Embryo Culture Techniques

  • Katharine V. JacksonEmail author
  • Catherine Racowsky


Many variables must be considered when choosing a clinical culture system. Although animal studies provide a strong evidence-based profile as to the composition of viable clinical systems, the true test of efficacy in a clinical setting is to test the system within one’s own laboratory by randomizing sibling oocytes or embryos to the test system or the standard system currently in use. Using this methodology, clinical results can be maximized while minimizing the potential impact on patients.


Culture Media Air quality Embryo density Gas phase Temperature Light Culture techniques 


  1. 1.
    Schenk SL (1880) Des saugethieriei kumstlick befruchtet auBerhall-des mutterthiesus. As cited by RE Hammer 1998. Int J Dev Biol 42:833-839. Mitt Embr Inst KK Univer Wien 1:107-118Google Scholar
  2. 2.
    Heape W (1890) Preliminary note on the transplantation and growth of mammalian ova within a uterine foster-mother. Proc R Soc Lond 48:457-458CrossRefGoogle Scholar
  3. 3.
    Pincus G, Enzmann EV (1934) Can mammalian eggs undergo normal development in vitro? Proc Natl Acad Sci U S A 20:121-122PubMedCrossRefGoogle Scholar
  4. 4.
    Hammond J (1949) Recovery and culture of tubal mouse ova. Nature 163:28-29PubMedCrossRefGoogle Scholar
  5. 5.
    Whitten WK (1957) Culture of tubal ova. Nature 179:1081-1082PubMedCrossRefGoogle Scholar
  6. 6.
    McLaren A, Biggers JD (1958) Successful development and birth of mice cultivated in vitro as early embryos. Nature 182:877-878 PubMedCrossRefGoogle Scholar
  7. 7.
    Chang MC (1959) Fertilization of rabbit ova in vitro. Nature 84:466-467CrossRefGoogle Scholar
  8. 8.
    Hertig AT, Rock J (1949) Two human ova of the pre-villous stage, having a developmental age of about 8 and 9 days respectively. Contrib Embryol 33(213-221):169-186PubMedGoogle Scholar
  9. 9.
    Steptoe PC, Edwards RG (1978) Birth after the reimplantation of a human embryo. Lancet 2:366PubMedCrossRefGoogle Scholar
  10. 10.
    Edwards RG, Bavister BD, Steptoe PC (1969) Early stages of fertilization in vitro of human oocytes matured in vitro. Nature 221:632-635PubMedCrossRefGoogle Scholar
  11. 11.
    Edwards RG (2005) An astonishing journey into reproductive genetics since the 1950’s. Reprod Nutr Dev 45:299-306PubMedCrossRefGoogle Scholar
  12. 12.
    Trounson A, Mohr L (1983) Human pregnancy following cryopreservation, thawing and transfer of an eight-cell embryo. Nature 305:707-709PubMedCrossRefGoogle Scholar
  13. 13.
    Chen C (1986) Pregnancy after human oocyte cryopreservation. Lancet 350:186-187CrossRefGoogle Scholar
  14. 14.
    Gordon JW (1988) Fertilization of human oocytes by sperm from infertile males after zona pellucida drilling. Fertil Steril 50(1):68-73PubMedGoogle Scholar
  15. 15.
    Palermo G, Joris H, Devroey P, Van Steirteghem AC (1992) Pregnancies after intracytoplasmic injection of single spermatozoon into an oocyte. Lancet 340:17-18PubMedCrossRefGoogle Scholar
  16. 16.
    Cohen J, Elsner C, Kort H, Malter H, Massey J, Mayer MP, Weimer K (1990) Impairment of the hatching process following IVF in the human and improvement of implantation by assisting hatching using micromanipulation. Hum Reprod 5(1):7-13PubMedGoogle Scholar
  17. 17.
    Bolton VN, Wren ME, Parsons JH (1991) Pregnancies after in vitro fertilization and transfer of human blastocysts. Fertil Steril 55(4):830-832PubMedGoogle Scholar
  18. 18.
    Schoolcraft WB, Gardner DK, Lane M, Schlenker T, Hamilton F, Meldrum DR (1999) Blastocyst culture and transfer: analysis of results and parameters affecting outcome in two in vitro fertilization programs. Fertil Steril 172(4):604-609CrossRefGoogle Scholar
  19. 19.
