Skip to main content

Sperm Capacitation, the Acrosome Reaction, and Fertilization

  • Chapter
  • First Online:

Abstract

Recent advances in our understanding of fertilization are summarized, highlighting newly discovered molecules implicated in sperm interactions with the epithelia of the female reproductive system (spermadhesins, BSP-proteins), sperm-zona binding (ZP4, ZP3R, IAM38/ZPBP), sperm oolemma binding and fusion (IZUMO, CD9, CD81), oocyte activation (PLCzeta, SRC-family kinases and their activators), and pronuclear development (nucleoplasmin, oocyte-specific histones). Sperm-contributed RNAs and signaling molecules are discussed, and the mechanisms of gamete interactions and antipolyspermy defense during natural fertilization are compared with fertilization events following intracytoplasmic sperm injection (ICSI).

This is a preview of subscription content, log in via an institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • Available as PDF
  • Read on any device
  • Instant download
  • Own it forever
eBook
USD   169.00
Price excludes VAT (USA)
  • Available as EPUB and PDF
  • Read on any device
  • Instant download
  • Own it forever
Softcover Book
USD   219.99
Price excludes VAT (USA)
  • Compact, lightweight edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info
Hardcover Book
USD   299.99
Price excludes VAT (USA)
  • Durable hardcover edition
  • Dispatched in 3 to 5 business days
  • Free shipping worldwide - see info

Tax calculation will be finalised at checkout

Purchases are for personal use only

Learn about institutional subscriptions

References

  1. Suarez S (2002) Gamete transport. In: Hardy D (ed) Fertilization. Academic Press, San Diego, pp 3-28

    Google Scholar 

  2. Garbers DL, Kopf GS (1980) The regulation of spermatozoa by calcium cyclic nucleotides. Adv Cyclic Nucleotide Res 13:251-306

    PubMed  Google Scholar 

  3. Vijayaraghavan S, Goueli SA, Davey MP, Carr DW (1997) Protein kinase A-anchoring inhibitor peptides arrest mammalian sperm motility. J Biol Chem 272(8):4747-4752

    PubMed  Google Scholar 

  4. Lin RY, Moss SB, Rubin CS (1995) Characterization of S-AKAP84, a novel developmentally regulated A kinase anchor protein of male germ cells. J Biol Chem 270(46):27804-27811

    PubMed  Google Scholar 

  5. Mullins KJ, Saacke RG (1989) Study of the functional anatomy of bovine cervical mucosa with special reference to mucus secretion and sperm transport. Anat Rec 225(2):106-117

    PubMed  Google Scholar 

  6. Kunz G, Beil D, Deininger H, Wildt L, Leyendecker G (1996) The dynamics of rapid sperm transport through the female genital tract: evidence from vaginal sonography of uterine peristalsis and hysterosalpingoscintigraphy. Hum Reprod 11(3):627-632

    PubMed  Google Scholar 

  7. Kunz G, Leyendecker G (2002) Uterine peristaltic activity during the menstrual cycle: characterization, regulation, function and dysfunction. Reprod Biomed Online 4(Suppl 3):5-9

    PubMed  Google Scholar 

  8. Fritz H, Schiessler H, Schleuning WD (1973) Proteinases and proteinase inhibitors in the fertilization process: new concepts of control? Adv Biosci 10:271-286

    PubMed  Google Scholar 

  9. Samuelsson B (1963) Prostaglandins of human seminal plasma. Blue Sheet 89:34

    PubMed  Google Scholar 

  10. Dostal J, Veselsky L, Marounek M, Zelezna B, Jonakova V (1997) Inhibition of bacterial and boar epididymal sperm immunogenicity by boar seminal immunosuppressive component in mice. J Reprod Fertil 111(1):135-141

    PubMed  Google Scholar 

  11. Kelly RW (1995) Immunosuppressive mechanisms in semen: implications for contraception. Hum Reprod 10(7):1686-1693

    PubMed  Google Scholar 

  12. Pang PC, Tissot B, Drobnis EZ et al (2007) Expression of bisecting type and Lewisx/Lewisy terminated N-glycans on human sperm. J Biol Chem 282(50):36593-36602

    PubMed  Google Scholar 

  13. Austin CR (1957) Fate of spermatozoa in the uterus of the mouse and rat. J Endocrinol 14(4):335-342

    PubMed  Google Scholar 

  14. Jansen RP (1980) Cyclic changes in the human fallopian tube isthmus and their functional importance. Am J Obstet Gynecol 136(3):292-308

    PubMed  Google Scholar 

  15. Saacke RG, DeJarnette JM, Bame JH, Karabinus DS, Whitman SS (1998) Can spermatozoa with abnormal heads gain access to the ovum in artificially inseminated super- and single-ovulating cattle? Theriogenology 50(1):117-128

    PubMed  Google Scholar 

  16. Overstreet JW, Cooper GW (1978) Sperm transport in the reproductive tract of the female rabbit: II. The sustained phase of transport. Biol Reprod 19(1):115-132

    PubMed  Google Scholar 

  17. Overstreet JW, Cooper GW (1978) Sperm transport in the reproductive tract of the female rabbit: I. The rapid transit phase of transport. Biol Reprod 19(1):101-114

    PubMed  Google Scholar 

  18. Rodriguez-Martinez H, Saravia F, Wallgren M et al (2005) Boar spermatozoa in the oviduct. Theriogenology 63(2):514-535

    PubMed  Google Scholar 

  19. Hunter RH, Wilmut I (1984) Sperm transport in the cow: peri-ovulatory redistribution of viable cells within the oviduct. Reprod Nutr Dev 24(5A):597-608

    PubMed  Google Scholar 

  20. Dalton JC, Nadir S, Bame JH, Noftsinger M, Nebel RL, Saacke RG (2001) Effect of time of insemination on number of accessory sperm, fertilization rate, and embryo quality in nonlactating dairy cattle. J Dairy Sci 84(11):2413-2418

    PubMed  Google Scholar 

  21. Yanagimachi R, Chang MC (1963) Sperm ascent through the oviduct of the hamster and rabbit in relation to the time of ovulation. J Reprod Fertil 6:413-420

    PubMed  Google Scholar 

  22. Williams M, Hill CJ, Scudamore I, Dunphy B, Cooke ID, Barratt CL (1993) Sperm numbers and distribution within the human fallopian tube around ovulation. Hum Reprod 8(12):2019-2026

    PubMed  Google Scholar 

  23. Ignotz GG, Lo MC, Perez CL, Gwathmey TM, Suarez SS (2001) Characterization of a fucose-binding protein from bull sperm and seminal plasma that may be responsible for formation of the oviductal sperm reservoir. Biol Reprod 64(6):1806-1811

    PubMed  Google Scholar 

  24. Gwathmey TM, Ignotz GG, Mueller JL, Manjunath P, Suarez SS (2006) Bovine seminal plasma proteins PDC-109, BSP-A3, and BSP-30-kDa share functional roles in storing sperm in the oviduct. Biol Reprod 75(4):501-507

    PubMed  Google Scholar 

  25. Haase B, Schlotterer C, Hundrieser ME et al (2005) Evolution of the spermadhesin gene family. Gene 352:20-29

    PubMed  Google Scholar 

  26. Topfer-Petersen E, Petrounkina AM, Ekhlasi-Hundrieser M (2000) Oocyte-sperm interactions. Anim Reprod Sci 60-61:653-662

    PubMed  Google Scholar 

  27. Liberda J, Manaskova P, Prelovska L, Ticha M, Jonakova V (2006) Saccharide-mediated interactions of boar sperm surface proteins with components of the porcine oviduct. J Reprod Immunol 71(2):112-125

    PubMed  Google Scholar 

  28. Ekhlasi-Hundrieser M, Gohr K, Wagner A, Tsolova M, Petrunkina A, Topfer-Petersen E (2005) Spermadhesin AQN1 is a candidate receptor molecule involved in the formation of the oviductal sperm reservoir in the pig. Biol Reprod 73(3):536-545

    PubMed  Google Scholar 

  29. Jelinkova P, Liberda J, Manaskova P, Ryslava H, Jonakova V, Ticha M (2004) Mannan-binding proteins from boar seminal plasma. J Reprod Immunol 62(1-2):167-182

    PubMed  Google Scholar 

  30. Tollner TL, Yudin AI, Tarantal AF, Treece CA, Overstreet JW, Cherr GN (2008) Beta-defensin 126 on the surface of macaque sperm mediates attachment of sperm to oviductal epithelia. Biol Reprod 78(3):400-412

    PubMed  Google Scholar 

  31. Austin CR (1952) The capacitation of the mammalian sperm. Nature 170(4321):326

    PubMed  Google Scholar 

  32. Yanagimachi R (1970) The movement of golden hamster spermatozoa before and after capacitation. J Reprod Fertil 23(1):193-196

    PubMed  Google Scholar 

  33. Demott RP, Suarez SS (1992) Hyperactivated sperm progress in the mouse oviduct. Biol Reprod 46(5):779-785

    PubMed  Google Scholar 

  34. Lefebvre R, Suarez SS (1996) Effect of capacitation on bull sperm binding to homologous oviductal epithelium. Biol Reprod 54(3):575-582

    PubMed  Google Scholar 

  35. Cohen-Dayag A, Tur-Kaspa I, Dor J, Mashiach S, Eisenbach M (1995) Sperm capacitation in humans is transient and correlates with chemotactic responsiveness to follicular factors. Proc Natl Acad Sci U S A 92(24):11039-11043

    PubMed  Google Scholar 

  36. Hunter RH (2008) Sperm release from oviduct epithelial binding is controlled hormonally by peri-ovulatory graafian follicles. Mol Reprod Dev 75(1):167-174

    PubMed  Google Scholar 

  37. Abou-Haila A, Tulsiani DR (2003) Evidence for the capacitation-associated membrane priming of mouse spermatozoa. Histochem Cell Biol 119(3):179-187

    PubMed  Google Scholar 

  38. Jaiswal BS, Eisenbach M (2002) Capacitation. In: Hardy DM (ed) Fertilization. Academic Press, San Diego, pp 57-117

    Google Scholar 

  39. Rubinstein S, Breitbart H (1991) Role of spermine in mammalian sperm capacitation and acrosome reaction. Biochem J 278(Pt 1):25-28

    PubMed  Google Scholar 

  40. Luconi M, Muratori M, Maggi M et al (2000) Uteroglobin and transglutaminase modulate human sperm functions. J Androl 21(5):676-688

    PubMed  Google Scholar 

  41. Rodeheffer C, Shur BD (2004) Sperm from beta1, 4-galactosyltransferase I-null mice exhibit precocious capacitation. Development 131(3):491-501

    PubMed  Google Scholar 

  42. Roldan ER, Murase T, Shi QX (1994) Exocytosis in spermatozoa in response to progesterone and zona pellucida. Science 266(5190): 1578-1581

    PubMed  Google Scholar 

  43. Gadella BM, Visconti PE (2006) Regulation of capacitation. In: De Jonge C, Barratt CL (eds) The sperm cell. Cambridge University Press, Cambridge, UK, pp 134-169

    Google Scholar 

  44. Visconti PE, Bailey JL, Moore GD, Pan D, Olds-Clarke P, Kopf GS (1995) Capacitation of mouse spermatozoa. I. Correlation between the capacitation state and protein tyrosine phosphorylation. Development 121(4):1129-1137

    PubMed  Google Scholar 

  45. Visconti PE, Moore GD, Bailey JL et al (1995) Capacitation of mouse spermatozoa. II. Protein tyrosine phosphorylation and capacitation are regulated by a cAMP-dependent pathway. Development 121(4):1139-1150

    PubMed  Google Scholar 

  46. Luconi M, Barni T, Vannelli GB et al (1998) Extracellular signal-regulated kinases modulate capacitation of human spermatozoa. Biol Reprod 58(6):1476-1489

    PubMed  Google Scholar 

  47. Rajendran L, Simons K (2005) Lipid rafts and membrane dynamics. J Cell Sci 118(Pt 6):1099-1102

    PubMed  Google Scholar 

  48. Snider DR, Clegg ED (1975) Alteration of phospholipids in porcine spermatozoa during in vivo uterus and oviduct incubation. J Anim Sci 40(2):269-274

    PubMed  Google Scholar 

  49. Davis BK (1981) Timing of fertilization in mammals: sperm cholesterol/phospholipid ratio as a determinant of the capacitation interval. Proc Natl Acad Sci U S A 78(12):7560-7564

    PubMed  Google Scholar 

  50. Langlais J, Kan FW, Granger L, Raymond L, Bleau G, Roberts KD (1988) Identification of sterol acceptors that stimulate cholesterol efflux from human spermatozoa during in vitro capacitation. Gamete Res 20(2):185-201

