The Clinical Utility of the Evaluation of Sperm Chromatin

Chapter

Abstract

Interest in the use of sperm DNA integrity as a predictor of fertility potential is on the rise. Clear differences in the levels of sperm DNA damage have been observed between fertile and infertile men. Sperm DNA damage has been found to be adversely affected by age. Men with a high percentage of DNA fragmentation have very low potential for in vitro and in vivo fertility. Moreover, DNA fragmentation is linked to effects on embryonic development, implantation and risk of recurrent miscarriages, and the health of offspring. The potential causes of sperm DNA damage are complex with multiple factors acting at both the intratesticular and posttesticular levels. Oxidative stress, defective sperm chromatin packaging, and disordered abortive apoptosis, are the three putative mechanisms most commonly associated with DNA damage. Sperm DNA damage can occur and can be assessed at different levels in the reproductive tract. Several methods have been developed to evaluate sperm DNA damage as well as assess DNA maturity, quality of packaging, and protamination of the chromatin. The challenge in the management of patients with elevated DNA damage increases proportionately with the rise of such damage. Positive effect of oral antioxidants has been reported. Several methods designed to separate superior spermatozoa from normal DNA have shown promising results, but await further evaluation and confirmation.

Keywords

Sperm chromatin Male infertility Sperm DNA damage Sperm DNA integrity 

References

  1. 1.
    Greenhall E, Vessey M (1990) The prevalence of subfertility: a review of the current confusion and a report of two new studies. Fertil Steril 54:978-983PubMedGoogle Scholar
  2. 2.
    Mosher WD, Pratt WF (1991) Fecundity and infertility in the United States: incidence and trends. Fertil Steril 56:192-193PubMedGoogle Scholar
  3. 3.
    World Health Organization (1999) WHO laboratory manual for the examination of human semen and sperm-cervical mucus interaction, 4th edn. Cambridge University Press, Cambridge, UKGoogle Scholar
  4. 4.
    Tomlinson MJ, Kessopoulou E, Barratt CLR (1999) The diagnostic and prognostic value of traditional semen parameters. J Androl 20:588-593PubMedGoogle Scholar
  5. 5.
    Guzick DS, Overstreet JW, Factor-Litvak P et al (2001) Sperm morphology, motility, and concentration in infertile and fertile men. N Engl J Med 345:1388-1393PubMedCrossRefGoogle Scholar
  6. 6.
    Liu DY, Baker HW (2002) Evaluation and assessment of semen for IVF/ICSI. Asian J Androl 4:281-285PubMedGoogle Scholar
  7. 7.
    Carrell DT (2000) Semen analysis at the turn of the century: an evaluation of potential uses of new sperm function assays. Arch Androl 44:65-75PubMedCrossRefGoogle Scholar
  8. 8.
    Lewis SEM, Aitken RJ (2005) DNA damage to spermatozoa has impacts on fertilization and pregnancy. Cell Tissue Res 322:33-41PubMedCrossRefGoogle Scholar
  9. 9.
    Sherins RJ (1995) Are semen quality and male fertility changing? N Engl J Med 332:327-328PubMedCrossRefGoogle Scholar
  10. 10.
    Nagy ZP, Verheyen G, Tournaye H, Van Steirteghem AC (1998) Special applications of intracytoplasmic sperm injection: the influence of sperm count, motility, morphology, source and sperm antibody on the outcome of ICSI. Hum Reprod 13:143-154PubMedGoogle Scholar
  11. 11.
    Bonduelle M, Aytoz A, Van Assche E, Devroey P, Liebaers I, Van Steirteghem A (1998) Incidence of chromosomal aberrations in children born after assisted reproduction through intracytoplasmic sperm injection. Hum Reprod 13:781-782PubMedCrossRefGoogle Scholar
  12. 12.
    In't Veld P, Brandenburg H, Verhoeff A, Dhont M, Los F (1995) Sex chromosomal abnormalities and intracytoplasmic sperm injection. Lancet 346:773PubMedCrossRefGoogle Scholar
  13. 13.
    Bonduelle M, Van Assche E, Joris H, Keymolen K, Devroey P, Van Steirteghem A, Liebaers I (2002) Prenatal testing in ICSI pregnancies: incidence of chromosomal anomalies in 1586 ­karyotypes and relation to sperm parameters. Hum Reprod 17:2600-2614PubMedCrossRefGoogle Scholar
  14. 14.
    Verpoest W, Tournaye H (2006) ICSI: hype or hazard? Hum Fertil 9:81-92CrossRefGoogle Scholar
  15. 15.
    The ESHRE Capri Workshop Group (2007) Intracytoplasmic sperm injection (ICSI) in 2006: Evidence and Evolution. Hum Reprod Update 13:515-526CrossRefGoogle Scholar
  16. 16.
    Kodama H, Yamaguchi R, Fukuda J, Kasai H, Tanaka T (1997) Increased oxidative deoxyribonucleic acid damage in the spermatozoa of infertile male patients. Fertil Steril 68:519-524PubMedCrossRefGoogle Scholar
  17. 17.
    Spano M, Bonde JP, Hjollund HI, Kolstad HA, Cordelli E, Leter G (2000) Sperm chromatin damage impairs human fertility. The Danish First Pregnancy Planner Study Team. Fertil Steril 73:43-50PubMedCrossRefGoogle Scholar
  18. 18.
    Irvine DS, Twigg JP, Gordon EL, Fulton N, Milne PA, Aitken RJ (2000) DNA integrity in human spermatozoa: relationships with semen quality. J Androl 21:33-44PubMedGoogle Scholar
  19. 19.
