an in-vitro fertilization programme. Hum Reprod 12:1550-1553PubMedCrossRefGoogle Scholar
  97. 97.
    Gook DA, Schiewe MC, Osborn SM, Asch RH, Jansen RP, Johnston WI (1995) Intracytoplasmic sperm injection and embryo development of human oocytes cryopreserved using 1, 2-propanediol. Hum Reprod 10:2637-2641PubMedGoogle Scholar
  98. 98.
    Fabbri R, Porcu E, Marsella T, Rocchetta G, Venturoli S, Flamigni C (2001) Human oocyte cryopreservation: new perspectives regarding oocyte survival. Hum Reprod 16:411-416PubMedCrossRefGoogle Scholar
  99. 99.
    Coticchio G, De Santis L, Rossi G, Borini A, Albertini D, Scaravelli G, Alecci C, Bianchi V, Nottola S, Cecconi S (2006) Sucrose concentration influences the rate of human oocytes with normal spindle and chromosome configurations after slow-cooling cryopreservation. Hum Reprod 21:1771-1776PubMedCrossRefGoogle Scholar
  100. 100.
    Boldt J, Cline D, Mclaughlin D (2003) Human oocyte cryopreservation as an adjunct to IVF-embryo transfer cycles. Hum Reprod 18: 1250-1255PubMedCrossRefGoogle Scholar
  101. 101.
    Trad FS, Toner M, Biggers JD (1999) Effects of cryoprotectants and ice-seeding temperature on intracellular freezing and survival of human oocytes. Hum Reprod 14:1569-1577PubMedCrossRefGoogle Scholar
  102. 102.
    Fosas N, Marina F, Torres PJ, Jové I, Martín P, Pérez N, Arnedo N, Marina S (2003) The births of five Spanish babies from cryopreserved donated oocytes. Hum Reprod 18:1417-1421PubMedCrossRefGoogle Scholar
  103. 103.
    Eroglu A, Toner M, Toth TL (2002) Beneficial effect of microinjected trehalose on the cryosurvival of human oocytes. Fertil Steril 77:152-158PubMedCrossRefGoogle Scholar
  104. 104.
    Rienzi L, Martinez F, Ubaldi F, Minasi MG, Iacobelli M, Tesarik J, Greco E (2004) Polscope analysis of meiotic spindle changes in living metaphase II human oocytes during the freezing and thawing procedures. Hum Reprod 19:655-659PubMedCrossRefGoogle Scholar
  105. 105.
    Larman MG, Minasi MG, Rienzi L, Gardner DK (2007) Maintenance of the meiotic spindle during vitrification in human and mouse oocytes. Reprod Biomed Online 15:692-700PubMedCrossRefGoogle Scholar
  106. 106.
    Kuleshova L, Gianaroli L, Magli C, Ferraretti A, Trounson A (1999) Birth following vitrification of a small number of human oocytes: case report. Hum Reprod 14:3077-3079PubMedCrossRefGoogle Scholar
  107. 107.
    Antinori M, Licata E, Dani G, Cerusico F, Versaci C, Antinori S (2007) Cryotop vitrification of human oocytes results in high survival rate and healthy deliveries. Reprod Biomed Online 14: 72-79PubMedCrossRefGoogle Scholar
  108. 108.
    Kuwayama M, Vajita G, Kato O, Leibo SP (2005) Highly efficient vitrification method for cryopreservation of human oocytes. Reprod Biomed Online 11:300-308PubMedCrossRefGoogle Scholar
  109. 109.
    Chian RC, Son WY, Huang JY, Cui SJ, Buckett WM, Tan SL (2005) High survival rates and pregnancies of human oocytes following vitrification: preliminary report. Fertil Steril 84(Suppl 1):S36CrossRefGoogle Scholar
  110. 110.
    Liebermann J, Tucker MJ, Sills ES (2003) Cryoloop vitrification in assisted reproduction: analysis of survival rates in > 1000 human oocytes after ultra-rapid cooling with polymer augmented cryoprotectants. Clin Exp Obstet Gynecol 30:125-129PubMedGoogle Scholar
  111. 111.
    Valdez DM, Miyamoto A, Hara T, Seki S, Kasai M, Edashige K (2005) Water- and cryoprotectant-permeability of mature and immature oocytes in the medaka (Oryzias latipes). Cryobiology 50:93-102PubMedCrossRefGoogle Scholar
  112. 112.