    PubMed  Google Scholar 

  51. Jaiswal BS, Cohen-Dayag A, Tur-Kaspa I, Eisenbach M (1998) Sperm capacitation is, after all, a prerequisite for both partial and complete acrosome reaction. FEBS Lett 427(2):309-313

    PubMed  Google Scholar 

  52. Valencia A, Wens MA, Merchant H, Reyes R, Delgado NM (1984) Capacitation of human spermatozoa by heparin. Arch Androl 12(Suppl):109-113

    PubMed  Google Scholar 

  53. Muller K, Pomorski T, Muller P, Zachowski A, Herrmann A (1994) Protein-dependent translocation of aminophospholipids and asymmetric transbilayer distribution of phospholipids in the plasma membrane of ram sperm cells. Biochemistry 33(33): 9968-9974

    PubMed  Google Scholar 

  54. Wang L, Beserra C, Garbers DL (2004) A novel aminophospholipid transporter exclusively expressed in spermatozoa is required for membrane lipid asymmetry and normal fertilization. Dev Biol 267(1):203-215

    PubMed  Google Scholar 

  55. Gadella BM, Flesch FM, van Golde LM, Colenbrander B (1999) Dynamics in the membrane organization of the mammalian sperm cell and functionality in fertilization. Vet Q 21(4):142-146

    PubMed  Google Scholar 

  56. Flesch FM, Colenbrander B, van Golde LM, Gadella BM (1999) Capacitation induces tyrosine phosphorylation of proteins in the boar sperm plasma membrane. Biochem Biophys Res Commun 262(3):787-792

    PubMed  Google Scholar 

  57. Buffone MG, Calamera JC, Verstraeten SV, Doncel GF (2005) Capacitation-associated protein tyrosine phosphorylation and membrane fluidity changes are impaired in the spermatozoa of asthenozoospermic patients. Reproduction 129(6):697-705

    PubMed  Google Scholar 

  58. Suarez SS (1996) Hyperactivated motility in sperm. J Androl 17(4):331-335

    PubMed  Google Scholar 

  59. Yanagimachi R, Usui N (1974) Calcium dependence of the acrosome reaction and activation of guinea pig spermatozoa. Exp Cell Res 89(1):161-174

    PubMed  Google Scholar 

  60. Suarez SS, Varosi SM, Dai X (1993) Intracellular calcium increases with hyperactivation in intact, moving hamster sperm and oscillates with the flagellar beat cycle. Proc Natl Acad Sci U S A 90(10):4660-4664

    PubMed  Google Scholar 

  61. Ficarro S, Chertihin O, Westbrook VA et al (2003) Phosphoproteome analysis of capacitated human sperm. Evidence of tyrosine phosphorylation of a kinase-anchoring protein 3 and valosin-containing protein/p97 during capacitation. J Biol Chem 278(13): 11579-11589

    PubMed  Google Scholar 

  62. Vijayaraghavan S, Liberty GA, Mohan J, Winfrey VP, Olson GE, Carr DW (1999) Isolation and molecular characterization of AKAP110, a novel, sperm-specific protein kinase A-anchoring protein. Mol Endocrinol 13(5):705-717

    PubMed  Google Scholar 

  63. Eddy EM, Toshimori K, O'Brien DA (2003) Fibrous sheath of mammalian spermatozoa. Microsc Res Tech 61(1):103-115

    PubMed  Google Scholar 

  64. Esposito G, Jaiswal BS, Xie F et al (2004) Mice deficient for soluble adenylyl cyclase are infertile because of a severe sperm-motility defect. Proc Natl Acad Sci U S A 101(9):2993-2998

    PubMed  Google Scholar 

  65. Ren D, Navarro B, Perez G et al (2001) A sperm ion channel required for sperm motility and male fertility. Nature 413(6856):603-609

    PubMed  Google Scholar 

  66. Krisfalusi M, Miki K, Magyar PL, O’Brien DA (2006) Multiple glycolytic enzymes are tightly bound to the fibrous sheath of mouse spermatozoa. Biol Reprod 75(2):270-278

    PubMed  Google Scholar 

  67. Miki K, Qu W, Goulding EH et al (2004) Glyceraldehyde 3-phosphate dehydrogenase-S, a sperm-specific glycolytic enzyme, is required for sperm motility and male fertility. Proc Natl Acad Sci U S A 101(47):16501-16506

    PubMed  Google Scholar 

  68. Stouffer RL, Xu F, Duffy DM (2007) Molecular control of ovulation and luteinization in the primate follicle. Front Biosci 12:297-307

    PubMed  Google Scholar 

  69. Curry TE Jr, Smith MF (2006) Impact of extracellular matrix remodeling on ovulation and the folliculo-luteal transition. Semin Reprod Med 24(4):228-241

    PubMed  Google Scholar 

  70. Richards JS (2002) Delivery of the oocyte from the follicle to the oviduct: a time of vulnerability. Ernst Schering Res Found Workshop (41):43-62

    Google Scholar 

  71. Mahi-Brown CA, Yanagimachi R (1983) Parameters inlfuencing ovum pickup by oviductal fimbria in the golden hamster. Gamete Res 8:1-10

    Google Scholar 

  72. Bedford JM (1996) What marsupial gametes disclose about gamete function in eutherian mammals. Reprod Fertil Dev 8(4):569-580

    PubMed  Google Scholar 

  73. Halbert SA, Tam PY, Adams RJ, Blandau RJ (1976) An analysis of the mechanisms of egg transport in the ampulla of the rabbit oviduct. Gynecol Invest 7(5):306-320

    PubMed  Google Scholar 

  74. Halbert SA, Tam PY, Blandau RJ (1976) Egg transport in the rabbit oviduct: the roles of cilia and muscle. Science 191(4231): 1052-1053

    PubMed  Google Scholar 

  75. Vines CA, Yoshida K, Griffin FJ et al (2002) Motility initiation in herring sperm is regulated by reverse sodium-calcium exchange. Proc Natl Acad Sci U S A 99(4):2026-2031

    PubMed  Google Scholar 

  76. Suzuki N, Garbers DL (1984) Stimulation of sperm respiration rates by speract and resact at alkaline extracellular pH. Biol Reprod 30(5):1167-1174

    PubMed  Google Scholar 

  77. Suzuki N, Shimomura H, Radany EW et al (1984) A peptide associated with eggs causes a mobility shift in a major plasma membrane protein of spermatozoa. J Biol Chem 259(23):14874-14879

    PubMed  Google Scholar 

  78. Olson JH, Xiang X, Ziegert T et al (2001) Allurin, a 21-kDa sperm chemoattractant from Xenopus egg jelly, is related to mammalian sperm-binding proteins. Proc Natl Acad Sci U S A 98(20):11205-11210

    PubMed  Google Scholar 

  79. Spehr M, Schwane K, Riffell JA, Zimmer RK, Hatt H (2006) Odorant receptors and olfactory-like signaling mechanisms in mammalian sperm. Mol Cell Endocrinol 250(1-2):128-136

    PubMed  Google Scholar 

  80. Parmentier M, Libert F, Schurmans S et al (1992) Expression of members of the putative olfactory receptor gene family in mammalian germ cells. Nature 355(6359):453-455

    PubMed  Google Scholar 

  81. Spehr M, Gisselmann G, Poplawski A et al (2003) Identification of a testicular odorant receptor mediating human sperm chemotaxis. Science 299(5615):2054-2058

    PubMed  Google Scholar 

  82. Spehr M, Schwane K, Riffell JA et al (2004) Particulate adenylate cyclase plays a key role in human sperm olfactory receptor-mediated chemotaxis. J Biol Chem 279(38):40194-40203

    PubMed  Google Scholar 

  83. Elvin JA, Yan C, Matzuk MM (2000) Oocyte-expressed TGF-beta superfamily members in female fertility. Mol Cell Endocrinol 159(1-2):1-5

    PubMed  Google Scholar 

  84. Camaioni A, Salustri A, Yanagishita M, Hascall VC (1996) Proteoglycans and proteins in the extracellular matrix of mouse cumulus cell-oocyte complexes. Arch Biochem Biophys 325(2):190-198

    PubMed  Google Scholar 

  85. Eppig JJ (1981) Prostaglandin E2 stimulates cumulus expansion and hyaluronic acid synthesis by cumuli oophori isolated from mice. Biol Reprod 25(1):191-195

    PubMed  Google Scholar 

  86. Myles DG, Primakoff P (1997) Why did the sperm cross the cumulus? To get to the oocyte. Functions of the sperm surface proteins PH-20 and fertilin in arriving at, and fusing with, the egg. Biol Reprod 56(2):320-327

    PubMed  Google Scholar 

  87. Kim E, Baba D, Kimura M, Yamashita M, Kashiwabara S, Baba T (2005) Identification of a hyaluronidase, Hyal5, involved in penetration of mouse sperm through cumulus mass. Proc Natl Acad Sci U S A 102(50):18028-18033

    PubMed  Google Scholar 

  88. Austin CR (1960) Capacitation and the release of hyaluronidase from spermatozoa. J Reprod Fertil 3:310-311

    Google Scholar 

  89. Cummins JM, Yanagimachi R (1986) Development of ability to penetrate the cumulus oophorus by hmster speratozoa capaciatetd in vivo in relation to the timing of the acrosome reaction. Gamete Res 15:187-212

    Google Scholar 

  90. Bleil JD, Wassarman PM (1980) Structure and function of the zona pellucida: identification and characterization of the proteins of the mouse oocyte’s zona pellucida. Dev Biol 76(1):185-202

    PubMed  Google Scholar 

  91. Lefievre L, Conner SJ, Salpekar A et al (2004) Four zona pellucida glycoproteins are expressed in the human. Hum Reprod 19(7): 1580-1586

    PubMed  Google Scholar 

  92. Boja ES, Hoodbhoy T, Garfield M, Fales HM (2005) Structural conservation of mouse and rat zona pellucida glycoproteins. Probing the native rat zona pellucida proteome by mass spectrometry. Biochemistry 44(50):16445-16460

    PubMed  Google Scholar 

  93. Ganguly A, Sharma RK, Gupta SK (2008) Bonnet monkey (Macaca radiata) ovaries, like human oocytes, express four zona pellucida glycoproteins. Mol Reprod Dev 75(1):156-166

    PubMed  Google Scholar 

  94. Hasegawa A, Koyama K (2007) Contribution of zona proteins to oocyte growth. Soc Reprod Fertil Suppl 63:229-235

    PubMed  Google Scholar 

  95. Yonezawa N, Fukui N, Kuno M et al (2001) Molecular cloning of bovine zona pellucida glycoproteins ZPA and ZPB and analysis for sperm-binding component of the zona. Eur J Biochem 268(12):3587-3594

    PubMed  Google Scholar 

  96. Harris JD, Hibler DW, Fontenot GK, Hsu KT, Yurewicz EC, Sacco AG (1994) Cloning and characterization of zona pellucida genes and cDNAs from a variety of mammalian species: the ZPA, ZPB and ZPC gene families. DNA Seq 4(6):361-393

    PubMed  Google Scholar 

  97. Easton RL, Patankar MS, Lattanzio FA et al (2000) Structural analysis of murine zona pellucida glycans. Evidence for the expression of core 2-type O-glycans and the Sd(a) antigen. J Biol Chem 275(11):7731-7742

    PubMed  Google Scholar 

  98. Dell A, Chalabi S, Easton RL et al (2003) Murine and human zona pellucida 3 derived from mouse eggs express identical O-glycans. Proc Natl Acad Sci U S A 100(26):15631-15636

    PubMed  Google Scholar 

  99. Florman HM, Wassarman PM (1985) O-linked oligosaccharides of mouse egg ZP3 account for its sperm receptor activity. Cell 41(1):313-324

    PubMed  Google Scholar 

  100. Hoodbhoy T, Joshi S, Boja ES, Williams SA, Stanley P, Dean J (2005) Human sperm do not bind to rat zonae pellucidae despite the presence of four homologous glycoproteins. J Biol Chem 280(13):12721-12731

    PubMed  Google Scholar 

  101. Yonezawa N, Amari S, Takahashi K et al (2005) Participation of the nonreducing terminal beta-galactosyl residues of the neutral N-linked carbohydrate chains of porcine zona pellucida glycoproteins in sperm-egg binding. Mol Reprod Dev 70(2):222-227

    PubMed  Google Scholar 

  102. Ozgur K, Patankar MS, Oehninger S, Clark GF (1998) Direct evidence for the involvement of carbohydrate sequences in human sperm-zona pellucida binding. Mol Hum Reprod 4(4):318-324

    PubMed  Google Scholar 

  103. Wassarman PM, Mortillo S (1991) Structure of the mouse egg extracellular coat, the zona pellucida. Int Rev Cytol 130:85-110

    PubMed  Google Scholar 

  104. Wassarman PM, Jovine L, Litscher ES (2004) Mouse zona pellucida genes and glycoproteins. Cytogenet Genome Res 105(2-4):228-234