    Zini A, Bielecki R, Phang D, Zenzes MT (2001) Correlations between two markers of sperm DNA integrity, DNA denaturation and DNA fragmentation, in fertile and infertile men. Fertil Steril 75:674-677PubMedCrossRefGoogle Scholar
  20. 20.
    Larson-Cook KL, Brannian JD, Hansen KA, Kasperson KM, Aamold ET, Evenson DP (2003) Relationship between the outcomes of assisted reproductive techniques and sperm DNA fragmentation as measured by the sperm chromatin structure assay. Fertil Steril 80:895-902PubMedCrossRefGoogle Scholar
  21. 21.
    Duran EH, Morshedi M, Taylor S, Oehninger S (2002) Sperm DNA quality predicts intrauterine insemination outcome - a prospective cohort study. Hum Reprod 17:3122-3128PubMedCrossRefGoogle Scholar
  22. 22.
    Benchaib M, Lornage J, Mazoyer C, Lejeune H, Salle B, Francois Guerin J (2007) Sperm deoxyribonucleic acid fragmentation as a prognostic indicator of assisted reproductive technology outcome. Fertil Steril 87:93-100PubMedCrossRefGoogle Scholar
  23. 23.
    Bungum M, Humaidan P, Axmon A, Spano M, Bungum L, Erenpreiss J, Giwercman A (2007) Sperm DNA integrity assessment in prediction of assisted reproduction technology outcome. Hum Reprod 22:174-179PubMedCrossRefGoogle Scholar
  24. 24.
    Morris ID, Ilott S, Dixon L, Brison DR (2002) The spectrum of DNA damage in human sperm assessed by single cell electrophoresis (COMET assay) and its relationship to fertilization and embryo development. Hum Reprod 17:990-998PubMedCrossRefGoogle Scholar
  25. 25.
    Tesarik J, Greco E, Mendoza C (2004) Late, but not early, paternal effect on human embryo development is related to sperm DNA fragmentation. Hum Reprod 19:611-615PubMedCrossRefGoogle Scholar
  26. 26.
    Carrell DT, Liu L, Peterson CM et al (2003) Sperm DNA fragmentation is increased in couples with unexplained recurrent pregnancy loss. Arch Androl 49:49-55PubMedCrossRefGoogle Scholar
  27. 27.
    Ward WS, Partin AW, Coffey DS (1989) DNA loop domains in mammalian spermatozoa. Chromosoma 98:153-159PubMedCrossRefGoogle Scholar
  28. 28.
    Ward MA, Ward WS (2004) A model for the function of sperm DNA degradation. Reprod Fertil Dev 16:547-554PubMedCrossRefGoogle Scholar
  29. 29.
    Hoyer-Fender S, Singh PB, Motzkus D (2000) The murine heterochromatin protein M31 is associated with the chromocenter in round spermatids and Is a component of mature spermatozoa. Exp Cell Res 254:72-79PubMedCrossRefGoogle Scholar
  30. 30.
    Ward WS, Zalensky AO (1996) The unique, complex organization of the transcriptionally silent sperm chromatin. Crit Rev Eukaryot Gene Expr 6:139-147PubMedGoogle Scholar
  31. 31.
    Sotolongo B, Ward WS (2001) DNA loop domain organization: the three dimensional genomic code. J Cell Biochem Suppl 35:23-26Google Scholar
  32. 32.
    Barone JG, De Lara J, Cummings KB, Ward WS (1994) DNA organization in human spermatozoa. J Androl 15:139-144PubMedGoogle Scholar
  33. 33.
    Ward WS, Coffey DS (1989) Identification of a sperm nuclear annulus: a sperm DNA anchor. Biol Reprod 41:361-370PubMedCrossRefGoogle Scholar
  34. 34.
    Zalensky AO, Allen MJ, Kobayashi A, Zalenskaya IA, Balhorn R, Bradbury EM (1995) Well-defined genome architecture in the human sperm nucleus. Chromosoma 103:577-590PubMedCrossRefGoogle Scholar
  35. 35.
    Wouters-Tyrou D, Martinage A, Chevaillier P, Sautiere P (1998) Nuclear basic proteins in spermiogenesis. Biochimie 80:117-128PubMedCrossRefGoogle Scholar
  36. 36.
    Balhorn R (1982) A model for the structure of chromatin in mammalian sperm. J Cell Biol 93:298-305PubMedCrossRefGoogle Scholar
  37. 37.
    Ward WS (1993) Deoxyribonucleic acid loop domain tertiary structure in mammalian spermatozoa. Biol Reprod 48:1193-1201PubMedCrossRefGoogle Scholar
  38. 38.
    Gineitis AA, Zalenskaya IA, Yau PM, Bradbury EM, Zalensky AO (2000) Human sperm telomere-binding complex involves histone H2B and secures telomere membrane attachment. J Cell Biol 151:1591-1598PubMedCrossRefGoogle Scholar
  39. 39.
    Zalensky AO, Siino JS, Gineitis AA et al (2002) Human testis/sperm-specific histone H2B (hTSH2B). Molecular cloning and characterization. J Biol Chem 277:43474-43480PubMedCrossRefGoogle Scholar
  40. 40.
    Gardiner-Garden M, Ballesteros M, Gordon M, Tam PP (1998) Histone- and protamine-DNA association: conservation of different patterns within the beta-globin domain in human sperm. Mol Cell Biol 18:3350-3356PubMedGoogle Scholar
  41. 41.