    Hardy K, Martin KL, Leese HJ, Winston RM, Handyside AH (1990) Human preimplantation development in vitro is not adversely affected by biopsy at the 8-cell stage. Hum Reprod 5(6):708-714PubMedGoogle Scholar
  20. 20.
    Cohen J, Gilligan EW, Schimmel T, Dale B (1997) Ambient air and its potential effects on conception in vitro. Hum Reprod 12(8):1742-1749PubMedCrossRefGoogle Scholar
  21. 21.
    Boone WR, Higdon HL III, Skelton WD (2007) How to design and implement an assisted reproductive technology (ART) cleanroom. Clin Emb 10(4):5-17Google Scholar
  22. 22.
    Higdon HL III, Blackhurst DW, Boone WR (2008) Incubator management in an assisted reproductive technology laboratory. Fertil Steril 89(3):703-710PubMedCrossRefGoogle Scholar
  23. 23.
    Merton JS, Vermeulen ZL, Otter T, Mullaart E, De Ruigh L, Hasler JF (2007) Carbon-activated gas filtration during in vitro culture increased pregnancy rate following transfer of in vitro-produced bovine embryos. Theriogenology 67:1233-1238PubMedCrossRefGoogle Scholar
  24. 24.
    Hirao Y, Yanagimanchi R (1978) Temperature dependence of sperm-egg fusion and post-fusion events in hamster fertilization. J Exp Zool 205:433-438PubMedCrossRefGoogle Scholar
  25. 25.
    Wang WH, Meng L, Hackett RJ, Odenbourg R, Keefe DL (2001) Limited recovery of meiotic spindles in living human oocytes after cooling-rewarming observed using polarized light. Hum Reprod 16(11):2374-2378PubMedCrossRefGoogle Scholar
  26. 26.
    Scott L (2004) Microanalysis of rapid temperature fluctuations in IVF culture systems. Clin Emb 7(4):1-6Google Scholar
  27. 27.
    Cooke S, Tyler JPP, Driscoll G (2002) Objective assessments of temperature maintenance using in vitro culture techniques. J Assist Reprod Genet 19(8):368-375PubMedCrossRefGoogle Scholar
  28. 28.
    Fujiwara M, Takahashi K, Izuno M, Duan YR, Kazono M, Kimura F, Noda Y (2007) Effect of micro-environment maintenance on embyo culture after in-vitro fertilization: comparison of top-loading mini incubator and conventional front-load incubator. J Assist Reprod Genet 24:5-9PubMedCrossRefGoogle Scholar
  29. 29.
    Takenaka M, Horiuchi T, Yanagimachi R (2007) Effects of light on development of mammalian zygotes. Proc Natl Acad Sci U S A 104:14289-14293PubMedCrossRefGoogle Scholar
  30. 30.
    Hirao Y, Yanagimanchi R (1978) Detrimental effects of visible light on meiosis of mammalian eggs in vitro. J Exp Zool 206:365-370PubMedCrossRefGoogle Scholar
  31. 31.
    Fischer B, Schumacher A, Hegel-Hartung C, Beier HM (1988) Potential risk of light and room temperature exposure to preimplantation embryos. Fertil Steril 50(6):938-944PubMedGoogle Scholar
  32. 32.
    Oh SJ, Gong SP, Lee ST, Lee EJ, Lim JM (2007) Light intensity and wavelength during embryo manipulation are important factors for maintaining viability of preimplantation embryos in vitro. Fertil Steril 88(S2):1150-1157PubMedCrossRefGoogle Scholar
  33. 33.
    Desmet KD, Paz DA, Corry JJ, Eells JT, Wong-Riley MTT, Henry MM, Buchman EV, Connelly MP, Dovi JV, Liang HL, Henshel DS, Yeager RL, Millsap DS, Lim J, Gould LJ, Das R, Jett M, Hodgson BD, Margolis D, Whelan HT (2006) Clinical and Experimental Applications of NIR-LED Photobiomodulation. Photomed Laser Surg 24(2):121-128PubMedCrossRefGoogle Scholar
  34. 34.
    Ottosen LDM, Hindkjaer J (2007) Light exposure of the ovum and perimplantation embryo during ART procedures. J Assist Reprod Genet 24:99-103PubMedCrossRefGoogle Scholar
  35. 35.