    PubMed  Google Scholar 

  105. El-Mestrah M, Castle PE, Borossa G, Kan FW (2002) Subcellular distribution of ZP1, ZP2, and ZP3 glycoproteins during folliculogenesis and demonstration of their topographical disposition within the zona matrix of mouse ovarian oocytes. Biol Reprod 66(4):866-876

    PubMed  Google Scholar 

  106. Shalgi R, Maymon R, Bar-Shira B, Amihai D, Skutelsky E (1991) Distribution of lectin receptors sites in the zona pellucida of follicular and ovulated rat oocytes. Mol Reprod Dev 29(4):365-372

    PubMed  Google Scholar 

  107. Sinowatz F, Kolle S, Topfer-Petersen E (2001) Biosynthesis and expression of zona pellucida glycoproteins in mammals. Cells Tissues Organs 168(1-2):24-35

    PubMed  Google Scholar 

  108. Yanagimachi R (1994) Mammalian fertilization, 2nd edn. Raven Press, New York

    Google Scholar 

  109. Greve JM, Salzmann GS, Roller RJ, Wassarman PM (1982) Biosynthesis of the major zona pellucida glycoprotein secreted by oocytes during mammalian oogenesis. Cell 31(3 Pt 2):749-759

    PubMed  Google Scholar 

  110. Lee VH, Dunbar BS (1993) Developmental expression of the rabbit 55-kDa zona pellucida protein and messenger RNA in ovarian follicles. Dev Biol 155(2):371-382

    PubMed  Google Scholar 

  111. Bogner K, Hinsch KD, Nayudu P, Konrad L, Cassara C, Hinsch E (2004) Localization and synthesis of zona pellucida proteins in the marmoset monkey (Callithrix jacchus) ovary. Mol Hum Reprod 10(7):481-488

    PubMed  Google Scholar 

  112. Tesarik J, Kopecny V (1986) Late preovulatory synthesis of proteoglycans by the human oocyte and cumulus cells and their secretion into the oocyte-cumulus-complex extracellular matrices. Histochemistry 85(6):523-528

    PubMed  Google Scholar 

  113. Yamagami K, Hamazaki TS, Yasumasu S, Masuda K, Iuchi I (1992) Molecular and cellular basis of formation, hardening, and breakdown of the egg envelope in fish. Int Rev Cytol 136:51-92

    PubMed  Google Scholar 

  114. Clark GF, Dell A (2006) Molecular models for murine sperm-egg binding. J Biol Chem 281(20):13853-13856

    PubMed  Google Scholar 

  115. Wassarman PM (1990) Profile of a mammalian sperm receptor. Development 108(1):1-17

    PubMed  Google Scholar 

  116. Chakravarty S, Kadunganattil S, Bansal P, Sharma RK, Gupta SK (2008) Relevance of glycosylation of human zona pellucida glycoproteins for their binding to capacitated human spermatozoa and subsequent induction of acrosomal exocytosis. Mol Reprod Dev 75(1):75-88

    PubMed  Google Scholar 

  117. Yurewicz EC, Sacco AG, Gupta SK, Xu N, Gage DA (1998) Hetero-oligomerization-dependent binding of pig oocyte zona pellucida glycoproteins ZPB and ZPC to boar sperm membrane vesicles. J Biol Chem 273(13):7488-7494

    PubMed  Google Scholar 

  118. Moreno RD, Alvarado CP (2006) The mammalian acrosome as a secretory lysosome: new and old evidence. Mol Reprod Dev 73(11):1430-1434

    PubMed  Google Scholar 

  119. Anakwe OO, Gerton GL (1990) Acrosome biogenesis begins during meiosis: evidence from the synthesis and distribution of an acrosomal glycoprotein, acrogranin, during guinea pig spermatogenesis. Biol Reprod 42(2):317-328

    PubMed  Google Scholar 

  120. Clermont Y, Oko R, Hermo L (1993) Cell and molecular biology of the testis. In: Desjardins C, Ewing L (eds) Cell biology of mammalian spermatogenesis. Oxford University Press, New York, pp 332-376

    Google Scholar 

  121. Barth AD, Oko RJ (1989) Abnormal morphology of bovine spermatozoa, 1st edn. Iowa State University Press, Ames, IA

    Google Scholar 

  122. Yao R, Ito C, Natsume Y et al (2002) Lack of acrosome formation in mice lacking a Golgi protein, GOPC. Proc Natl Acad Sci U S A 99(17):11211-11216

    PubMed  Google Scholar 

  123. Aul RB, Oko RJ (2001) The major subacrosomal occupant of bull spermatozoa is a novel histone H2B variant associated with the forming acrosome during spermiogenesis. Dev Biol 239(2): 376-387

    PubMed  Google Scholar 

  124. Aul RB, Oko RJ (2002) The major subacrosomal occupant of bull spermatozoa is a novel histone H2B. Dev Biol 242(2):376-387

    PubMed  Google Scholar 

  125. Kang-Decker N, Mantchev GT, Juneja SC, McNiven MA, van Deursen JM (2001) Lack of acrosome formation in Hrb-deficient mice. Science 294(5546):1531-1533

    PubMed  Google Scholar 

  126. Lin YN, Roy A, Yan W, Burns KH, Matzuk MM (2007) Loss of zona pellucida binding proteins in the acrosomal matrix disrupts acrosome biogenesis and sperm morphogenesis. Mol Cell Biol 27(19):6794-6805

    PubMed  Google Scholar 

  127. Kierszenbaum AL, Rivkin E, Tres LL (2003) Acroplaxome, an F-actin-keratin-containing plate, anchors the acrosome to the nucleus during shaping of the spermatid head. Mol Biol Cell 14(11):4628-4640

    PubMed  Google Scholar 

  128. Sutovsky P, Manandhar G, Wu A, Oko R (2003) Interactions of sperm perinuclear theca with the oocyte: implications for oocyte activation, anti-polyspermy defense, and assisted reproduction. Microsc Res Tech 61(4):362-378

    PubMed  Google Scholar 

  129. Tulsiani DR, Abou-Haila A, Loeser CR, Pereira BM (1998) The biological and functional significance of the sperm acrosome and acrosomal enzymes in mammalian fertilization. Exp Cell Res 240(2):151-164

    PubMed  Google Scholar 

  130. Bleil JD, Greve JM, Wassarman PM (1988) Identification of a secondary sperm receptor in the mouse egg zona pellucida: role in maintenance of binding of acrosome-reacted sperm to eggs. Dev Biol 128(2):376-385

    PubMed  Google Scholar 

  131. Thaler CD, Cardullo RA (1996) The initial molecular interaction between mouse sperm and the zona pellucida is a complex binding event. J Biol Chem 271(38):23289-23297

    PubMed  Google Scholar 

  132. Huang TT, Fleming AD, Yanagimachi R (1981) Only acrosome-reacted spermatozoa can bind to and penetrate zona pellucida: a study using the guinea pig. J Exp Zool 217(2):287-290

    PubMed  Google Scholar 

  133. Litscher ES, Juntunen K, Seppo A et al (1995) Oligosaccharide constructs with defined structures that inhibit binding of mouse sperm to unferti lized eggs in vitro. Biochemistry 34(14):4662-4669

    PubMed  Google Scholar 

  134. Wassarman PM, Liu C, Chen J, Qi H, Litscher ES (1998) Ovarian development in mice bearing homozygous or heterozygous null mutations in zona pellucida glycoprotein gene mZP3. Histol Histopathol 13(1):293-300

    PubMed  Google Scholar 

  135. Rankin T, Familari M, Lee E et al (1996) Mice homozygous for an insertional mutation in the Zp3 gene lack a zona pellucida and are infertile. Development 122(9):2903-2910

    PubMed  Google Scholar 

  136. Rankin TL, O'Brien M, Lee E, Wigglesworth K, Eppig J, Dean J (2001) Defective zonae pellucidae in Zp2-null mice disrupt folliculogenesis, fertility and development. Development 128(7): 1119-1126

    PubMed  Google Scholar 

  137. Liu C, Litscher ES, Mortillo S et al (1996) Targeted disruption of the mZP3 gene results in production of eggs lacking a zona pellucida and infertility in female mice. Proc Natl Acad Sci U S A 93(11):5431-5436

    PubMed  Google Scholar 

  138. Rankin TL, Coleman JS, Epifano O et al (2003) Fertility and taxon-specific sperm binding persist after replacement of mouse sperm receptors with human homologs. Dev Cell 5(1):33-43

    PubMed  Google Scholar 

  139. Rankin TL, Tong ZB, Castle PE et al (1998) Human ZP3 restores fertility in Zp3 null mice without affecting order-specific sperm binding. Development 125(13):2415-2424

    PubMed  Google Scholar 

  140. Chakravarty S, Suraj K, Gupta SK (2005) Baculovirus-expressed recombinant human zona pellucida glycoprotein-B induces acrosomal exocytosis in capacitated spermatozoa in addition to zona pellucida glycoprotein-C. Mol Hum Reprod 11(5):365-372

    PubMed  Google Scholar 

  141. Williams SA, Xia L, Cummings RD, McEver RP, Stanley P (2007) Fertilization in mouse does not require terminal galactose or N-acetylglucosamine on the zona pellucida glycans. J Cell Sci 120(Pt 8):1341-1349

    PubMed  Google Scholar 

  142. Evans JP (2000) Getting sperm and egg together: things conserved and things diverged. Biol Reprod 63(2):355-360

    PubMed  Google Scholar 

  143. Evans JP, Florman HM (2002) The state of the union: the cell biology of fertilization. Nat Cell Biol 4(Suppl):s57-s63

    PubMed  Google Scholar 

  144. Ensslin MA, Lyng R, Raymond A, Copland S, Shur BD (2007) Novel gamete receptors that facilitate sperm adhesion to the egg coat. Soc Reprod Fertil Suppl 63:367-383

    PubMed  Google Scholar 

  145. Cheng A, Le T, Palacios M et al (1994) Sperm-egg recognition in the mouse: characterization of sp56, a sperm protein having specific affinity for ZP3. J Cell Biol 125(4):867-878

    PubMed  Google Scholar 

  146. Foster JA, Friday BB, Maulit MT et al (1997) AM67, a secretory component of the guinea pig sperm acrosomal matrix, is related to mouse sperm protein sp56 and the complement component 4-binding proteins. J Biol Chem 272(19):12714-12722

    PubMed  Google Scholar 

  147. Hardy CM, Mobbs KJ (1999) Expression of recombinant mouse sperm protein sp56 and assessment of its potential for use as an antigen in an immunocontraceptive vaccine. Mol Reprod Dev 52(2):216-224

    PubMed  Google Scholar 

  148. Lu Q, Shur BD (1997) Sperm from beta 1, 4-galactosyltransferase-null mice are refractory to ZP3-induced acrosome reactions and penetrate the zona pellucida poorly. Development 124(20):4121-4131

    PubMed  Google Scholar 

  149. Youakim A, Hathaway HJ, Miller DJ, Gong X, Shur BD (1994) Overexpressing sperm surface beta 1, 4-galactosyltransferase in transgenic mice affects multiple aspects of sperm-egg interactions. J Cell Biol 126(6):1573-1583

    PubMed  Google Scholar 

  150. Hardy DM, Garbers DL (1995) A sperm membrane protein that binds in a species-specific manner to the egg extracellular matrix is homologous to von Willebrand factor. J Biol Chem 270(44):26025-26028

    PubMed  Google Scholar 

  151. Herlyn H, Zischler H (2005) Sequence evolution, processing, and posttranslational modification of zonadhesin D domains in primates, as inferred from cDNA data. Gene 362:85-97

    PubMed  Google Scholar 

  152. Lea IA, Sivashanmugam P, O'Rand MG (2001) Zonadhesin: characterization, localization, and zona pellucida binding. Biol Reprod 65(6):1691-1700

    PubMed  Google Scholar 

  153. Bi M, Hickox JR, Winfrey VP, Olson GE, Hardy DM (2003) Processing, localization and binding activity of zonadhesin suggest a function in sperm adhesion to the zona pellucida during exocytosis of the acrosome. Biochem J 375(Pt 2):477-488

    PubMed  Google Scholar 

  154. Ekhlasi-Hundrieser M, Sinowatz F, Greiser De Wilke I, Waberski D, Topfer-Petersen E (2002) Expression of spermadhesin genes in porcine male and female reproductive tracts. Mol Reprod Dev 61(1):32-41

    PubMed  Google Scholar 

  155. Caballero I, Vazquez JM, Rodriguez-Martinez H et al (2005) Influence of seminal plasma PSP-I/PSP-II spermadhesin on pig gamete interaction. Zygote 13(1):11-16