    Zalenskaya IA, Bradbury EM, Zalensky AO (2000) Chromatin structure of telomere domain in human sperm. Biochem Biophys Res Commun 279:213-218PubMedCrossRefGoogle Scholar
  42. 42.
    Singleton S, Zalensky A, Doncel GF, Morshedi M, Zalenskaya IA (2007) Testis/sperm-specific histone 2B in the sperm of donors and subfertile patients: variability and relation to chromatin packaging. Hum Reprod 22:743-750PubMedCrossRefGoogle Scholar
  43. 43.
    Zalenskaya IA, Zalensky AO (2004) Non-random positioning of chromosomes in human sperm nuclei. Chromosome Res 12:163-173PubMedCrossRefGoogle Scholar
  44. 44.
    Solov'eva L, Svetlova M, Bodinski D, Zalensky AO (2004) Nature of telomere dimers and chromosome looping in human spermatozoa. Chromosome Res 12:817-823PubMedCrossRefGoogle Scholar
  45. 45.
    Zalensky AO, Tomilin NV, Zalenskaya IA, Teplitz R, Bradbury EM (1997) Telomere-telomere interactions and telomere binding proteins in mammalian sperm. Exp Cell Res 232:29-41PubMedCrossRefGoogle Scholar
  46. 46.
    Fischer MA, Willis J, Zini A (2003) Human sperm DNA integrity: correlation with sperm cytoplasmic droplets. Urology 61:207-211PubMedCrossRefGoogle Scholar
  47. 47.
    Agarwal A, Said TM (2003) Role of sperm chromatin abnormalities and DNA damage in male infertility. Hum Reprod Update 9:331-345PubMedCrossRefGoogle Scholar
  48. 48.
    Gandini L, Lombardo F, Paoli D et al (2000) Study of apoptotic DNA fragmentation in human spermatozoa. Hum Reprod 15:830-839PubMedCrossRefGoogle Scholar
  49. 49.
    Stahl O, Eberhard J, Jepson K et al (2006) Sperm DNA integrity in testicular cancer patients. Hum Reprod 21:3199-3205PubMedCrossRefGoogle Scholar
  50. 50.
    Morris ID (2002) Sperm DNA damage and cancer treatment. Int J Androl 25:255-261PubMedCrossRefGoogle Scholar
  51. 51.
    Wyllie AH, Kerr JFR, Currie AR (1980) Cell death: the significance of apoptosis. Int Rev Cytol 68:251-306PubMedCrossRefGoogle Scholar
  52. 52.
    Gorczyca W, Traganos F, Jesionowska H, Darzynkiewicz Z (1993) Presence of DNA strand breaks and increased sensitivity of DNA in situ to denaturation in abnormal human sperm cells: analogy to apoptosis of somatic cells. Exp Cell Res 207:202-205PubMedCrossRefGoogle Scholar
  53. 53.
    Lopes S, Sun JG, Jurisicova A, Meriano J, Casper RF (1998) Sperm deoxyribonucleic acid fragmentation is increased in poor-quality semen samples and correlates with failed fertilization in intracytoplasmic sperm injection. Fertil Steril 69:528-532PubMedCrossRefGoogle Scholar
  54. 54.
    Sakkas D, Moffatt O, Manicardi GC, Mariethoz E, Tarozzi N, Bizzaro D (2002) Nature of DNA damage in ejaculated human spermatozoa and the possible involvement of apoptosis. Biol Reprod 66:1061-1067PubMedCrossRefGoogle Scholar
  55. 55.
    Lachaud C, Tesarik J, Canadas ML, Mendoza C (2004) Apoptosis and necrosis in human ejaculated spermatozoa. Hum Reprod 19:607-610PubMedCrossRefGoogle Scholar
  56. 56.
    Blanc-Layrac G, Bringuier AF, Guillot R, Feldmann G (2000) Morphological and biochemical analysis of cell death in human ejaculated spermatozoa. Cell Mol Biol (Noisy-le-grand) 46:187-197Google Scholar
  57. 57.
    Sinha Hikim AP, Swerdloff RS (1999) Hormonal and genetic control of germ cell apoptosis in the testis. Rev Reprod 4:38-47PubMedCrossRefGoogle Scholar
  58. 58.
    Sakkas D, Seli E, Bizzaro D, Tarozzi N, Manicardi GC (2003) Abnormal spermatozoa in the ejaculate: abortive apoptosis and faulty nuclear remodelling during spermatogenesis. Reprod Biomed Online 7:428-432PubMedCrossRefGoogle Scholar
  59. 59.
    Lee J, Richburg JH, Younkin SC, Boekelheide K (1997) The Fas system is a key regulator of germ cell apoptosis in the testis. Endocrinology 138:2081-2088PubMedCrossRefGoogle Scholar
  60. 60.
    Barroso G, Morshedi M, Oehninger S (2000) Analysis of DNA fragmentation, plasma membrane translocation of phosphatidylserine and oxidative stress in human spermatozoa. Hum Reprod 15:1338-1344PubMedCrossRefGoogle Scholar
  61. 61.
    Aitken RJ, Clarkson JS, Fishel S (1989) Generation of reactive oxygen species, lipid peroxidation, and human sperm function. Biol Reprod 41:183-197PubMedCrossRefGoogle Scholar
  62. 62.
    Beckman KB, Ames BN (1997) Oxidative decay of DNA. J Biol Chem 272:19633-19636PubMedCrossRefGoogle Scholar
  63. 63.
    Twigg J, Fulton N, Gomez E, Irvine DS, Aitken RJ (1998) Analysis of the impact of intracellular reactive oxygen species generation on the structural and functional integrity of human spermatozoa: lipid peroxidation, DNA fragmentation and effectiveness of antioxidants. Hum Reprod 13:1429-1436PubMedCrossRefGoogle Scholar
  64. 64.