    Fabbri R (2006) Cryopreservation of human oocytes and ovarian tissue. Cell Tissue Bank 7:113-122PubMedCrossRefGoogle Scholar
  113. 113.
    Chian RC, Kuwayama M, Tan L, Tan J, Kato O, Nagai T (2004) High survival rate of bovine oocytes matured in vitro following vitrification. J Reprod Dev 50:685-696PubMedCrossRefGoogle Scholar
  114. 114.
    Bogliolo L, Ariu F, Fois S, Rosati I, Zedda MT, Leoni G, Succu S, Pau S, Ledda S (2007) Morphological and biochemical analysis of immature ovine oocytes vitrified with or without cumulus cells. Theriogenology 68:1138-1149PubMedCrossRefGoogle Scholar
  115. 115.
    Maher B (2007) Little consensus on egg freezing. Nature 449(7165):958PubMedCrossRefGoogle Scholar
  116. 116.
    Borini A, Cattoli M, Mazzone S, Trevisi MR, Nalon M, Iadarola I (2007) Survey of 105 babies born after slow-cooling oocyte cryopreservation. Fertil Steril 88(Suppl 1):S13-S14CrossRefGoogle Scholar
  117. 117.
    Hoffman DI, Zellman GL, Fair CC, Mayer JF, Zeitz JG, Gibbons WE, Turner TG Jr, Society for Assisted Reproduction Technology (SART) and RAND (2003) Cryopreserved embryos in the United States and their availability for research. Fertil Steril 79: 1063-1069PubMedCrossRefGoogle Scholar
  118. 118.
    Tomlinson M (2005) Managing risk associated with cryopreservation. Hum Reprod 20:1751-1756PubMedCrossRefGoogle Scholar
  119. 119.
    Practice Committee of the American Society for Reproductive Medicine (2006) Guidelines for reducing the risk of viral transmission during fertility treatment. Fertil Steril 86(5 Suppl):S11-S17Google Scholar
  120. 120.
    McKee TA, Avery S, Majid A, Brinsden PR (1996) Risks for transmission of hepatitis C virus during artificial insemination. Fertil Steril 66:161-163PubMedGoogle Scholar
  121. 121.
    Russel PH, Lyaruu VH, Millar JD, Curry MR, Watson PF (1997) The potential transmission of infectious agents by semen packing during storage for artificial insemination. Anim Reprod Sci 47:337-342CrossRefGoogle Scholar
  122. 122.
    Bielanski A, Nadin-Davis S, Sapp T, Lutze-Wallace C (2000) Viral contamination of embryos cryopreserved in liquid nitrogen. Cryobiology 40:110-116PubMedCrossRefGoogle Scholar
  123. 123.
    Clarke GN (1999) Sperm cryopreservation: is there a significant risk of cross-contamination? Hum Reprod 14:2941-2943PubMedCrossRefGoogle Scholar
  124. 124.
    Tomlinson M, Sakkas D (2000) Is a review of standard procedures for cryopreservation needed?: safe and effective cryopreservation-should sperm banks and fertility centres move toward storage in nitrogen vapour? Hum Reprod 15: 2460-2463PubMedCrossRefGoogle Scholar
  125. 125.
    Saritha KR, Bongso A (2001) Comparative evaluation of fresh and washed human sperm cryopreserved in vapor and liquid phases of liquid nitrogen. J Androl 22:857-862PubMedGoogle Scholar
  126. 126.
    Cobo A, Pérez S, Santos MJ, Pellicer A, Remohí J (2007) Comparison between storage of vitrified oocytes by cryotop method in liquid nitrogen vs. vapour phase of liquid nitrogen tanks. Fert Steril 88(Suppl 1):S91CrossRefGoogle Scholar
  127. 127.
    Fahy GM (2007) Theoretical considerations for oocyte cryopreservation by freezing. Reprod Biomed Online 14:709-714PubMedCrossRefGoogle Scholar
  128. 128.
    Gao D, Critser JK (2000) Mechanisms of cryoinjury in living cells. ILAR J 41(4):187-196PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Obstetrics & GynecologyStanford UniversityPalo AltoUSA
  2. 2.Senior Embryologist-Research Stanford Ferlility and Reproductive Medicine CenterPalo AltoUSA

Personalised recommendations