    PubMed  Google Scholar 

  156. Manaskova P, Liberda J, Ticha M, Jonakova V (2000) Aggregated and monomeric forms of proteins in boar seminal plasma: characterization and binding properties. Folia Biol (Praha) 46(4):143-151

    Google Scholar 

  157. Veselsky L, Peknicova J, Cechova D, Kraus M, Geussova G, Jonakova V (1999) Characterization of boar spermadhesins by monoclonal and polyclonal antibodies and their role in binding to oocytes. Am J Reprod Immunol 42(3):187-197

    PubMed  Google Scholar 

  158. Calvete JJ, Carrera E, Sanz L, Topfer-Petersen E (1996) Boar spermadhesins AQN-1 and AQN-3: oligosaccharide and zona pellucida binding characteristics. Biol Chem 377(7-8):521-527

    PubMed  Google Scholar 

  159. Veselsky L, Jonakova V, Sanz ML, Topfer-Petersen E, Cechova D (1992) Binding of a 15 kDa glycoprotein from spermatozoa of boars to surface of zona pellucida and cumulus oophorus cells. J Reprod Fertil 96(2):593-602

    PubMed  Google Scholar 

  160. Jonakova V, Cechova D, Topfer-Petersen E, Calvete JJ, Veselsky L (1991) Variability of acrosin inhibitors in boar reproductive tract. Biomed Biochim Acta 50(4-6):691-695

    PubMed  Google Scholar 

  161. Jonakova V, Calvete JJ, Mann K, Schafer W, Schmid ER, Topfer-Petersen E (1992) The complete primary structure of three isoforms of a boar sperm-associated acrosin inhibitor. FEBS Lett 297(1-2):147-150

    PubMed  Google Scholar 

  162. Jelinkova P, Manaskova P, Ticha M, Jonakova V (2003) Proteinase inhibitors in aggregated forms of boar seminal plasma proteins. Int J Biol Macromol 32(3-5):99-107

    PubMed  Google Scholar 

  163. Sanz L, Calvete JJ, Jonakova V, Topfer-Petersen E (1992) Boar spermadhesins AQN-1 and AWN are sperm-associated acrosin inhibitor acceptor proteins. FEBS Lett 300(1):63-66

    PubMed  Google Scholar 

  164. Wu A, Anupriwan A, Iamsaard S et al (2007) Sperm surface arylsulfatase A can disperse the cumulus matrix of cumulus oocyte complexes. J Cell Physiol 213(1):201-211

    PubMed  Google Scholar 

  165. Dudkiewicz AB (1984) Purification of boar acrosomal arylsulfatase A and possible role in the penetration of cumulus cells. Biol Reprod 30(4):1005-1014

    PubMed  Google Scholar 

  166. Carmona E, Weerachatyanukul W, Xu H et al (2002) Binding of arylsulfatase A to mouse sperm inhibits gamete interaction and induces the acrosome reaction. Biol Reprod 66(6):1820-1827

    PubMed  Google Scholar 

  167. Hess B, Saftig P, Hartmann D et al (1996) Phenotype of arylsulfatase A-deficient mice: relationship to human metachromatic leukodystrophy. Proc Natl Acad Sci U S A 93(25):14821-14826

    PubMed  Google Scholar 

  168. Moskovtsev SI, Jarvi K, Legare C, Sullivan R, Mullen JB (2007) Epididymal P34H protein deficiency in men evaluated for infertility. Fertil Steril 88(5):1455-1457

    PubMed  Google Scholar 

  169. Boue F, Berube B, De Lamirande E, Gagnon C, Sullivan R (1994) Human sperm-zona pellucida interaction is inhibited by an antiserum against a hamster sperm protein. Biol Reprod 51(4):577-587

    PubMed  Google Scholar 

  170. Xia XY, Huang YF, Xu XF (2002) [Epididymal sperm protein P34H and male reproduction]. Zhonghua Nan Ke Xue 8(5):356-358 362

    PubMed  Google Scholar 

  171. Meizel S, Mukerji SK (1975) Proacrosin from rabbit epididymal spermatozoa: partial purification and initial biochemical characterization. Biol Reprod 13(1):83-93

    PubMed  Google Scholar 

  172. Barros C, Crosby JA, Moreno RD (1996) Early steps of sperm-egg interactions during mammalian fertilization. Cell Biol Int 20(1):33-39

    PubMed  Google Scholar 

  173. Furlong LI, Veaute C, Vazquez-Levin MH (2005) Binding of recombinant human proacrosin/acrosin to zona pellucida glycoproteins. II. Participation of mannose residues in the interaction. Fertil Steril 83(6):1791-1796

    PubMed  Google Scholar 

  174. Furlong LI, Harris JD, Vazquez-Levin MH (2005) Binding of recombinant human proacrosin/acrosin to zona pellucida (ZP) glycoproteins. I. Studies with recombinant human ZPA, ZPB, and ZPC. Fertil Steril 83(6):1780-1790

    PubMed  Google Scholar 

  175. Baba T, Azuma S, Kashiwabara S, Toyoda Y (1994) Sperm from mice carrying a targeted mutation of the acrosin gene can penetrate the oocyte zona pellucida and effect fertilization. J Biol Chem 269(50):31845-31849

    PubMed  Google Scholar 

  176. Huang TT Jr, Yanagimachi R (1985) Inner acrosomal membrane of mammalian spermatozoa: its properties and possible functions in fertilization. Am J Anat 174(3):249-268

    PubMed  Google Scholar 

  177. Tesarik J, Pilka L, Drahorad J, Cechova D, Veselsky L (1988) The role of cumulus cell-secreted proteins in the development of human sperm fertilizing ability: implication in IVF. Hum Reprod 3(1):129-132

    PubMed  Google Scholar 

  178. Moreno RD, Sepulveda MS, de Ioannes A, Barros C (1998) The polysulphate binding domain of human proacrosin/acrosin is involved in both the enzyme activation and spermatozoa-zona pellucida interaction. Zygote 6(1):75-83

    PubMed  Google Scholar 

  179. Yu Y, Xu W, Yi YJ, Sutovsky P, Oko R (2006) The extracellular protein coat of the inner acrosomal membrane is involved in zona pellucida binding and penetration during fertilization: characterization of its most prominent polypeptide (IAM38). Dev Biol 290(1):32-43

    PubMed  Google Scholar 

  180. Mori E, Kashiwabara S, Baba T, Inagaki Y, Mori T (1995) Amino acid sequences of porcine Sp38 and proacrosin required for binding to the zona pellucida. Dev Biol 168(2):575-583

    PubMed  Google Scholar 

  181. Mori E, Baba T, Iwamatsu A, Mori T (1993) Purification and characterization of a 38-kDa protein, sp38, with zona pellucida-binding property from porcine epididymal sperm. Biochem Biophys Res Commun 196(1):196-202

    PubMed  Google Scholar 

  182. Primakoff P, Hyatt H, Myles DG (1985) A role for the migrating sperm surface antigen PH-20 in guinea pig sperm binding to the egg zona pellucida. J Cell Biol 101(6):2239-2244

    PubMed  Google Scholar 

  183. Hunnicutt GR, Primakoff P, Myles DG (1996) Sperm surface protein PH-20 is bifunctional: one activity is a hyaluronidase and a second, distinct activity is required in secondary sperm-zona binding. Biol Reprod 55(1):80-86

    PubMed  Google Scholar 

  184. Primakoff P, Woolman-Gamer L, Tung KS, Myles DG (1997) Reversible contraceptive effect of PH-20 immunization in male guinea pigs. Biol Reprod 56(5):1142-1146

    PubMed  Google Scholar 

  185. Tung KS, Primakoff P, Woolman-Gamer L, Myles DG (1997) Mechanism of infertility in male guinea pigs immunized with sperm PH-20. Biol Reprod 56(5):1133-1141

    PubMed  Google Scholar 

  186. Hardy CM, Clydesdale G, Mobbs KJ et al (2004) Assessment of contraceptive vaccines based on recombinant mouse sperm protein PH20. Reproduction 127(3):325-334

    PubMed  Google Scholar 

  187. Baba D, Kashiwabara S, Honda A et al (2002) Mouse sperm lacking cell surface hyaluronidase PH-20 can pass through the layer of cumulus cells and fertilize the egg. J Biol Chem 277(33):30310-30314

    PubMed  Google Scholar 

  188. Reitinger S, Laschober GT, Fehrer C, Greiderer B, Lepperdinger G (2007) Mouse testicular hyaluronidase-like proteins SPAM1 and HYAL5 but not HYALP1 degrade hyaluronan. Biochem J 401(1):79-85

    PubMed  Google Scholar 

  189. Saling PM, Sowinski J, Storey BT (1979) An ultrastructural study of epididymal mouse spermatozoa binding to zonae pellucidae in vitro: sequential relationship to the acrosome reaction. J Exp Zool 209(2):229-238

    PubMed  Google Scholar 

  190. Bleil JD, Wassarman PM (1983) Sperm-egg interactions in the mouse: sequence of events and induction of the acrosome reaction by a zona pellucida glycoprotein. Dev Biol 95(2):317-324

    PubMed  Google Scholar 

  191. Yanagimachi R (1978) Calcium requirement for sperm-egg fusion in mammals. Biol Reprod 19(5):949-958

    PubMed  Google Scholar 

  192. Meizel S, Turner KO (1993) Initiation of the human sperm acrosome reaction by thapsigargin. J Exp Zool 267(3):350-355

    PubMed  Google Scholar 

  193. O'Toole CM, Arnoult C, Darszon A, Steinhardt RA, Florman HM (2000) Ca(2+) entry through store-operated channels in mouse sperm is initiated by egg ZP3 and drives the acrosome reaction. Mol Biol Cell 11(5):1571-1584

    PubMed  Google Scholar 

  194. Barros C, Bedford JM, Franklin LE, Austin CR (1967) Membrane vesiculation as a feature of the mammalian acrosome reaction. J Cell Biol 34(3):C1-C5

    PubMed  Google Scholar 

  195. Nagae T, Yanagimachi R, Srivastava PN, Yanagimachi H (1986) Acrosome reaction in human spermatozoa. Fertil Steril 45(5): 701-707

    PubMed  Google Scholar 

  196. Ramalho-Santos J, Moreno RD, Sutovsky P et al (2000) SNAREs in mammalian sperm: possible implications for fertilization. Dev Biol 223(1):54-69

    PubMed  Google Scholar 

  197. Tomes CN, Michaut M, De Blas G, Visconti P, Matti U, Mayorga LS (2002) SNARE complex assembly is required for human sperm acrosome reaction. Dev Biol 243(2):326-338

    PubMed  Google Scholar 

  198. Gerton G (2002) Function of the sperm acrosome. Academic Press, San Diego

    Google Scholar 

  199. VandeVoort CA, Yudin AI, Overstreet JW (1997) Interaction of acrosome-reacted macaque sperm with the macaque zona pellucida. Biol Reprod 56(5):1307-1316

    PubMed  Google Scholar 

  200. Valdivia M, Sillerico T, De Ioannes A, Barros C (1999) Proteolytic activity of rabbit perivitelline spermatozoa. Zygote 7(2):143-149

    PubMed  Google Scholar 

  201. Kim KS, Gerton GL (2003) Differential release of soluble and matrix components: evidence for intermediate states of secretion during spontaneous acrosomal exocytosis in mouse sperm. Dev Biol 264(1):141-152

    PubMed  Google Scholar 

  202. Kim KS, Foster JA, Gerton GL (2001) Differential release of guinea pig sperm acrosomal components during exocytosis. Biol Reprod 64(1):148-156

    PubMed  Google Scholar 

  203. Hardy DM, Oda MN, Friend DS, Huang TT Jr (1991) A mechanism for differential release of acrosomal enzymes during the acrosome reaction. Biochem J 275(Pt 3):759-766

    PubMed  Google Scholar 

  204. Darszon A, Espinosa F, Galindo B, Sanchez D, Beltran C (2002) Regulation of sperm ion currents. In: Hardy D (ed) Fertilization. Academic Press, San Diego

    Google Scholar 

  205. Travis AJ, Merdiushev T, Vargas LA et al (2001) Expression and localization of caveolin-1, and the presence of membrane rafts, in mouse and Guinea pig spermatozoa. Dev Biol 240(2):599-610

    PubMed  Google Scholar 

  206. Tanphaichitr N, Carmona E, Bou Khalil M, Xu H, Berger T, Gerton GL (2007) New insights into sperm-zona pellucida interaction: involvement of sperm lipid rafts. Front Biosci 12:1748-1766

    PubMed  Google Scholar 

  207. Endo Y, Lee MA, Kopf GS (1987) Evidence for the role of a guanine nucleotide-binding regulatory protein in the zona pellucida-induced mouse sperm acrosome reaction. Dev Biol 119(1):210-216