    Zini A, de Lamirande E, Gagnon C (1993) Reactive oxygen species in semen of infertile patients: levels of superoxide dismutase- and catalase-like activities in seminal plasma and spermatozoa. Int J Androl 16:183-188PubMedCrossRefGoogle Scholar
  65. 65.
    Alvarez JG, Sharma RK, Ollero M et al (2002) Increased DNA damage in sperm from leukocytospermic semen samples as determined by the sperm chromatin structure assay. Fertil Steril 78:319-329PubMedCrossRefGoogle Scholar
  66. 66.
    Moskovtsev SI, Willis J, White J, Mullen JB (2007) Leukocytospermia: relationship to sperm deoxyribonucleic acid integrity in patients evaluated for male factor infertility. Fertil Steril 88:737-740PubMedCrossRefGoogle Scholar
  67. 67.
    Griveau JF, Le Lannou D (1997) Reactive oxygen species and human spermatozoa: physiology and pathology. Int J Androl 20:61-69PubMedCrossRefGoogle Scholar
  68. 68.
    Sikka SC (2004) Role of oxidative stress and antioxidants in andrology and assisted reproductive technology. J Androl 25:5-18PubMedGoogle Scholar
  69. 69.
    Marcon L, Boissonneault G (2004) Transient DNA strand breaks during mouse and human spermiogenesis new insights in stage specificity and link to chromatin remodeling. Biol Reprod 70:910-918PubMedCrossRefGoogle Scholar
  70. 70.
    Evenson DP, Jost LK, Corzett M, Balhorn R (2000) Characteristics of human sperm chromatin structure following an episode of influenza and high fever: a case study. J Androl 21:739-746PubMedGoogle Scholar
  71. 71.
    Carrell DT, Liu L (2001) Altered protamine 2 expression is uncommon in donors of known fertility, but common among men with poor fertilizing capacity, and may reflect other abnormalities of spermiogenesis. J Androl 22:604-610PubMedGoogle Scholar
  72. 72.
    Laberge RM, Boissonneault G (2005) On the nature and origin of DNA strand breaks in elongating spermatids. Biol Reprod 73:289-296PubMedCrossRefGoogle Scholar
  73. 73.
    McPherson SM, Longo FJ (1992) Localization of DNase I-hypersensitive regions during rat spermatogenesis: stage-dependent patterns and unique sensitivity of elongating spermatids. Mol Reprod Dev 31:268-279PubMedCrossRefGoogle Scholar
  74. 74.
    Bianchi PG, Manicardi GC, Bizzaro D, Bianchi U, Sakkas D (1993) Effect of deoxyribonucleic acid protamination on fluorochrome staining and in situ nick-translation of murine and human mature spermatozoa. Biol Reprod 49:1083-1088PubMedCrossRefGoogle Scholar
  75. 75.
    Bannister LA, Schimenti JC (2004) Homologous recombinational repair proteins in mouse meiosis. Cytogenet Genome Res 107:191-200PubMedCrossRefGoogle Scholar
  76. 76.
    Aoki VW, Moskovtsev SI, Willis J, Liu L, Mullen JB, Carrell DT (2005) DNA integrity is compromised in protamine-deficient human sperm. J Androl 26:741-748PubMedCrossRefGoogle Scholar
  77. 77.
    Spano M, Seli E, Bizzaro D, Manicardi GC, Sakkas D (2005) The significance of sperm nuclear DNA strand breaks on reproductive outcome. Curr Opin Obstet Gynecol 17:255-260PubMedCrossRefGoogle Scholar
  78. 78.
    Evenson DP, Darzynkiewicz Z, Melamed MR (1980) Relation of mammalian sperm chromatin heterogeneity to fertility. Science 210:1131-1133PubMedCrossRefGoogle Scholar
  79. 79.
    Evenson DP, Larson KL, Jost LK (2002) Sperm chromatin structure assay: its clinical use for detecting sperm DNA fragmentation in male infertility and comparisons with other techniques. J Androl 23:25-43PubMedGoogle Scholar
  80. 80.
    Evenson D, Wixon R (2006) Meta-analysis of sperm DNA fragmentation using the sperm chromatin structure assay. Reprod Biomed Online 12:466-472PubMedCrossRefGoogle Scholar
  81. 81.
    Moskovtsev SI, Willis J, Mullen JB (2006) Age-related decline in sperm deoxyribonucleic acid integrity in patients evaluated for male infertility. Fertil Steril 85:496-499PubMedCrossRefGoogle Scholar
  82. 82.
    Saleh RA, Agarwal A, Nelson DR et al (2002) Increased sperm nuclear DNA damage in normozoospernic infertile men: a prospective study. Fertil Steril 78:313-318PubMedCrossRefGoogle Scholar
  83. 83.
    Bungum M, Humaidan P, Spano M, Jepson K, Bungum L, Giwercman A (2004) The predictive value of sperm chromatin structure assay (SCSA) parameters and the outcome of intrauterine insemination, IVF and ICSI. Hum Reprod 19:1401-1408PubMedCrossRefGoogle Scholar
  84. 84.
    Zini A, Libman J (2006) Sperm DNA damage: Clinical significance in the era of assisted reproduction. CMAJ 175:495-500PubMedGoogle Scholar
  85. 85.
    Tejada RI, Mitchell JC, Norman A, Marik JJ, Friedman S (1984) A test for the practical evaluation of male fertility by acridine orange (AO) fluorescence. Fertil Steril 42:87-91PubMedGoogle Scholar
  86. 86.