    Bedford JM, Dobrenis A (1989) Light exposure of oocytes and pregnancy rates after their transfer in the rabbit. J Reprod Fertil 85(2):477-481PubMedCrossRefGoogle Scholar
  36. 36.
    Jackson KV, Kiessling AA (1989) Fertilization and cleavage of mouse oocytes exposed to the conditions of human oocyte retrieval for in vitro fertilization. Fertil Steril 51(4):675-681PubMedGoogle Scholar
  37. 37.
    Barlow P, Puissant F, Van Der Zwalmn P, Vandromme J, Trigaux P, Leroy F (1992) In Vitro fertilization, development and implantation after exposure of mature mouse oocytes to visible light. Mol Reprod Dev 33:297-302PubMedCrossRefGoogle Scholar
  38. 38.
    Van Blerkom J, Antczak M, Schrader R (1997) The developmental potential of the human oocyte is related to the dissolved oxygen content of follicular fluid: association with vascular endothelial growth factor levels and perifollicular blood flow characteristics. Hum Reprod 12:1047-1055PubMedCrossRefGoogle Scholar
  39. 39.
    Ottosen LDM, Hindkjaer J, Husth M, Petersen DE, Kirk J, Ingerslev HJ (2006) Observations on intrauterine oxygen tension measured by fiber-optic micro sensors. Reprod Biomed Online 13(3):380-385PubMedCrossRefGoogle Scholar
  40. 40.
    Dumoulin JCM, Meijers CJJ, Bras M, Coonen E, Geraedts JPM, Evers JLH (1999) Effect of oxygen concentraion on human in-vitro fertilization and embryo culture. Hum Reprod 14(2):465-469PubMedCrossRefGoogle Scholar
  41. 41.
    Bahceci M, Ciray HN, Karagnec L, Ulug U, Bener F (2005) Effect of oxygen concentration during the incubation of embryos of women undergoing ICSI and embryo transfer: a prospective randomized study. Reprod Biomed Online 11(4):438-443PubMedCrossRefGoogle Scholar
  42. 42.
    Rinaudo PF, Giritharan G, Talbi S, Dobson AT, Schulz RM (2006) Effects of oxygen tension on gene expression in preimplantation mouse embryos. Fertil Steril 86(3):1252-1265PubMedGoogle Scholar
  43. 43.
    Hugentobler S, Morris DG, Kane MT, Sreenan JM (2004) In situ oviduct and uterine pH in cattle. Theriogenology 61(7-8):1419-1427PubMedCrossRefGoogle Scholar
  44. 44.
    Dale B, Menezo Y, Cohen J, DiMatteo L, Wilding M (1998) Intracellular pH regulation in the human oocyte. Hum Reprod 13(4):964-970PubMedCrossRefGoogle Scholar
  45. 45.
    Phillips KP, Leveill MC, Claman P, Baltz JM (2000) Intracellular pH regulation in human preimplantation embryos. Hum Reprod 15(4):896-904PubMedCrossRefGoogle Scholar
  46. 46.
    Pool TB (2004) Optimizing pH in Clinical Embryology. Clin Emb 7(3):1-17Google Scholar
  47. 47.
    Ham RG (1963) An improved nutrient solution for diploid chinese hamster and human cell lines. Exp Cell Res 29:515-526PubMedCrossRefGoogle Scholar
  48. 48.
    Quinn P, Kerin JF, Warnes GM (1985) Improved pregnancy rate in human in vitro fertilization with the use of a medium based on the composition of human tubal fluid. Fertil Steril 44(4):493-498PubMedGoogle Scholar
  49. 49.
    Winkel P, Statland BE, Bokelund H (1974) Factors contributing to intra-individual variation of serum constituents: 5. Short term day-to-day and within-hour variation of serum constituents in healthy subjects. Clin Chem 20(12):1520-1527PubMedGoogle Scholar
  50. 50.
    Travis AJ, Tuntuncu L, Jorgez CJ, Ord TS, Jones BH, Kopf GS, Williams CJ (2004) Requirement for glucose beyond sperm capacititation during In vitro fertilization in the mouse. Biol Reprod 71:139-145PubMedCrossRefGoogle Scholar
  51. 51.