    PubMed  Google Scholar 

  208. Tomes CN, McMaster CR, Saling PM (1996) Activation of mouse sperm phosphatidylinositol-4, 5 bisphosphate-phospholipase C by zona pellucida is modulated by tyrosine phosphorylation. Mol Reprod Dev 43(2):196-204

    PubMed  Google Scholar 

  209. Jungnickel MK, Marrero H, Birnbaumer L, Lemos JR, Florman HM (2001) Trp2 regulates entry of Ca2+ into mouse sperm triggered by egg ZP3. Nat Cell Biol 3(5):499-502

    PubMed  Google Scholar 

  210. Shi X, Amindari S, Paruchuru K et al (2001) Cell surface beta-1, 4-galactosyltransferase-I activates G protein-dependent exocytotic signaling. Development 128(5):645-654

    PubMed  Google Scholar 

  211. De Jonge CJ, Han HL, Lawrie H, Mack SR, Zaneveld LJ (1991) Modulation of the human sperm acrosome reaction by effectors of the adenylate cyclase/cyclic AMP second-messenger pathway. J Exp Zool 258(1):113-125

    PubMed  Google Scholar 

  212. Leyton L, Saling P (1989) 95 kd sperm proteins bind ZP3 and serve as tyrosine kinase substrates in response to zona binding. Cell 57(7):1123-1130

    PubMed  Google Scholar 

  213. Furuya S, Endo Y, Oba M, Matsui Y, Nozawa S, Suzuki S (1992) Protein phosphorylation regulates the mouse sperm acrosome reaction induced by the zona pellucida. J Assist Reprod Genet 9(4):384-390

    PubMed  Google Scholar 

  214. Burks DJ, Carballada R, Moore HD, Saling PM (1995) Interaction of a tyrosine kinase from human sperm with the zona pellucida at fertilization. Science 269(5220):83-86

    PubMed  Google Scholar 

  215. Kirkman-Brown JC, Lefievre L, Bray C, Stewart PM, Barratt CL, Publicover SJ (2002) Inhibitors of receptor tyrosine kinases do not suppress progesterone-induced [Ca2+]i signalling in human spermatozoa. Mol Hum Reprod 8(4):326-332

    PubMed  Google Scholar 

  216. Roldan ER, Shi QX (2007) Sperm phospholipases and acrosomal exocytosis. Front Biosci 12:89-104

    PubMed  Google Scholar 

  217. Fukami K, Nakao K, Inoue T et al (2001) Requirement of phospholipase Cdelta4 for the zona pellucida-induced acrosome reaction. Science 292(5518):920-923

    PubMed  Google Scholar 

  218. Osman RA, Andria ML, Jones AD, Meizel S (1989) Steroid induced exocytosis: the human sperm acrosome reaction. Biochem Biophys Res Commun 160(2):828-833

    PubMed  Google Scholar 

  219. Blackmore PF, Neulen J, Lattanzio F, Beebe SJ (1991) Cell surface-binding sites for progesterone mediate calcium uptake in human sperm. J Biol Chem 266(28):18655-18659

    PubMed  Google Scholar 

  220. Spungin B, Margalit I, Breitbart H (1995) Sperm exocytosis reconstructed in a cell-free system: evidence for the involvement of phospholipase C and actin filaments in membrane fusion. J Cell Sci 108(Pt 6):2525-2535

    PubMed  Google Scholar 

  221. Breitbart H (2002) Role and regulation of intracellular calcium in acrosomal exocytosis. J Reprod Immunol 53(1-2):151-159

    PubMed  Google Scholar 

  222. Morales P, Kong M, Pizarro E, Pasten C (2003) Participation of the sperm proteasome in human fertilization. Hum Reprod 18(5): 1010-1017

    PubMed  Google Scholar 

  223. Chakravarty S, Bansal P, Sutovsky P, Gupta SK (2008) Role of proteasomal activity in the induction of acrosomal exocytosis by recombinant zona pellucida glycoproteins in human spermatozoa. Reprod Biomed Online 16(3):391-400

    PubMed  Google Scholar 

  224. Caballero-Campo P, Chirinos M, Fan XJ et al (2006) Biological effects of recombinant human zona pellucida proteins on sperm function. Biol Reprod 74(4):760-768

    PubMed  Google Scholar 

  225. Lyon JD, Vacquier VD (1999) Interspecies chimeric sperm lysins identify regions mediating species-specific recognition of the abalone egg vitelline envelope. Dev Biol 214(1):151-159

    PubMed  Google Scholar 

  226. Olds-Clarke P (1996) How does poor motility alter sperm fertilizing ability? J Androl 17(3):183-186

    PubMed  Google Scholar 

  227. Bedford JM (1998) Mammalian fertilization misread? Sperm penetration of the eutherian zona pellucida is unlikely to be a lytic event. Biol Reprod 59(6):1275-1287

    PubMed  Google Scholar 

  228. Green DPL (2002) Fertilization biophysics. In: Hardy DM (ed) Fertilization. Academic Press, San Diego, pp 387-399

    Google Scholar 

  229. Green DP (1987) Mammalian sperm cannot penetrate the zona pellucida solely by force. Exp Cell Res 169(1):31-38

    PubMed  Google Scholar 

  230. Olds-Clarke P (2003) Unresolved issues in mammalian fertilization. Int Rev Cytol 232:129-184

    PubMed  Google Scholar 

  231. Saxena DK, Tanii I, Yoshinaga K, Toshimori K (1999) Role of intra-acrosomal antigenic molecules acrin 1 (MN7) and acrin 2 (MC41) in penetration of the zona pellucida in fertilization in mice. J Reprod Fertil 117(1):17-25

    PubMed  Google Scholar 

  232. Kohno N, Yamagata K, Yamada S, Kashiwabara S, Sakai Y, Baba T (1998) Two novel testicular serine proteases, TESP1 and TESP2, are present in the mouse sperm acrosome. Biochem Biophys Res Commun 245(3):658-665

    PubMed  Google Scholar 

  233. Honda A, Yamagata K, Sugiura S, Watanabe K, Baba T (2002) A mouse serine protease TESP5 is selectively included into lipid rafts of sperm membrane presumably as a glycosylphosphatidylinositol-anchored protein. J Biol Chem 277(19):16976-16984

    PubMed  Google Scholar 

  234. Wilkinson KD (2005) The discovery of ubiquitin-dependent proteolysis. Proc Natl Acad Sci U S A 102(43):15280-15282

    PubMed  Google Scholar 

  235. Sakai N, Sawada MT, Sawada H (2004) Non-traditional roles of ubiquitin-proteasome system in fertilization and gametogenesis. Int J Biochem Cell Biol 36(5):776-784

    PubMed  Google Scholar 

  236. Baska KM, Sutovsky P (2005) Protein modification by ubiquitination and is consequences for spermatogenesis, sperm maturation, fertilization and pre-implantation embryonic development. Research Signpost, Kerala

    Google Scholar 

  237. Yokota N, Sawada H (2007) Effects of proteasome inhibitors on fertilization of the sea urchin Anthocidaris crassispina. Biol Pharm Bull 30(7):1332-1335

    PubMed  Google Scholar 

  238. Saitoh Y, Sawada H, Yokosawa H (1993) High-molecular-weight protease complexes (proteasomes) of sperm of the ascidian, Halocynthia roretzi: isolation, characterization, and physiological roles in fertilization. Dev Biol 158(1):238-244

    PubMed  Google Scholar 

  239. Sawada H, Pinto MR, De Santis R (1998) Participation of sperm proteasome in fertilization of the phlebobranch ascidian Ciona intestinalis. Mol Reprod Dev 50(4):493-498

    PubMed  Google Scholar 

  240. Sawada H, Sakai N, Abe Y et al (2002) Extracellular ubiquitination and proteasome-mediated degradation of the ascidian sperm receptor. Proc Natl Acad Sci U S A 99(3):1223-1228

    PubMed  Google Scholar 

  241. Yokota N, Sawada H (2007) Sperm proteasomes are responsible for the acrosome reaction and sperm penetration of the vitelline envelope during fertilization of the sea urchin Pseudocentrotus depressus. Dev Biol 308(1):222-231

    PubMed  Google Scholar 

  242. Bialy LP, Ziemba HT, Marianowski P, Fracki S, Bury M, Wojcik C (2001) Localization of a proteasomal antigen in human spermatozoa: immunohistochemical electron microscopic study. Folia Histochem Cytobiol 39(2):129-130

    PubMed  Google Scholar 

  243. Pizarro E, Pasten C, Kong M, Morales P (2004) Proteasomal activity in mammalian spermatozoa. Mol Reprod Dev 69(1):87-93

    PubMed  Google Scholar 

  244. Sutovsky P, Manandhar G, McCauley TC et al (2004) Proteasomal interference prevents zona pellucida penetration and fertilization in mammals. Biol Reprod 71(5):1625-1637

    PubMed  Google Scholar 

  245. Chakravarty S, Pankaj Bansal P, Sutovsky P, Gupta S (2008) Role of proteasomal activity in the induction of acrosomal exocytosis by recombinant zona pellucida glycoproteins in human spermatozoa. Reprod Biomed Online 16(3):391-400

    PubMed  Google Scholar 

  246. Blobel CP, Wolfsberg TG, Turck CW, Myles DG, Primakoff P, White JM (1992) A potential fusion peptide and an integrin ligand domain in a protein active in sperm-egg fusion. Nature 356(6366):248-252

    PubMed  Google Scholar 

  247. Almeida EA, Huovila AP, Sutherland AE et al (1995) Mouse egg integrin alpha 6 beta 1 functions as a sperm receptor. Cell 81(7):1095-1104

    PubMed  Google Scholar 

  248. Yuan R, Primakoff P, Myles DG (1997) A role for the disintegrin domain of cyritestin, a sperm surface protein belonging to the ADAM family, in mouse sperm-egg plasma membrane adhesion and fusion. J Cell Biol 137(1):105-112

    PubMed  Google Scholar 

  249. He ZY, Brakebusch C, Fassler R, Kreidberg JA, Primakoff P, Myles DG (2003) None of the integrins known to be present on the mouse egg or to be ADAM receptors are essential for sperm-egg binding and fusion. Dev Biol 254(2):226-237

    PubMed  Google Scholar 

  250. Nishimura H, Cho C, Branciforte DR, Myles DG, Primakoff P (2001) Analysis of loss of adhesive function in sperm lacking cyritestin or fertilin beta. Dev Biol 233(1):204-213

    PubMed  Google Scholar 

  251. Cho C, Bunch DO, Faure JE et al (1998) Fertilization defects in sperm from mice lacking fertilin beta. Science 281(5384):1857-1859

    PubMed  Google Scholar 

  252. Rubinstein E, Ziyyat A, Wolf JP, Le Naour F, Boucheix C (2006) The molecular players of sperm-egg fusion in mammals. Semin Cell Dev Biol 17(2):254-263

    PubMed  Google Scholar 

  253. Miller BJ, Georges-Labouesse E, Primakoff P, Myles DG (2000) Normal fertilization occurs with eggs lacking the integrin alpha6beta1 and is CD9-dependent. J Cell Biol 149(6):1289-1296

    PubMed  Google Scholar 

  254. Le Naour F, Rubinstein E, Jasmin C, Prenant M, Boucheix C (2000) Severely reduced female fertility in CD9-deficient mice. Science 287(5451):319-321

    PubMed  Google Scholar 

  255. Kaji K, Oda S, Miyazaki S, Kudo A (2002) Infertility of CD9-deficient mouse eggs is reversed by mouse CD9, human CD9, or mouse CD81; polyadenylated mRNA injection developed for molecular analysis of sperm-egg fusion. Dev Biol 247(2):327-334

    PubMed  Google Scholar 

  256. Rubinstein E, Ziyyat A, Prenant M et al (2006) Reduced fertility of female mice lacking CD81. Dev Biol 290(2):351-358

    PubMed  Google Scholar 

  257. Inoue N, Ikawa M, Isotani A, Okabe M (2005) The immunoglobulin superfamily protein Izumo is required for sperm to fuse with eggs. Nature 434(7030):234-238

    PubMed  Google Scholar 

  258. Hayasaka S, Terada Y, Inoue N, Okabe M, Yaegashi N, Okamura K (2007) Positive expression of the immunoglobulin superfamily protein IZUMO on human sperm of severely infertile male patients. Fertil Steril 88(1):214-216

    PubMed  Google Scholar 

  259. Naz RK (2008) Immunocontraceptive effect of Izumo and enhancement by combination vaccination. Mol Reprod Dev 75:336-344

    PubMed  Google Scholar 

  260. Cohen DJ, Da Ros VG, Busso D et al (2007) Participation of epididymal cysteine-rich secretory proteins in sperm-egg fusion and their potential use for male fertility regulation. Asian J Androl 9(4):528-532