    Ibrahim ME, Pedersen H (1988) Acridine orange fluorescence as male fertility test. Arch Androl 20:125-129PubMedCrossRefGoogle Scholar
  87. 87.
    Virant-Klun I, Tomazevic T, Meden-Vrtovec H (2002) Sperm single-stranded DNA, detected by acridine orange staining, reduces fertilization and quality of ICSI-derived embryos. J Assist Reprod Genet 19:319-328PubMedCrossRefGoogle Scholar
  88. 88.
    Katayose H, Yanagida K, Hashimoto S, Yamada H, Sato A (2003) Use of diamide-acridine orange fluorescence staining to detect aberrant protamination of human-ejaculated sperm nuclei. Fertil Steril 79:670-676PubMedCrossRefGoogle Scholar
  89. 89.
    Sergerie M, Laforest G, Boulanger K, Bissonnette F, Bleau G (2005) Longitudinal study of sperm DNA fragmentation as measured by terminal uridine nick end-labelling assay. Hum Reprod 20:1921-1927PubMedCrossRefGoogle Scholar
  90. 90.
    Benchaib M, Braun V, Lornage J et al (2003) Sperm DNA fragmentation decreases the pregnancy rate in an assisted reproductive technique. Hum Reprod 18:1023-1028PubMedCrossRefGoogle Scholar
  91. 91.
    Henkel R, Kierspel E, Hajimohammad M et al (2003) DNA fragmentation of spermatozoa and assisted reproduction technology. Reprod Biomed Online 7:477-484PubMedCrossRefGoogle Scholar
  92. 92.
    Manicardi GC, Tombacco A, Bizzaro D, Bianchi U, Bianchi PG, Sakkas D (1998) DNA strand breaks in ejaculated human spermatozoa: comparison of susceptibility to the nick translation and terminal transferase assays. Histochem J 30:33-39PubMedCrossRefGoogle Scholar
  93. 93.
    Steele EK, McClure N, Maxwell RJ, Lewis SE (1999) A comparison of DNA damage in testicular and proximal epididymal spermatozoa in obstructive azoospermia. Mol Hum Reprod 5:831-835PubMedCrossRefGoogle Scholar
  94. 94.
    Collins AR, Dobson VL, Dusinska M, Kennedy G, Stetina R (1997) The comet assay: what can it really tell us? Mutat Res 375:183-193PubMedGoogle Scholar
  95. 95.
    Singh NP, Danner DB, Tice RR, McCoy MT, Collins GD, Schneider EL (1989) Abundant alkali-sensitive sites in DNA of human and mouse sperm. Exp Cell Res 184:461-470PubMedCrossRefGoogle Scholar
  96. 96.
    Olive PL, Durand RE, Banath JP, Johnston PJ (2001) Analysis of DNA damage in individual cells. Methods Cell Biol 64:235-249PubMedCrossRefGoogle Scholar
  97. 97.
    Aravindan GR, Bjordahl J, Jost LK, Evenson DP (1997) Susceptibility of human sperm to in situ DNA denaturation is strongly correlated with DNA strand breaks identified by single-cell electrophoresis. Exp Cell Res 236:231-237PubMedCrossRefGoogle Scholar
  98. 98.
    Lewis SE, O'Connell M, Stevenson M, Thompson-Cree L, McClure N (2004) An algorithm to predict pregnancy in assisted reproduction. Hum Reprod 19:1385-1394PubMedCrossRefGoogle Scholar
  99. 99.
    Wiseman H, Halliwell B (1996) Damage to DNA by reactive oxygen and nitrogen species: role in inflammatory disease and progression to cancer. Biochem J 313:17-29PubMedGoogle Scholar
  100. 100.
    Halliwell B (1998) Can oxidative DNA damage be used as a biomarker of cancer risk in humans? Problems, resolutions and preliminary results from nutritional supplementation studies. Free Radic Res 29:469-486PubMedCrossRefGoogle Scholar
  101. 101.
    Fraga CG, Motchnik PA, Shigenaga MK, Helbock HJ, Jacob RA, Ames BN (1991) Ascorbic acid protects against endogenous oxidative DNA damage in human sperm. Proc Natl Acad Sci USA 88:11003-11006PubMedCrossRefGoogle Scholar
  102. 102.
    Shen HM, Chia SE, Ong CN (1999) Evaluation of oxidative DNA damage in human sperm and its association with male infertility. J Androl 20:718-723PubMedGoogle Scholar
  103. 103.
    Schaaf GJ, Nijmeijer SM, Maas RF, Roestenberg P, de Groene EM, Fink-Gremmels J (2002) The role of oxidative stress in the ochratoxin A-mediated toxicity in proximal tubular cells. Biochim Biophys Acta 1588:149-158PubMedGoogle Scholar
  104. 104.
    Chen CS, Chao HT, Pan RL, Wei YH (1997) Hydroxyl radical-induced decline in motility and increase in lipid peroxidation and DNA modification in human sperm. Biochem Mol Biol Int 43:291-303PubMedGoogle Scholar
  105. 105.
    Oger I, Da Cruz C, Panteix G, Menezo Y (2003) Evaluating human sperm DNA integrity: relationship between 8-hydroxydeoxyguanosine quantification and the sperm chromatin structure assay. Zygote 11:367-371PubMedCrossRefGoogle Scholar
  106. 106.
    Chevaillier P, Mauro N, Feneux D, Jouannet P, David G (1987) Anomalous protein complement of sperm nuclei in some infertile men. Lancet 2:806-807PubMedCrossRefGoogle Scholar
  107. 107.