    William AC, Ford WCL (2001) The role of glucose in supporting motility and capacitation in human spermatozoa. J Androl 22(4):680-695Google Scholar
  52. 52.
    Lane M, Gardner DK (1997) Differential regulation of mouse embryo development and viability by amino acids. J Reprod Fertil 109(1):153-164PubMedCrossRefGoogle Scholar
  53. 53.
    Lemeire K, Van Merris V, Cortvrindt R (2007) The antibiotic streptomycin assessed in a battery of in vitro tests for reproductive toxicology. Toxicol In Vitro 21(7):1348-1353PubMedCrossRefGoogle Scholar
  54. 54.
    Magli MC, Gianaroli L, Fiorentino A, Ferraretti AP, Fortini D, Panzella S (1996) Improved cleavage rate of human embryos cultured in antibiotic-free medium. Hum Reprod 11(7):1520-1524PubMedGoogle Scholar
  55. 55.
    Aoki VW, Wilcox AL, Peterson CM, Parker-Jones K, Hatasaka HH, Gibson M, Huang I, Carrell DT (2005) Comparison of four media types during 3-day human IVF embryo culture. Reprod Biomed Online 10(5):600-606PubMedCrossRefGoogle Scholar
  56. 56.
    Urman B, Yakin K, Ata B, Isiklar A, Balaban B (2007) Effect of hyaluronan-enriched transfer medium on implantation and pregnancy rates after day 3 and day 5 embryo transfers; a prospective randomized study. Fertil Steril: PMID17936283 90(3):604-612PubMedCrossRefGoogle Scholar
  57. 57.
    Friedler S, Schachter M, Strassburger D, Ester K, Ron El R, Raziel A (2007) A randomized clinical trial comparing recombinant hyaluronan/recombinant albumin versus human tubal fluid for cleavage stage embryo transfer in patients with multiple IVF-embryo transfer failure. Hum Reprod 22(9):2444-2448PubMedCrossRefGoogle Scholar
  58. 58.
    Cooke S, Quinn P, Kime L, Ayres C, Tyler JPP, Driscoll GL (2002) Improvement in early human embryo development using new formulation sequential stage-specific culture media. Fertil Steril 78(6):1254-1260PubMedCrossRefGoogle Scholar
  59. 59.
    Van Langendonckt A, Demylle D, Wyns C, Nisolle M, Donnez J (2001) Comparison of G1.2/G2.2 and Sydney IVF cleavage/blastocyst sequential media for the culture of human embryos: a prospective, randomized, comparative study. Fertil Steril 76(5):1023-1031PubMedCrossRefGoogle Scholar
  60. 60.
    Hentemann M, Bertheussen K (2009) New media for culture to blastocyst. Fertil Steril: PMID18321494 91(3):878-883CrossRefGoogle Scholar
  61. 61.
    Biggers JD, Racowsky C (2002) The development of fertilized human ova to the blastocyst stage in medium KSOMAA: is a two-step protocol necessary? Reprod Biomed Online 5(2):133-140PubMedCrossRefGoogle Scholar
  62. 62.
    Macklon NS, Pieters MHEC, Hassan MA, Jeucken PHM, Eijkemans MJC, Fauser BCJM (2002) A prospective randomized comparison of sequential versus monoculture systems for in-vitro human blastocyst development. Hum Reprod 17(10):2700-2705PubMedCrossRefGoogle Scholar
  63. 63.
    Biggers JD, McGinnis LK, Lawitts JA (2005) One-step versus two-step culture of mouse preimplantation embryos: is there a difference? Hum Reprod 20:3376-3384PubMedCrossRefGoogle Scholar
  64. 64.
    Gardner DK, Lane M, Calderon I, Leeton J (1996) Environment of the preimplantation human embryo in vivo: metabolite analysis of oviduct and uterine fluids and metabolism of cumulus cells. Fertil Steril 65:349-353PubMedGoogle Scholar
  65. 65.
    Biggers JD, Lawitts J (1991) Optimization of mouse embryo culture media using simplex methods. J Reprod Fertil 91(2):543-556PubMedCrossRefGoogle Scholar
  66. 66.