    PubMed  Google Scholar 

  261. Da Ros V, Busso D, Cohen DJ, Maldera J, Goldweic N, Cuasnicu PS (2007) Molecular mechanisms involved in gamete interaction: evidence for the participation of cysteine-rich secretory proteins (CRISP) in sperm-egg fusion. Soc Reprod Fertil Suppl 65:353-356

    PubMed  Google Scholar 

  262. Ellerman DA, Busso D, Maldera JA, Cuasnicu PS (2007) Immunocontraceptive properties of recombinant sperm protein DE: implications for the development of novel contraceptives. Fertil Steril 89(1):199-205

    PubMed  Google Scholar 

  263. Roberts KP, Wamstad JA, Ensrud KM, Hamilton DW (2003) Inhibition of capacitation-associated tyrosine phosphorylation signaling in rat sperm by epididymal protein Crisp-1. Biol Reprod 69(2):572-581

    PubMed  Google Scholar 

  264. Gaddum-Rosse P, Blandau RJ, Langley LB, Battaglia DE (1984) In vitro fertilization in the rat: observations on living eggs. Fertil Steril 42(2):285-292

    PubMed  Google Scholar 

  265. Manandhar G, Toshimori K (2001) Exposure of sperm head equatorin after acrosome reaction and its fate after fertilization in mice. Biol Reprod 65(5):1425-1436

    PubMed  Google Scholar 

  266. Bedford J, Cooper G (1978) Membrane fusion events in fertilization of vertebrate eggs. In: Poste G, Nicolson G (eds) Membrane surface reviews. Elsevier, Amsterdam, North-Holland, pp 65-125

    Google Scholar 

  267. Sutovsky P, Navara CS, Schatten G (1996) Fate of the sperm mitochondria, and the incorporation, conversion, and disassembly of the sperm tail structures during bovine fertilization. Biol Reprod 55(6):1195-1205

    PubMed  Google Scholar 

  268. Sutovsky P, Schatten G (2000) Paternal contributions to the mammalian zygote: fertilization after sperm-egg fusion. Int Rev Cytol 195:1-65

    PubMed  Google Scholar 

  269. Longo FJ (1985) Fine structure of the mammalian egg cortex. Am J Anat 174(3):303-315

    PubMed  Google Scholar 

  270. Terada Y, Simerly C, Schatten G (2000) Microfilament stabilization by jasplakinolide arrests oocyte maturation, cortical granule exocytosis, sperm incorporation cone resorption, and cell-cycle progression, but not DNA replication, during fertilization in mice. Mol Reprod Dev 56(1):89-98

    PubMed  Google Scholar 

  271. McAvey BA, Wortzman GB, Williams CJ, Evans JP (2002) Involvement of calcium signaling and the actin cytoskeleton in the membrane block to polyspermy in mouse eggs. Biol Reprod 67(4):1342-1352

    PubMed  Google Scholar 

  272. Oko R, Maravei D (1994) Protein composition of the perinuclear theca of bull spermatozoa. Biol Reprod 50(5):1000-1014

    PubMed  Google Scholar 

  273. Oko R, Aul RB, Wu A, Sutovsky P (2001) The sperm head skeleton. In: Robaire B, Chemes HE, Morales CR (eds) Andrology in the 21st century. Medimond Publishing Company, Englewood, NJ

    Google Scholar 

  274. Sutovsky P, Oko R, Hewitson L, Schatten G (1997) The removal of the sperm perinuclear theca and its association with the bovine oocyte surface during fertilization. Dev Biol 188(1):75-84

    PubMed  Google Scholar 

  275. Kimura Y, Yanagimachi R, Kuretake S, Bortkiewicz H, Perry AC, Yanagimachi H (1998) Analysis of mouse oocyte activation suggests the involvement of sperm perinuclear material. Biol Reprod 58(6):1407-1415

    PubMed  Google Scholar 

  276. Perry AC, Wakayama T, Yanagimachi R (1999) A novel trans-complementation assay suggests full mammalian oocyte activation is coordinately initiated by multiple, submembrane sperm components. Biol Reprod 60(3):747-755

    PubMed  Google Scholar 

  277. Perry AC, Wakayama T, Cooke IM, Yanagimachi R (2000) Mammalian oocyte activation by the synergistic action of discrete sperm head components: induction of calcium transients and involvement of proteolysis. Dev Biol 217(2):386-393

    PubMed  Google Scholar 

  278. Swann K (1990) A cytosolic sperm factor stimulates repetitive calcium increases and mimics fertilization in hamster eggs. Development 110(4):1295-1302

    PubMed  Google Scholar 

  279. Stice SL, Robl JM (1990) Activation of mammalian oocytes by a factor obtained from rabbit sperm. Mol Reprod Dev 25(3): 272-280

    PubMed  Google Scholar 

  280. Kimura Y, Yanagimachi R (1995) Mouse oocytes injected with testicular spermatozoa or round spermatids can develop into normal offspring. Development 121(8):2397-2405

    PubMed  Google Scholar 

  281. Yanagida K, Yazawa H, Katayose H, Kimura Y, Hayashi S, Sato A (2000) Oocyte activation induced by spermatids and the spermatozoa. Int J Androl 23(Suppl 2):63-65

    PubMed  Google Scholar 

  282. Palermo GD, Avrech OM, Colombero LT et al (1997) Human sperm cytosolic factor triggers Ca2+ oscillations and overcomes activation failure of mammalian oocytes. Mol Hum Reprod 3(4):367-374

    PubMed  Google Scholar 

  283. Malcuit C, Kurokawa M, Fissore RA (2006) Calcium oscillations and mammalian egg activation. J Cell Physiol 206(3):565-573

    PubMed  Google Scholar 

  284. Malcuit C, Maserati M, Takahashi Y, Page R, Fissore RA (2006) Intracytoplasmic sperm injection in the bovine induces abnormal [Ca2+]i responses and oocyte activation. Reprod Fertil Dev 18(1-2):39-51

    PubMed  Google Scholar 

  285. Wu H, He CL, Fissore RA (1997) Injection of a porcine sperm factor triggers calcium oscillations in mouse oocytes and bovine eggs. Mol Reprod Dev 46(2):176-189

    PubMed  Google Scholar 

  286. Ostermeier GC, Miller D, Huntriss JD, Diamond MP, Krawetz SA (2004) Reproductive biology: delivering spermatozoan RNA to the oocyte. Nature 429(6988):154

    PubMed  Google Scholar 

  287. Krawetz SA (2005) Paternal contribution: new insights and future challenges. Nat Rev Genet 6(8):633-642

    PubMed  Google Scholar 

  288. Boerke A, Dieleman SJ, Gadella BM (2007) A possible role for sperm RNA in early embryo development. Theriogenology 68(Suppl 1):S147-S155

    PubMed  Google Scholar 

  289. Platts AE, Dix DJ, Chemes HE et al (2007) Success and failure in human spermatogenesis as revealed by teratozoospermic RNAs. Hum Mol Genet 16(7):763-773

    PubMed  Google Scholar 

  290. Lavitrano M, Busnelli M, Cerrito MG, Giovannoni R, Manzini S, Vargiolu A (2006) Sperm-mediated gene transfer. Reprod Fertil Dev 18(1-2):19-23

    PubMed  Google Scholar 

  291. Perry AC, Wakayama T, Kishikawa H et al (1999) Mammalian transgenesis by intracytoplasmic sperm injection. Science 284(5417):1180-1183

    PubMed  Google Scholar 

  292. Amanai M, Brahmajosyula M, Perry AC (2006) A restricted role for sperm-borne microRNAs in mammalian fertilization. Biol Reprod 75(6):877-884

    PubMed  Google Scholar 

  293. Gur Y, Breitbart H (2007) Protein translation in mammalian sperm. Soc Reprod Fertil Suppl 65:391-397

    PubMed  Google Scholar 

  294. Whitaker M (2006) Calcium at fertilization and in early development. Physiol Rev 86(1):25-88

    PubMed  Google Scholar 

  295. Malcuit C, Fissore RA (2007) Activation of fertilized and nuclear transfer eggs. Adv Exp Med Biol 591:117-131

    PubMed  Google Scholar 

  296. Nixon VL, Levasseur M, McDougall A, Jones KT (2002) Ca(2+) oscillations promote APC/C-dependent cyclin B1 degradation during metaphase arrest and completion of meiosis in fertilizing mouse eggs. Curr Biol 12(9):746-750

    PubMed  Google Scholar 

  297. Glotzer M, Murray AW, Kirschner MW (1991) Cyclin is degraded by the ubiquitin pathway. Nature 349(6305):132-138

    PubMed  Google Scholar 

  298. Nishiyama T, Yoshizaki N, Kishimoto T, Ohsumi K (2007) Transient activation of calcineurin is essential to initiate embryonic development in Xenopus laevis. Nature 449(7160):341-345

    PubMed  Google Scholar 

  299. Parrington J, Swann K, Shevchenko VI, Sesay AK, Lai FA (1996) Calcium oscillations in mammalian eggs triggered by a soluble sperm protein. Nature 379(6563):364-368

    PubMed  Google Scholar 

  300. Wolny YM, Fissore RA, Wu H et al (1999) Human glucosamine-6-phosphate isomerase, a homologue of hamster oscillin, does not appear to be involved in Ca2+ release in mammalian oocytes. Mol Reprod Dev 52(3):277-287

    PubMed  Google Scholar 

  301. Saunders CM, Larman MG, Parrington J et al (2002) PLC zeta: a sperm-specific trigger of Ca(2+) oscillations in eggs and embryo development. Development 129(15):3533-3544

    PubMed  Google Scholar 

  302. Kouchi Z, Fukami K, Shikano T et al (2004) Recombinant phospholipase Czeta has high Ca2+ sensitivity and induces Ca2+ oscillations in mouse eggs. J Biol Chem 279(11):10408-10412

    PubMed  Google Scholar 

  303. Cox LJ, Larman MG, Saunders CM, Hashimoto K, Swann K, Lai FA (2002) Sperm phospholipase Czeta from humans and cynomolgus monkeys triggers Ca2+ oscillations, activation and development of mouse oocytes. Reproduction 124(5):611-623

    PubMed  Google Scholar 

  304. Yoda A, Oda S, Shikano T et al (2004) Ca2+ oscillation-inducing phospholipase C zeta expressed in mouse eggs is accumulated to the pronucleus during egg activation. Dev Biol 268(2):245-257

    PubMed  Google Scholar 

  305. Kurokawa M, Yoon SY, Alfandari D, Fukami K, Sato KI, Fissore RA (2007) Proteolytic processing of phospholipase Czeta and [Ca(2+)](i) oscillations during mammalian fertilization. Dev Biol 312(1):407-418

    PubMed  Google Scholar 

  306. McGinnis LK, Albertini DF, Kinsey WH (2007) Localized activation of Src-family protein kinases in the mouse egg. Dev Biol 306(1):241-254

    PubMed  Google Scholar 

  307. Talmor-Cohen A, Tomashov-Matar R, Eliyahu E, Shapiro R, Shalgi R (2004) Are Src family kinases involved in cell cycle resumption in rat eggs? Reproduction 127(4):455-463

    PubMed  Google Scholar 

  308. Meng L, Luo J, Li C, Kinsey WH (2006) Role of Src homology 2 domain-mediated PTK signaling in mouse zygotic development. Reproduction 132(3):413-421

    PubMed  Google Scholar 

  309. Bement WM, Capco DG (1990) Protein kinase C acts downstream of calcium at entry into the first mitotic interphase of Xenopus laevis. Cell Regul 1(3):315-326

    PubMed  Google Scholar 

  310. Sun QY, Wang WH, Hosoe M, Taniguchi T, Chen DY, Shioya Y (1997) Activation of protein kinase C induces cortical granule exocytosis in a Ca(2+)-independent manner, but not the resumption of cell cycle in porcine eggs. Dev Growth Differ 39(4):523-529

    PubMed  Google Scholar 

  311. Giusti AF, Carroll DJ, Abassi YA, Terasaki M, Foltz KR, Jaffe LA (1999) Requirement of a Src family kinase for initiating calcium release at fertilization in starfish eggs. J Biol Chem 274(41):29318-29322

    PubMed  Google Scholar 

  312. Giusti AF, Xu W, Hinkle B, Terasaki M, Jaffe LA (2000) Evidence that fertilization activates starfish eggs by sequential activation of a Src-like kinase and phospholipase cgamma. J Biol Chem 275(22):16788-16794

    PubMed  Google Scholar 

  313. Sette C, Bevilacqua A, Bianchini A, Mangia F, Geremia R, Rossi P (1997) Parthenogenetic activation of mouse eggs by microinjection of a truncated c-kit tyrosine kinase present in spermatozoa. Development 124(11):2267-2274

    PubMed  Google Scholar 

  314. Sette C, Paronetto MP, Barchi M, Bevilacqua A, Geremia R, Rossi P (2002) Tr-kit-induced resumption of the cell cycle in mouse eggs requires activation of a Src-like kinase. Embo J 21(20):5386-5395