    Colleu D, Lescoat D, Boujard D, Le Lannou D (1988) Human spermatozoal nuclear maturity in normozoospermia and asthenozoospermia. Arch Androl 21:155-162PubMedCrossRefGoogle Scholar
  108. 108.
    Haidl G, Schill WB (1994) Assessment of sperm chromatin condensation: an important test for prediction of IVF outcome. Arch Androl 32:263-266PubMedCrossRefGoogle Scholar
  109. 109.
    Razavi S, Nasr-Esfahani MH, Mardani M, Mafi A, Moghdam A (2003) Effect of human sperm chromatin anomalies on fertilization outcome post-ICSI. Andrologia 35:238-243PubMedCrossRefGoogle Scholar
  110. 110.
    Hammadeh ME, Strehler E, Zeginiadou T, Rosenbaum P, Schmidt W (2001) Chromatin decondensation of human sperm in vitro and its relation to fertilization rate after ICSI. Arch Androl 47:83-87PubMedCrossRefGoogle Scholar
  111. 111.
    Krzanowska H (1982) Toluidine blue staining reveals changes in chromatin stabilization of mouse spermatozoa during epididymal maturation and penetration of ova. J Reprod Fertil 64:97-101PubMedCrossRefGoogle Scholar
  112. 112.
    Andreetta AM, Stockert JC, Barrera C (1995) A simple method to detect sperm chromatin abnormalities: cytochemical mechanism and possible value in predicting semen quality in assisted reproductive procedures. Int J Androl 18:23-28PubMedCrossRefGoogle Scholar
  113. 113.
    Erenpreiss J, Jepson K, Giwercman A, Tsarev I, Erenpreisa J, Spano M (2004) Toluidine blue cytometry test for sperm DNA conformation: comparison with the flow cytometric sperm chromatin structure and TUNEL assays. Hum Reprod 19:2277-2282PubMedCrossRefGoogle Scholar
  114. 114.
    Franken DR, Franken CJ, de la Guerre H, de Villiers A (1999) Normal sperm morphology and chromatin packaging: comparison between aniline blue and chromomycin A3 staining. Andrologia 31:361-366PubMedCrossRefGoogle Scholar
  115. 115.
    Esterhuizen AD, Franken DR, Lourens JG, Prinsloo E, van Rooyen LH (2000) Sperm chromatin packaging as an indicator of in-vitro fertilization rates. Hum Reprod 15:657-661PubMedCrossRefGoogle Scholar
  116. 116.
    Martin JA, Hamilton BE, Sutton PD, Ventura SJ, Menacker F, Munson ML (2005) Births: final data for 2003. Natl Vital Stat Rep 54:1-116Google Scholar
  117. 117.
    Spano M, Kolstad AH, Larsen SB et al (1998) The applicability of the flow cytometric sperm chromatin structure assay in epidemiological studies. Asclepios. Hum Reprod 13:2495-2505PubMedCrossRefGoogle Scholar
  118. 118.
    Wyrobek AJ, Eskenazi B, Young S et al (2006) Advancing age has differential effects on DNA damage, chromatin integrity, gene mutations, and aneuploidies in sperm. Proc Natl Acad Sci USA 103:9601-9606PubMedCrossRefGoogle Scholar
  119. 119.
    Vagnini L, Baruffi RL, Mauri AL et al (2007) The effects of male age on sperm DNA damage in an infertile population. Reprod Biomed Online 15:514-519PubMedCrossRefGoogle Scholar
  120. 120.
    Singh NP, Muller CH, Berger RE (2003) Effects of age on DNA double-strand breaks and apoptosis in human sperm. Fertil Steril 80:1420-1430PubMedCrossRefGoogle Scholar
  121. 121.
    Trisini AT, Singh NP, Duty SM, Hauser R (2004) Relationship between human semen parameters and deoxyribonucleic acid damage assessed by the neutral comet assay. Fertil Steril 82:1623-1632PubMedCrossRefGoogle Scholar
  122. 122.
    Schmid TE, Eskenazi B, Baumgartner A et al (2007) The effects of male age on sperm DNA damage in healthy non-smokers. Hum Reprod 22:180-187PubMedCrossRefGoogle Scholar
  123. 123.
    Martin RH, Rademaker AW (1987) The effect of age on the frequency of sperm chromosomal abnormalities in normal men. Am J Hum Genet 41:484-492PubMedGoogle Scholar
  124. 124.
    Sharpe RM, Skakkebaek NE (1993) Are oestrogens involved in falling sperm counts and disorders of the male reproductive tract? Lancet 341:1392-1395PubMedCrossRefGoogle Scholar
  125. 125.
    Crow JF (1997) The high spontaneous mutation rate: is it a health risk? Proc Natl Acad Sci USA 94:8380-8386PubMedCrossRefGoogle Scholar
  126. 126.
    Moskovtsev SI, Willis J, White J, Mullen JB (2007) Sperm survival: relationship to age-related sperm DNA integrity in infertile men. Arch Androl 53:29-32PubMedCrossRefGoogle Scholar
  127. 127.
    Giwercman A, Richthoff J, Hjollund H et al (2003) Correlation between sperm motility and sperm chromatin structure assay parameters. Fertil Steril 80:1404-1412PubMedCrossRefGoogle Scholar
  128. 128.
    Apedaile AE, Garrett C, Liu DY, Clarke GN, Johnston SA, Baker HW (2004) Flow cytometry and microscopic acridine orange test: relationship with standard semen analysis. Reprod Biomed Online 8:398-407PubMedCrossRefGoogle Scholar
  129. 129.