    Doherty AS, Mann MRW, Tremblay KD, Bartolomei MS, Schultz RM (2000) Differential effects of culture on imprinted H19 expression in the preimplantation mouse embryo. Biol Reprod 62:1526-1535PubMedCrossRefGoogle Scholar
  67. 67.
    Sherbahn R, Frasor J, Radwanska E, Binor Z, Wood-Molo M, Hibner M, Mack S, Rawlins RG (1996) Comparison of mouse embryo development in open and microdrop co-culture systems. Hum Reprod 11(10):2223-2229PubMedGoogle Scholar
  68. 68.
    Petersen CG, Mauri AL, Massaro FC, Oliveira JBA, Baruffi RLR, Franco Jr JG (2005) Human ICSI embryo: development and implantation in open and microdrop culture systems. ESHRE, 21st annual meeting, p 439Google Scholar
  69. 69.
    Fukui Y, Lee E, Araki N (1996) Effect of medium renewal during culture in two different culture systems on development to blastocysts from in vitro produced early bovine embryos. J Anim Sci 74:2752-2758PubMedGoogle Scholar
  70. 70.
    Ozawa M, Nagai T, Kaneko H, Noguchi J, Ohnuma K, Kikuchi K (2006) Successful pig embryonic development in vitro outside a CO2 gas-regulated incubator: effects of pH and osmolality. Theriogenology 65:860-869PubMedCrossRefGoogle Scholar
  71. 71.
    Miller KF, Goldberg JM, Collins RL (1994) Covering embryo cultures with mineral oil alters embryo growth by acting as a sink for an embryotoxic substances. J Assist Reprod Genet 11(7):342-345PubMedCrossRefGoogle Scholar
  72. 72.
    Expert Committee on Food Additives (1970) Toxicological evaluation of some extraction solvents and certain other substances. World Health Organ Tech Rep Ser:14th reportGoogle Scholar
  73. 73.
    Lee S, Cho M, Kim E, Kim T, Lee C, Han J, Lim J (2004) Renovation of a drop embryo cultures system by using refined mineral oil and the effect of glucose and/or hemoglobin added to a serum-free medium. J Vet Med Sci 66(1):63-66PubMedCrossRefGoogle Scholar
  74. 74.
    Tae JC, Kim EY, Lee WD, Park SP, Lim JH (2006) Sterile filtered paraffin oil supports in vitro developmental competence in bovine embryos comparable to co-culture. J Assist Reprod Genet 23(3):121-127PubMedCrossRefGoogle Scholar
  75. 75.
    Miller KF, Pursel VG (1987) Absorption of compounds in medium by the oil covering microdrop cultures. Gamete Res 17:57-61PubMedCrossRefGoogle Scholar
  76. 76.
    Van Soom A, Mahmoudzadeh AR, Christophe A, Ysebaert MT, de Kruit A (2001) Silicone oil used in microdrop culture can affect bovine embryonic development and freezability. Reprod Domest Anim 36:169-176PubMedGoogle Scholar
  77. 77.
    Otsuki J, Nagai Y, Chiba K (2007) Peroxidation of mineral oil used in droplet culture is detrimental to fertilization and embryo development. Fertil Steril 88(3):741-742PubMedCrossRefGoogle Scholar
  78. 78.
    Bavister BD, Poole KA (2004) Duration and temperature of culture medium equilibration affect frequency of blastocyst development. Reprod Biomed Online 10(1):124-129CrossRefGoogle Scholar
  79. 79.
    Zhu B, Walker SK, Maddocks S (2004) Optimisation of in vitro culture conditions in B6CBF1 mouse embryos. Reprod Nutr Dev 44:219-231PubMedCrossRefGoogle Scholar
  80. 80.
    Lane M, Gardner DK (1994) Increase in postimplantation development of cultured mouse embryos by amino acids and induction of fetal retardation and encephaly by ammonium ions. J Reprod Fertil 102(2):305-312PubMedCrossRefGoogle Scholar
  81. 81.
    Blum-Reckow B, Holtz W (1991) Transfer of porcine embryos after 3 days of in vitro culture. J Anim Sci 69(8):335-3342Google Scholar
  82. 82.
    Fujita T, Umeki H, Shimura H, Kugumiya K, Shiga K (2006) Effect of group culture and embryo-culture conditioned medium on development of bovine embryos. J Reprod and Dev 52(1):137-142CrossRefGoogle Scholar
  83. 83.