    PubMed  Google Scholar 

  315. Wu AT, Sutovsky P, Manandhar G et al (2007) PAWP, a sperm-specific WW domain-binding protein, promotes meiotic resumption and pronuclear development during fertilization. J Biol Chem 282(16):12164-12175

    PubMed  Google Scholar 

  316. Sudol M, Chen HI, Bougeret C, Einbond A, Bork P (1995) Characterization of a novel protein-binding module - the WW domain. FEBS Lett 369(1):67-71

    PubMed  Google Scholar 

  317. Sudol M, Sliwa K, Russo T (2001) Functions of WW domains in the nucleus. FEBS Lett 490(3):190-195

    PubMed  Google Scholar 

  318. Wu AT, Sutovsky P, Xu W, van der Spoel AC, Platt FM, Oko R (2007) The postacrosomal assembly of sperm head protein, PAWP, is independent of acrosome formation and dependent on microtubular manchette transport. Dev Biol 312(2):471-483

    PubMed  Google Scholar 

  319. Maleszewski M, Kimura Y, Yanagimachi R (1996) Sperm membrane incorporation into oolemma contributes to the oolemma block to sperm penetration: evidence based on intracytoplasmic sperm injection experiments in the mouse. Mol Reprod Dev 44(2):256-259

    PubMed  Google Scholar 

  320. Fenichel P, Durand-Clement M (1998) Role of integrins during fertilization in mammals. Hum Reprod 13(Suppl 4):31-46

    PubMed  Google Scholar 

  321. White KL, Passipieri M, Bunch TD, Campbell KD, Pate B (2007) Effects of arginine-glycine-aspartic acid (RGD) containing snake venom peptides on parthenogenetic development and in vitro fertilization of bovine oocytes. Mol Reprod Dev 74(1):88-96

    PubMed  Google Scholar 

  322. Campbell KD, Reed WA, White KL (2000) Ability of integrins to mediate fertilization, intracellular calcium release, and parthenogenetic development in bovine oocytes. Biol Reprod 62(6):1702-1709

    PubMed  Google Scholar 

  323. Yue LM, Zhang L, He YP et al (2004) Integrins mediate the increase of concentration of intracellular free calcium in mouse eggs. Sheng Li Xue Bao 56(3):347-352

    PubMed  Google Scholar 

  324. Igarashi H, Knott JG, Schultz RM, Williams CJ (2007) Alterations of PLCbeta1 in mouse eggs change calcium oscillatory behavior following fertilization. Dev Biol 312(1):321-330

    PubMed  Google Scholar 

  325. Hunter RH (1996) Ovarian control of very low sperm/egg ratios at the commencement of mammalian fertilisation to avoid polyspermy. Mol Reprod Dev 44(3):417-422

    PubMed  Google Scholar 

  326. Monroy A (1953) A model for the cortical reaction of fertilization in the sea-urchin egg. Experientia 9(11):424-425

    PubMed  Google Scholar 

  327. Sun QY (2003) Cellular and molecular mechanisms leading to cortical reaction and polyspermy block in mammalian eggs. Microsc Res Tech 61(4):342-348

    PubMed  Google Scholar 

  328. Hedrick JL (2007) A comparative analysis of molecular mechanisms for blocking polyspermy: identification of a lectin-ligand binding reaction in mammalian eggs. Soc Reprod Fertil Suppl 63:409-419

    PubMed  Google Scholar 

  329. Aviles M, Jaber L, Castells MT, Ballesta J, Kan FW (1997) Modifications of carbohydrate residues and ZP2 and ZP3 glycoproteins in the mouse zona pellucida after fertilization. Biol Reprod 57(5):1155-1163

    PubMed  Google Scholar 

  330. Bleil JD, Beall CF, Wassarman PM (1981) Mammalian sperm-egg interaction: fertilization of mouse eggs triggers modification of the major zona pellucida glycoprotein, ZP2. Dev Biol 86(1):189-197

    PubMed  Google Scholar 

  331. Drobnis EZ, Andrew JB, Katz DF (1988) Biophysical properties of the zona pellucida measured by capillary suction: is zona hardening a mechanical phenomenon? J Exp Zool 245(2):206-219

    PubMed  Google Scholar 

  332. Gould K, Zaneveld LJ, Srivastava PN, Williams WL (1971) Biochemical changes in the zona pellucida of rabbit ova induced by fertilization and sperm enzymes. Proc Soc Exp Biol Med 136(1):6-10

    PubMed  Google Scholar 

  333. Yi YJ, Manandhar G, Sutovsky M et al (2007) Ubiquitin C-terminal hydrolase-activity is involved in sperm acrosomal function and anti-polyspermy defense during porcine fertilization. Biol Reprod 77(5):780-793

    PubMed  Google Scholar 

  334. McCauley TC, Buhi WC, Wu GM et al (2003) Oviduct-specific glycoprotein modulates sperm-zona binding and improves efficiency of porcine fertilization in vitro. Biol Reprod 69(3):828-834

    PubMed  Google Scholar 

  335. Hao Y, Mathialagan N, Walters E et al (2006) Osteopontin reduces polyspermy during in vitro fertilization of porcine oocytes. Biol Reprod 75(5):726-733

    PubMed  Google Scholar 

  336. Sekiguchi S, Kwon J, Yoshida E et al (2006) Localization of ubiquitin C-terminal hydrolase L1 in mouse ova and its function in the plasma membrane to block polyspermy. Am J Pathol 169(5): 1722-1729

    PubMed  Google Scholar 

  337. Gwatkin RB, Rasmusson GH, Williams DT (1976) Induction of the cortical reaction in hamster eggs by membrane-active agents. J Reprod Fertil 47(2):299-303

    PubMed  Google Scholar 

  338. Brewer L, Corzett M, Balhorn R (2002) Condensation of DNA by spermatid basic nuclear proteins. J Biol Chem 277(41):38895-38900

    PubMed  Google Scholar 

  339. Balhorn R (2007) The protamine family of sperm nuclear proteins. Genome Biol 8(9):227

    PubMed  Google Scholar 

  340. Chen HY, Sun JM, Zhang Y, Davie JR, Meistrich ML (1998) Ubiquitination of histone H3 in elongating spermatids of rat testes. J Biol Chem 273(21):13165-13169

    PubMed  Google Scholar 

  341. Roest HP, van Klaveren J, de Wit J et al (1996) Inactivation of the HR6B ubiquitin-conjugating DNA repair enzyme in mice causes male sterility associated with chromatin modification. Cell 86(5):799-810

    PubMed  Google Scholar 

  342. Gao S, Chung YG, Parseghian MH, King GJ, Adashi EY, Latham KE (2004) Rapid H1 linker histone transitions following fertilization or somatic cell nuclear transfer: evidence for a uniform developmental program in mice. Dev Biol 266(1):62-75

    PubMed  Google Scholar 

  343. Tanaka Y, Kato S, Tanaka M, Kuji N, Yoshimura Y (2003) Structure and expression of the human oocyte-specific histone H1 gene elucidated by direct RT-nested PCR of a single oocyte. Biochem Biophys Res Commun 304(2):351-357

    PubMed  Google Scholar 

  344. Teranishi T, Tanaka M, Kimoto S et al (2004) Rapid replacement of somatic linker histones with the oocyte-specific linker histone H1foo in nuclear transfer. Dev Biol 266(1):76-86

    PubMed  Google Scholar 

  345. Perreault SD, Wolff RA, Zirkin BR (1984) The role of disulfide bond reduction during mammalian sperm nuclear decondensation in vivo. Dev Biol 101(1):160-167

    PubMed  Google Scholar 

  346. Sutovsky P, Schatten G (1997) Depletion of glutathione during bovine oocyte maturation reversibly blocks the decondensation of the male pronucleus and pronuclear apposition during fertilization. Biol Reprod 56(6):1503-1512

    PubMed  Google Scholar 

  347. Ward WS, Kishikawa H, Akutsu H, Yanagimachi H, Yanagimachi R (2000) Further evidence that sperm nuclear proteins are necessary for embryogenesis. Zygote 8(1):51-56

    PubMed  Google Scholar 

  348. Burns KH, Viveiros MM, Ren Y et al (2003) Roles of NPM2 in chromatin and nucleolar organization in oocytes and embryos. Science 300(5619):633-636

    PubMed  Google Scholar 

  349. Sutovsky P, Simerly C, Hewitson L, Schatten G (1998) Assembly of nuclear pore complexes and annulate lamellae promotes normal pronuclear development in fertilized mammalian oocytes. J Cell Sci 111(Pt 19):2841-2854

    PubMed  Google Scholar 

  350. Payne C, Rawe V, Ramalho-Santos J, Simerly C, Schatten G (2003) Preferentially localized dynein and perinuclear dynactin associate with nuclear pore complex proteins to mediate genomic union during mammalian fertilization. J Cell Sci 116(Pt 23): 4727-4738

    PubMed  Google Scholar 

  351. Alizadeh Z, Kageyama S, Aoki F (2005) Degradation of maternal mRNA in mouse embryos: selective degradation of specific mRNAs after fertilization. Mol Reprod Dev 72(3):281-290

    PubMed  Google Scholar 

  352. Tadros W, Houston SA, Bashirullah A et al (2003) Regulation of maternal transcript destabilization during egg activation in Drosophila. Genetics 164(3):989-1001

    PubMed  Google Scholar 

  353. DeRenzo C, Seydoux G (2004) A clean start: degradation of maternal proteins at the oocyte-to-embryo transition. Trends Cell Biol 14(8):420-426

    PubMed  Google Scholar 

  354. Memili E, First NL (1999) Control of gene expression at the onset of bovine embryonic development. Biol Reprod 61(5):1198-1207

    PubMed  Google Scholar 

  355. Hamatani T, Carter MG, Sharov AA, Ko MS (2004) Dynamics of global gene expression changes during mouse preimplantation development. Dev Cell 6(1):117-131

    PubMed  Google Scholar 

  356. Adenot PG, Mercier Y, Renard JP, Thompson EM (1997) Differential H4 acetylation of paternal and maternal chromatin precedes DNA replication and differential transcriptional activity in pronuclei of 1-cell mouse embryos. Development 124(22): 4615-4625

    PubMed  Google Scholar 

  357. Aoki F, Worrad DM, Schultz RM (1997) Regulation of transcriptional activity during the first and second cell cycles in the preimplantation mouse embryo. Dev Biol 181(2):296-307

    PubMed  Google Scholar 

  358. Worrad DM, Ram PT, Schultz RM (1994) Regulation of gene expression in the mouse oocyte and early preimplantation embryo: developmental changes in Sp1 and TATA box-binding protein, TBP. Development 120(8):2347-2357

    PubMed  Google Scholar 

  359. Maddox-Hyttel P, Svarcova O, Laurincik J (2007) Ribosomal RNA and nucleolar proteins from the oocyte are to some degree used for embryonic nucleolar formation in cattle and pig. Theriogenology 68(Suppl 1):S63-S70

    PubMed  Google Scholar 

  360. Hay-Schmidt A, Viuff D, Greve T, Hyttel P (2001) Transcriptional activity in in vivo developed early cleavage stage bovine embryos. Theriogenology 56(1):167-176

    PubMed  Google Scholar 

  361. Dieleman SJ, Hendriksen PJ, Viuff D et al (2002) Effects of in vivo prematuration and in vivo final maturation on developmental capacity and quality of pre-implantation embryos. Theriogenology 57(1):5-20

    PubMed  Google Scholar 

  362. Schultz RM (1993) Regulation of zygotic gene activation in the mouse. Bioessays 15(8):531-538

    PubMed  Google Scholar 

  363. Brown EJ (2004) Analysis of cell cycle progression and genomic integrity in early lethal knockouts. Methods Mol Biol 280:201-212

    PubMed  Google Scholar 

  364. Schultz RM, Davis W Jr, Stein P, Svoboda P (1999) Reprogramming of gene expression during preimplantation development. J Exp Zool 285(3):276-282

    PubMed  Google Scholar 

  365. Morgan HD, Santos F, Green K, Dean W, Reik W (2005) Epigenetic reprogramming in mammals. Hum Mol Genet 14(Spec No 1):R47-R58

    PubMed  Google Scholar 

  366. Bultman SJ, Gebuhr TC, Pan H, Svoboda P, Schultz RM, Magnuson T (2006) Maternal BRG1 regulates zygotic genome activation in the mouse. Genes Dev 20(13):1744-1754

    PubMed  Google Scholar 

  367. Torres-Padilla ME, Zernicka-Goetz M (2006) Role of TIF1alpha as a modulator of embryonic transcription in the mouse zygote. J Cell Biol 174(3):329-338