    Moskovtsev SI, Willis J, Azad A, Mullen JB (2005) Sperm DNA integrity: correlation with sperm plasma membrane integrity in semen evaluated for male infertility. Arch Androl 51:33-40PubMedCrossRefGoogle Scholar
  130. 130.
    Erenpreiss J, Bars J, Lipatnikova V, Erenpreisa J, Zalkalns J (2001) Comparative study of cytochemical tests for sperm chromatin integrity. J Androl 22:45-53PubMedGoogle Scholar
  131. 131.
    Saleh RA, Agarwal A, Nada EA et al (2003) Negative effects of increased sperm DNA damage in relation to seminal oxidative stress in men with idiopathic and male factor infertility. Fertil Steril 79:1597-1605PubMedCrossRefGoogle Scholar
  132. 132.
    Huang CC, Lin DP, Tsao HM, Cheng TC, Liu CH, Lee MS (2005) Sperm DNA fragmentation negatively correlates with velocity and fertilization rates but might not affect pregnancy rates. Fertil Steril 84:130-140PubMedCrossRefGoogle Scholar
  133. 133.
    Muratori M, Piomboni P, Baldi E et al (2000) Functional and ultrastructural features of DNA-fragmented human sperm. J Androl 21:903-912PubMedGoogle Scholar
  134. 134.
    Erenpreisa J, Erenpreiss J, Freivalds T et al (2003) Toluidine blue test for sperm DNA integrity and elaboration of image cytometry algorithm. Cytometry A 52:19-27PubMedCrossRefGoogle Scholar
  135. 135.
    Host E, Lindenberg S, Kahn JA, Christensen F (1999) DNA strand breaks in human sperm cells: a comparison between men with normal and oligozoospermic sperm samples. Acta Obstet Gynecol Scand 78:336-339PubMedCrossRefGoogle Scholar
  136. 136.
    Erenpreiss J, Spano M, Erenpreisa J, Bungum M, Giwercman A (2006) Sperm chromatin structure and male fertility: biological and clinical aspects. Asian J Androl 8:11-29PubMedCrossRefGoogle Scholar
  137. 137.
    Evenson DP, Jost LK, Marshall D et al (1999) Utility of the sperm chromatin structure assay as a diagnostic and prognostic tool in the human fertility clinic. Hum Reprod 14:1039-1049PubMedCrossRefGoogle Scholar
  138. 138.
    Andersen AN, Gianaroli L, Felberbaum R et al (2005) Assisted reproductive technology in Europe, 2001. Hum Reprod 20: 1158-1176PubMedCrossRefGoogle Scholar
  139. 139.
    Hull MG, Fleming CF, Hughes AO, McDermott A (1996) The age-related decline in female fecundity: a quantitative controlled study of implanting capacity and survival of individual embryos after in vitro fertilization. Fertil Steril 65:783-790PubMedGoogle Scholar
  140. 140.
    Gandini L, Lombardo F, Paoli D et al (2004) Full-term pregnancies achieved with ICSI despite high levels of sperm chromatin damage. Hum Reprod 19:1409-1417PubMedCrossRefGoogle Scholar
  141. 141.
    Virro MR, Larson-Cook KL, Evenson DP (2004) Sperm chromatin structure assay (SCSA) related to blastocyst rate, pregnancy rate and spontaneous abortion in IVF and ICSI cycles. Fertil Steril 81:1289-1295PubMedCrossRefGoogle Scholar
  142. 142.
    Tomlinson MJ, Moffatt O, Manicardi GC, Bizzaro D, Afnan M, Sakkas D (2001) Interrelationships between seminal parameters and sperm nuclear DNA damage before and after density gradient centrifugation: implications for assisted conception. Hum Reprod 16:2160-2165PubMedCrossRefGoogle Scholar
  143. 143.
    Seli E, Gardner DK, Schoolcraft WB, Moffatt O, Sakkas D (2004) Extent of nuclear DNA damage in ejaculated spermatozoa impacts on blastocyst development after in vitro fertilization. Fertil Steril 82:378-383PubMedCrossRefGoogle Scholar
  144. 144.
    Boe-Hansen GB, Fedder J, Ersboll AK, Christensen P (2006) The sperm chromatin structure assay as a diagnostic tool in the human fertility clinic. Hum Reprod 21:1576-1582PubMedCrossRefGoogle Scholar
  145. 145.
    Payne JF, Raburn DJ, Couchman GM, Price TM, Jamison MG, Walmer DK (2005) Redefining the relationship between sperm deoxyribonucleic acid fragmentation as measured by the sperm chromatin structure assay and outcomes of assisted reproductive techniques. Fertil Steril 84:356-364PubMedCrossRefGoogle Scholar
  146. 146.
    Tarozzi N, Bizzaro D, Flamigni C, Borini A (2007) Clinical relevance of sperm DNA damage in assisted reproduction. Reprod Biomed Online 14:746-757PubMedCrossRefGoogle Scholar
  147. 147.
    Host E, Lindenberg S, Smidt-Jensen S (2000) The role of DNA strand breaks in human spermatozoa used for IVF and ICSI. Acta Obstet Gynecol Scand 79:559-563PubMedCrossRefGoogle Scholar
  148. 148.
    Borini A, Tarozzi N, Bizzaro D et al (2006) Sperm DNA fragmentation: paternal effect on early post-implantation embryo development in ART. Hum Reprod 21:2876-2881PubMedCrossRefGoogle Scholar
  149. 149.