    Carolan C, Lonergan P, Van Langendockt A, Mermilod P (1995) Factors affectiing bovine embryos development in synthetic oviduct fluid following oocyte maturation and fertilization in vitro. Theriogenology 43(6):115-1128CrossRefGoogle Scholar
  84. 84.
    Jacobs M, Stolwijk AM, Wetzels AMM (2001) The effect of insemination/injection time on the results of IVF and ICSI. Hum Reprod 16(8):1708-1713PubMedCrossRefGoogle Scholar
  85. 85.
    Ho JY-P, Chen M-J, Yi Y-C, Guu H-F, Ho ESC (2003) The effect of preincubation period of oocytes on nuclear maturity, fertilization rate, embryo quality, and pregnancy outcome in IVF and ICSI. J Assist Reprod Genet 20(9):358-364PubMedCrossRefGoogle Scholar
  86. 86.
    Van de Velse H, De Vos A, Jris H, Nagy ZP, Van Steirteghem AC (1998) Effect of timing of oocyte denudation and micro-injection on survival, fertilization and embryo quality after intracytoplasmic sperm injecton. Hum Reprod 13(11):3160-3164CrossRefGoogle Scholar
  87. 87.
    Rienzi L, Ubaldi F, Anniballo R, Cerulo G, Greco E (1998) Preincubation of human oocytes may improve fertilization and embryo quality after intracytoplasmic sperm injection. Hum Reprod 13(4):1014-1019PubMedCrossRefGoogle Scholar
  88. 88.
    Abir R, Orvieto R, Raanani H, Fisch B, Schoenfeld A, Ginton D, Nitke S, Ben Rafael Z (2000) Can varying the number of spermatozoa used for insemination improve in vitro fertilization rates. J Assist Reprod Genet 17(7):397-399CrossRefGoogle Scholar
  89. 89.
    Wolf DP, Byrd W, Dandekar P, Quigley MM (1984) Sperm concentration and the fertilization of human eggs in vitro. Biol Reprod 31:837-848PubMedCrossRefGoogle Scholar
  90. 90.
    Dumoulin JCM, Bras M, Land JA, Pieters HEC, Enginsu ME, Geraedts JPM, Evers JLH (1992) Effect of number of inseminated spermatozoa on subsequent uman and mouse embryonic developmeny in vitro. Hum Reprod 7(7):1010-1013PubMedGoogle Scholar
  91. 91.
    Van der Ven HH, Al-Hasani S, Diedrich K, Hamerich U, Lehmann F, Krebs D (1985) Polyspermy in in vitro fertilization of human oocytes: frequency and possible causes. Ann N Y Acad Sci 442:88-95PubMedCrossRefGoogle Scholar
  92. 92.
    Oehninger S, Kruger TF, Simon T, Jones D, Mayer J, Lanzendorf S, Toner JP, Muasher SJ (1996) A comparative analysis of embryo implantation potential in patients with severe teratozoospermia undergoing in-vitro fertilization with a high concentration or intracytoplasmic sperm injection. Hum Reprod 11:1086-1089PubMedGoogle Scholar
  93. 93.
    Gianaroli L, Fiorentino A, Magli MC, Ferraretti AP, Montanaro N (1996) Prolonged sperm-oocyte exposure and high sperm concentration affect human embryo viability and pregnancy rate. Hum Reprod 11(11):2507-2511PubMedGoogle Scholar
  94. 94.
    Kattera S, Chen C (2003) Short coincubation of gametes in in vitro fertilization improves implantation and pregnancy rates; a prospective, randomized, controlled study. Fertil Steril 80(4):1017-1021PubMedCrossRefGoogle Scholar
  95. 95.
    Nagy ZP, Janssenswillen C, Janssens R, De Vos A, Staessen C, Van de Velde H, Van Steirteghem AC (1998) Timing of oocyte activation, pronucleus formation and cleavage in humans after intracytoplasmic sperm injection (ICSI) with testicular spermatozoa and after ICSI or in-vitro ferlilization on sibling oocytes with ejaculated spermatozoa. Hum Reprod 13(6):1606-1612PubMedCrossRefGoogle Scholar
  96. 96.