    Fowden AL, Sibley C, Reik W, Constancia M (2006) Imprinted genes, placental development and fetal growth. Horm Res 65:50-58PubMedCrossRefGoogle Scholar
  150. 150.
    Aitken RJ, Krausz C (2001) Oxidative stress, DNA damage and the Y chromosome. Reproduction 122:497-506PubMedCrossRefGoogle Scholar
  151. 151.
    Hansen M, Bower C, Milne E, de Klerk N, Kurinczuk JJ (2005) Assisted reproductive technologies and the risk of birth defects-a systematic review. Hum Reprod 20:328-338PubMedCrossRefGoogle Scholar
  152. 152.
    DeBaun MR, Niemitz EL, Feinberg AP (2003) Association of in vitro fertilization with Beckwith-Wiedemann syndrome and epigenetic alterations of LIT1 and H19. Am J Hum Genet 72:156-160PubMedCrossRefGoogle Scholar
  153. 153.
    Ji BT, Shu XO, Linet MS et al (1997) Paternal cigarette smoking and the risk of childhood cancer among offspring of nonsmoking mothers. J Natl Cancer Inst 89:238-244PubMedCrossRefGoogle Scholar
  154. 154.
    Ebisch IM, Thomas CM, Peters WH, Braat DD, Steegers-Theunissen RP (2007) The importance of folate, zinc and antioxidants in the pathogenesis and prevention of subfertility. Hum Reprod Update 13:163-174PubMedCrossRefGoogle Scholar
  155. 155.
    Agarwal A, Nallella KP, Allamaneni SS, Said TM (2004) Role of antioxidants in treatment of male infertility: an overview of the literature. Reprod Biomed Online 8:616-627PubMedCrossRefGoogle Scholar
  156. 156.
    Greco E, Iacobelli M, Rienzi L, Ubaldi F, Ferrero S, Tesarik J (2005) Reduction of the incidence of sperm DNA fragmentation by oral antioxidant treatment. J Androl 26:349-353PubMedCrossRefGoogle Scholar
  157. 157.
    Menezo YJ, Hazout A, Panteix G et al (2007) Antioxidants to reduce sperm DNA fragmentation: an unexpected adverse effect. Reprod Biomed Online 14:418-421PubMedCrossRefGoogle Scholar
  158. 158.
    Silver EW, Eskenazi B, Evenson DP, Block G, Young S, Wyrobek AJ (2005) Effect of antioxidant intake on sperm chromatin stability in healthy non-smoking men. J Androl 26:550-556PubMedCrossRefGoogle Scholar
  159. 159.
    Eskenazi B, Kidd SA, Marks AR, Sloter E, Block G, Wyrobek AJ (2005) Antioxidant intake is associated with semen quality in healthy men. Hum Reprod 20:1006-1012PubMedCrossRefGoogle Scholar
  160. 160.
    Tesarik J, Ubaldi F, Rienzi L et al (2004) Caspase-dependent and -independent DNA fragmentation in Sertoli and germ cells from men with primary testicular failure: relationship with histological diagnosis. Hum Reprod 19:254-261PubMedCrossRefGoogle Scholar
  161. 161.
    Aitken RJ, Gordon E, Harkiss D et al (1998) Relative impact of oxidative stress on the functional competence and genomic integrity of human spermatozoa. Biol Reprod 59:1037-46PubMedCrossRefGoogle Scholar
  162. 162.
    Said TM, Grunewald S, Paasch U et al (2005) Advantage of combining magnetic cell separation with sperm preparation techniques. Reprod Biomed Online 10:740-746PubMedCrossRefGoogle Scholar
  163. 163.
    Aziz N, Said T, Paasch U, Agarwal A (2007) The relationship between human sperm apoptosis, morphology and the sperm deformity index. Hum Reprod 22:1413-1419PubMedCrossRefGoogle Scholar
  164. 164.
    Ainsworth C, Nixon B, Aitken RJ (2005) Development of a novel electrophoretic system for the isolation of human spermatozoa. Hum Reprod 20:2261-2270PubMedCrossRefGoogle Scholar
  165. 165.
    Ainsworth C, Nixon B, Jansen RP, Aitken RJ (2007) First recorded pregnancy and normal birth after ICSI using electrophoretically isolated spermatozoa. Hum Reprod 22:197-200PubMedCrossRefGoogle Scholar
  166. 166.
    Bartoov B, Berkovitz A, Eltes F et al (2003) Pregnancy rates are higher with intracytoplasmic morphologically selected sperm injection than with conventional intracytoplasmic injection. Fertil Steril 80:1413-1419PubMedCrossRefGoogle Scholar
  167. 167.
    Hazout A, Dumont-Hassan M, Junca AM, Cohen Bacrie P, Tesarik J (2006) High-magnification ICSI overcomes paternal effect resistant to conventional ICSI. Reprod Biomed Online 12:19-25PubMedCrossRefGoogle Scholar
  168. 168.
    Greco E, Scarselli F, Iacobelli M et al (2005) Efficient treatment of infertility due to sperm DNA damage by ICSI with testicular spermatozoa. Hum Reprod 20:226-230PubMedCrossRefGoogle Scholar
  169. 169.
    Nicopoullos JD, Ramsay JW, Almeida PA, Gilling-Smith C (2004) Assisted reproduction in the azoospermic couple. BJOG 111:1190-1203PubMedCrossRefGoogle Scholar

Copyright information

© Springer Science+Business Media, LLC 2010

Authors and Affiliations

  1. 1.Andrology Laboratory, Department of Pathology and Laboratory MedicineMount Sinai HospitalTorontoCanada

Personalised recommendations