    Palasz AT, Thundathil J (1998) The effect of volume of culture medium and embryo density on in vitro development of bovine embryos. Theriogenology 49(1):212CrossRefGoogle Scholar
  97. 97.
    Canseco RS, Sparks AET, Pearson RE, Gwazdauskas FC (1992) Embryo density and medium volume effects on early murine embryo development. J Assist Reprod Genet 9(5):454-457PubMedCrossRefGoogle Scholar
  98. 98.
    de Oliveira AT, Lopes RF, Rodrigues JL (2005) Gene expression and developmental competence of bovine embros produced in vitro under varying embryo density conditions. Theriognology 64(7):1559-1572CrossRefGoogle Scholar
  99. 99.
    Salahuddin S, Ookutsu S, Goto K, Nakanishi Y, Nagata Y (1995) Effects of embryo density and co-culture of unfertilized oocytes on embryonic development of in-vitro fertilized mouse embryos. Hum Reprod 10(9):2382-2385PubMedGoogle Scholar
  100. 100.
    Fukuja Y, Kikuchi Y, Kondo H, Mizushima S (2000) Fertizability and developmental capacity of individually cultured bovine oocytes. Theriogenology 53:1553-1585CrossRefGoogle Scholar
  101. 101.
    Moessner J, Dodson WC (1995) The quality of human embryo growth is improved when embryos are cultured in groups rather than separately. Fertil Steril 64(5):1034-1035PubMedGoogle Scholar
  102. 102.
    Almagor M, Bejar C, Kafka I, Yaffe H (1996) Pregnancy rates after communal growth of preimplantation human embryos in vitro. Fertil Steril 66(3):394-397PubMedGoogle Scholar
  103. 103.
    Rijnders PM, Jansen CAM (1999) Influence of group culture and culture volume on the formation of human blastocysts: a prospective randomized study. Hum Reprod 14(9):2333-2337PubMedCrossRefGoogle Scholar
  104. 104.
    Spyropoulos I, Karamalegos C, Bolton VN (1999) A prospective randomixed study comparing the outcome of in vitro fertilization and embryo transfer following culture of human embryos individually or in groups before embryo transfer on day 2. Hum Reprod 14(1):76-79CrossRefGoogle Scholar
  105. 105.
    Gardner DK, Vella P, Lane M et al (1998) Culture and transfer of human blastocysts increases implantation rates and reduces the need for multiple embryo transfers. Fertil Steril 69:84-88PubMedCrossRefGoogle Scholar
  106. 106.
    Gardner DK, Schoolcraft WB, Wagley L, Schlenker T, Stevens J, Hesla J (1998) A prospective randomized trial of blastocyst culture and transfer in in-vitro fertilization. Hum Reprod 13:3434-3440PubMedCrossRefGoogle Scholar
  107. 107.
    Racowsky C, Jackson KV, Cekleniak NA, Fox JH, Hornstein MD, Ginsburg ES (2000) The number of eight cell embyros is a key determinant for selecting day 3 or day 5 transfer. Fertil Steril 73:558-564PubMedCrossRefGoogle Scholar
  108. 108.
    de los Santos MJ, Mercader MJ, Galan A, Albert C, Romero JL, Pellicer A (2003) Implantation rates after two, three, or five days of embryo culture. Placenta 24(b):S13-S19PubMedGoogle Scholar
  109. 109.
    Blake DA, Farquhar CM, Johnson N, Proctor M (2007) Cleavage stage versus blastocyst stage transfer in assisted conception. Cochrane Database Syst Rev 4:CD002118PubMedGoogle Scholar
  110. 110.
    Papanikolaou E, Camus M, Kolibianakis E et al (2006) In vitro fertilization with single blastocyst-stage versus single cleavage-stage embryos. N Engl J Med 354:1139-1146PubMedCrossRefGoogle Scholar
  111. 111.
    Behr B, Fisch JD, Racowsky C, Miller K, Poole TB, Milki AA (2000) Blastocyst-ET and monozygotic twinning. J Assist Reprod Genet 17:349-351PubMedCrossRefGoogle Scholar
  112. 112.
    Skiadas CC, Missmer SA, Benson CB, Gee RE, Racowsky C (2008) Risk factors associated with pregnancies containing a monochorionic pair following assisted reproductive technologies. Hum Reprod: PMID:18378561 23(6):1366-1371CrossRefGoogle Scholar
  113. 113.
    Xie Y, Wang F, Puscheck EE, Rappolee DA (2007) Pipetting causes shear stress and elevation of phosphorylated stress-activated protein kinase/jun kinase in preimplantation embryos. Mol Reprod Dev 74:1287-1294PubMedCrossRefGoogle Scholar
  114. 114.
    Shen S, Rosen MP, Dobson AT, Fujumoto VY, McCulloch CE, Cedars MI (2006) Day 2 transfer improves pregnancy outcome in in vitro fertilization cycles with few available embryos. Fertil Steril 86(1):44-50PubMedCrossRefGoogle Scholar
  115. 115.
    Bahceci M, Ulug U, Ciray HN, Akman MA, Erden HF (2006) Efficiency of changing the embryo transfer time from day 3 to day 2 among women with poor ovarian response: a prospective randomized trial. Fertil Steril 86(1):81-85PubMedCrossRefGoogle Scholar
  116. 116.
    Jaroudi K, Al-Hassan S, Sieck U, Al-Sufyan H, Al-Kabra NM, Coskun S (2004) Zygote transfer on day 1 versus cleavage stage embryo transfer on day 3: a prospective randomized trial. Hum Reprod 19(3):645-648PubMedCrossRefGoogle Scholar
  117. 117.
    Mansour RT, Aboulghar MA, Serour GI, Abbass AM (1994) Co-culture of human pronucleate oocytes with their cumulus cells. Hum Reprod 9(9):1727-1729PubMedGoogle Scholar
  118. 118.
    Dirnfeld M, Goldman S, Gonen Y, Koifman M, Calderon I, Abramovici H (1997) A simplified coculture system with luteinized granulosa cells improves enbryo quality and implantation rates, a controlled study. Fertil Steril 67:120-122PubMedCrossRefGoogle Scholar
  119. 119.
    Fabbri R, Porcu E, Marsella T, Primavera MR, Cecconi S, Nottola SA, Motta PM, Venturoli S, Flamigni C (2000) Human embryo development and pregnancies in an homologous granulosa cell coculture system. J Assist Reprod Genet 17(1):1-12PubMedCrossRefGoogle Scholar
  120. 120.
    Parikh FR, Nadkarni SG, Naik NJ, Naik DJ, Uttamchandani SA (2006) Cumulus coculture and cumulus-aided embryo transfer increases pregnancy rates in patients undergoing in vitro fertilization. Fertil Steril 86(4):839-847PubMedCrossRefGoogle Scholar
  121. 121.
    Spandorfer SD, Pascal P, Parks J, Clarke R, Veeck L, Davis OK, Rosenwaks Z (2004) Autologous endometrial co-culture in patients with IVF failure: outcome of the first 1030 cases. J Reprod Med 49(6):463-467PubMedGoogle Scholar
  122. 122.
    Spandorfer SD, Barmat LI, Navarro J, Hung-Ching L, Veeck L, Rosenwaks Z (2002) Importance of the biopsy day in autologous endometrial co-cultures for patients with multiple implantation failures. Fertil Steril 77:1209-1213PubMedCrossRefGoogle Scholar
  123. 123.
    Thompson JG (2006) Culture without the petri-dish. Theriogenology 67(1):16-20PubMedCrossRefGoogle Scholar
  124. 124.
    Raty S, Walters EM, Davis J, Zeringue H, Beebe DJ, Rodriguez-Zas S, Wheeler MB (2004) Embryonic development in the mouse is enhanced via microchannel culture. Lab Chip 4:186-190PubMedCrossRefGoogle Scholar
  125. 125.
    Suh RS, Zhu X, Phadke N, Ohl DA, Takayama S, Smith GD (2006) IVF within microfluidic channels requires lower total numbers and lower concentrations of sperm. Hum Reprod 21(2):477-483PubMedCrossRefGoogle Scholar
  126. 126.
    Walters EM, Clark SG, Beebe DJ, Wheeler MB (2004) Mammalian embryo culture in a microfluidic device. Methods Mol Biol 254:375-382PubMedGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Department of Obstetrics, Gynecology and Reproductive BiologyBrigham and Women’s Hospital, Harvard Medical SchoolBostonUSA

Personalised recommendations