    PubMed  Google Scholar 

  368. Schultz RM (2002) The molecular foundations of the maternal to zygotic transition in the preimplantation embryo. Hum Reprod Update 8(4):323-331

    PubMed  Google Scholar 

  369. Bird A (2002) DNA methylation patterns and epigenetic memory. Genes Dev 16(1):6-21

    PubMed  Google Scholar 

  370. Dean W, Lucifero D, Santos F (2005) DNA methylation in mammalian development and disease. Birth Defects Res C Embryo Today 75(2):98-111

    PubMed  Google Scholar 

  371. Hamerton JL, Giannelli F, Collins F et al (1969) Non-random x-inactivation in the female mule. Nature 222(5200):1277-1278

    PubMed  Google Scholar 

  372. Mohandas T, Sparkes RS, Shapiro LJ (1981) Reactivation of an inactive human X chromosome: evidence for X inactivation by DNA methylation. Science 211(4480):393-396

    PubMed  Google Scholar 

  373. Lyon MF (1961) Gene action in the X-chromosome of the mouse (Mus musculus L.). Nature 190:372-373

    PubMed  Google Scholar 

  374. Daniels R, Zuccotti M, Kinis T, Serhal P, Monk M (1997) XIST expression in human oocytes and preimplantation embryos. Am J Hum Genet 61(1):33-39

    PubMed  Google Scholar 

  375. Zuccotti M, Boiani M, Ponce R et al (2002) Mouse Xist expression begins at zygotic genome activation and is timed by a zygotic clock. Mol Reprod Dev 61(1):14-20

    PubMed  Google Scholar 

  376. Brown CJ, Ballabio A, Rupert JL et al (1991) A gene from the region of the human X inactivation centre is expressed exclusively from the inactive X chromosome. Nature 349(6304):38-44

    PubMed  Google Scholar 

  377. Plath K, Mlynarczyk-Evans S, Nusinow DA, Panning B (2002) Xist RNA and the mechanism of X chromosome inactivation. Annu Rev Genet 36:233-278

    PubMed  Google Scholar 

  378. Masui O, Heard E (2006) RNA and protein actors in X-chromosome inactivation. Cold Spring Harb Symp Quant Biol 71:419-428

    PubMed  Google Scholar 

  379. Senda S, Wakayama T, Yamazaki Y et al (2004) Skewed X-inactivation in cloned mice. Biochem Biophys Res Commun 321(1):38-44

    PubMed  Google Scholar 

  380. Xue F, Tian XC, Du F et al (2002) Aberrant patterns of X chromosome inactivation in bovine clones. Nat Genet 31(2):216-220

    PubMed  Google Scholar 

  381. Jiang L, Lai L, Samuel M, Prather RS, Yang X, Tian XC (2008) Expression of X-linked genes in deceased neonates and surviving cloned female piglets. Mol Reprod Dev 75(2):265-273

    PubMed  Google Scholar 

  382. Longo FJ (1976) Sperm aster in rabbit zygotes: its structure and function. J Cell Biol 69(3):539-547

    PubMed  Google Scholar 

  383. Schatten H, Schatten G (1986) Motility and centrosomal organization during sea urchin and mouse fertilization. Cell Motil Cytoskeleton 6(2):163-175

    PubMed  Google Scholar 

  384. Manandhar G, Schatten H, Sutovsky P (2005) Centrosome reduction during gametogenesis and its significance. Biol Reprod 72(1):2-13

    PubMed  Google Scholar 

  385. Azimzadeh J, Bornens M (2007) Structure and duplication of the centrosome. J Cell Sci 120(Pt 13):2139-2142

    PubMed  Google Scholar 

  386. Szollosi D, Ozil JP (1991) De novo formation of centrioles in parthenogenetically activated, diploidized rabbit embryos. Biol Cell 72(1-2):61-66

    PubMed  Google Scholar 

  387. Manandhar G, Simerly C, Schatten G (2000) Highly degenerated distal centrioles in rhesus and human spermatozoa. Hum Reprod 15(2):256-263

    PubMed  Google Scholar 

  388. Manandhar G, Sutovsky P, Joshi HC, Stearns T, Schatten G (1998) Centrosome reduction during mouse spermiogenesis. Dev Biol 203(2):424-434

    PubMed  Google Scholar 

  389. Le Guen P, Crozet N (1989) Microtubule and centrosome distribution during sheep fertilization. Eur J Cell Biol 48(2):239-249

    PubMed  Google Scholar 

  390. Szollosi D, Szollosi MS, Czolowska R, Tarkowski AK (1990) Sperm penetration into immature mouse oocytes and nuclear changes during maturation: an EM study. Biol Cell 69(1):53-64

    PubMed  Google Scholar 

  391. Sathananthan AH, Kola I, Osborne J et al (1991) Centrioles in the beginning of human development. Proc Natl Acad Sci U S A 88(11):4806-4810

    PubMed  Google Scholar 

  392. Rawe VY, Díaz ES, Abdelmassih R et al (2008) The role of sperm proteasomes during sperm aster formation and early zygote development: Implications for fertilization failure in humans. Hum Reprod 23(3):573-580

    PubMed  Google Scholar 

  393. Navara CS, First NL, Schatten G (1994) Microtubule organization in the cow during fertilization, polyspermy, parthenogenesis, and nuclear transfer: the role of the sperm aster. Dev Biol 162(1):29-40

    PubMed  Google Scholar 

  394. Asch R, Simerly C, Ord T, Ord VA, Schatten G (1995) The stages at which human fertilization arrests: microtubule and chromosome configurations in inseminated oocytes which failed to complete fertilization and development in humans. Hum Reprod 10(7):1897-1906

    PubMed  Google Scholar 

  395. Obasaju M, Kadam A, Sultan K, Fateh M, Munne S (1999) Sperm quality may adversely affect the chromosome constitution of embryos that result from intracytoplasmic sperm injection. Fertil Steril 72(6):1113-1115

    PubMed  Google Scholar 

  396. Kovacic B, Vlaisavljevic V (2000) Configuration of maternal and paternal chromatin and pertaining microtubules in human oocytes failing to fertilize after intracytoplasmic sperm injection. Mol Reprod Dev 55(2):197-204

    PubMed  Google Scholar 

  397. Palermo GD, Colombero LT, Rosenwaks Z (1997) The human sperm centrosome is responsible for normal syngamy and early embryonic development. Rev Reprod 2(1):19-27

    PubMed  Google Scholar 

  398. Terada Y, Simerly CR, Hewitson L, Schatten G (2000) Sperm aster formation and pronuclear decondensation during rabbit fertilization and development of a functional assay for human sperm. Biol Reprod 62(3):557-563

    PubMed  Google Scholar 

  399. Van Blerkom J, Davis P (1995) Evolution of the sperm aster after microinjection of isolated human sperm centrosomes into meiotically mature human oocytes. Hum Reprod 10(8):2179-2182

    PubMed  Google Scholar 

  400. Shalgi R, Magnus A, Jones R, Phillips DM (1994) Fate of sperm organelles during early embryogenesis in the rat. Mol Reprod Dev 37(3):264-271

    PubMed  Google Scholar 

  401. Escalier D (2006) Knockout mouse models of sperm flagellum anomalies. Hum Reprod Update 12(4):449-461

    PubMed  Google Scholar 

  402. Fawcett DW (1975) The mammalian spermatozoon. Dev Biol 44(2):394-436

    PubMed  Google Scholar 

  403. Ankel-Simons F, Cummins JM (1996) Misconceptions about mitochondria and mammalian fertilization: implications for theories on human evolution. Proc Natl Acad Sci U S A 93(24):13859-13863

    PubMed  Google Scholar 

  404. Sutovsky P (2003) Ubiquitin-dependent proteolysis in mammalian spermatogenesis, fertilization, and sperm quality control: killing three birds with one stone. Microsc Res Tech 61(1):88-102

    PubMed  Google Scholar 

  405. Sutovsky P, Moreno RD, Ramalho-Santos J, Dominko T, Simerly C, Schatten G (1999) Ubiquitin tag for sperm mitochondria. Nature 402(6760):371-372

    PubMed  Google Scholar 

  406. Sutovsky P, Moreno RD, Ramalho-Santos J, Dominko T, Simerly C, Schatten G (2000) Ubiquitinated sperm mitochondria, selective proteolysis, and the regulation of mitochondrial inheritance in mammalian embryos. Biol Reprod 63(2):582-590

    PubMed  Google Scholar 

  407. Sutovsky P, Van Leyen K, McCauley T, Day BN, Sutovsky M (2004) Degradation of paternal mitochondria after fertilization: implications for heteroplasmy, assisted reproductive technologies and mtDNA inheritance. Reprod Biomed Online 8(1):24-33

    PubMed  Google Scholar 

  408. Hiendleder S (2007) Mitochondrial DNA inheritance after SCNT. Adv Exp Med Biol 591:103-116

    PubMed  Google Scholar 

  409. St John JC, Lloyd R, El Shourbagy S (2004) The potential risks of abnormal transmission of mtDNA through assisted reproductive technologies. Reprod Biomed Online 8(1):34-44

    PubMed  Google Scholar 

  410. Aitken RJ, De Iuliis GN (2007) Origins and consequences of DNA damage in male germ cells. Reprod Biomed Online 14(6):727-733

    PubMed  Google Scholar 

  411. Kaneda H, Hayashi J, Takahama S, Taya C, Lindahl KF, Yonekawa H (1995) Elimination of paternal mitochondrial DNA in intraspecific crosses during early mouse embryogenesis. Proc Natl Acad Sci U S A 92(10):4542-4546

    PubMed  Google Scholar 

  412. Shitara H, Hayashi JI, Takahama S, Kaneda H, Yonekawa H (1998) Maternal inheritance of mouse mtDNA in interspecific hybrids: segregation of the leaked paternal mtDNA followed by the prevention of subsequent paternal leakage. Genetics 148(2): 851-857

    PubMed  Google Scholar 

  413. Hayashida K, Omagari K, Masuda J et al (2005) The sperm mitochondria-specific translocator has a key role in maternal mitochondrial inheritance. Cell Biol Int 29(6):472-481

    PubMed  Google Scholar 

  414. Nishimura Y, Yoshinari T, Naruse K et al (2006) Active digestion of sperm mitochondrial DNA in single living sperm revealed by optical tweezers. Proc Natl Acad Sci U S A 103(5):1382-1387

    PubMed  Google Scholar 

  415. Schwartz M, Vissing J (2002) Paternal inheritance of mitochondrial DNA. N Engl J Med 347(8):576-580

    PubMed  Google Scholar 

  416. Marchington DR, Scott Brown MS, Lamb VK et al (2002) No evidence for paternal mtDNA transmission to offspring or extra-embryonic tissues after ICSI. Mol Hum Reprod 8(11):1046-1049

    PubMed  Google Scholar 

  417. Barritt JA, Brenner CA, Malter HE, Cohen J (2001) Rebuttal: interooplasmic transfers in humans. Reprod Biomed Online 3(1):47-48

    PubMed  Google Scholar 

  418. Hiraoka J, Hirao Y (1988) Fate of sperm tail components after incorporation into the hamster egg. Gamete Res 19(4):369-380

    PubMed  Google Scholar 

  419. Simerly CR, Hecht NB, Goldberg E, Schatten G (1993) Tracing the incorporation of the sperm tail in the mouse zygote and early embryo using an anti-testicular alpha-tubulin antibody. Dev Biol 158(2):536-548

    PubMed  Google Scholar 

  420. Sutovsky P, Hewitson L, Simerly CR et al (1996) Intracytoplasmic sperm injection for Rhesus monkey fertilization results in unusual chromatin, cytoskeletal, and membrane events, but eventually leads to pronuclear development and sperm aster assembly. Hum Reprod 11(8):1703-1712

    PubMed  Google Scholar 

  421. Ramalho-Santos J, Sutovsky P, Simerly C et al (2000) ICSI choreography: fate of sperm structures after monospermic rhesus ICSI and first cell cycle implications. Hum Reprod 15(12):2610-2620

    PubMed  Google Scholar 

  422. Ajduk A, Yamauchi Y, Ward MA (2006) Sperm chromatin remodeling after intracytoplasmic sperm injection differs from that of in vitro fertilization. Biol Reprod 75(3):442-451

    PubMed  Google Scholar 

  423. Terada Y, Luetjens CM, Sutovsky P, Schatten G (2000) Atypical decondensation of the sperm nucleus, delayed replication of the male genome, and sex chromosome positioning following intracytoplasmic human sperm injection (ICSI) into golden hamster eggs: does ICSI itself introduce chromosomal anomalies? Fertil Steril 74(3):454-460

    PubMed  Google Scholar 

  424. Battaglia DE, Koehler JK, Klein NA, Tucker MJ (1997) Failure of oocyte activation after intracytoplasmic sperm injection using round-headed sperm. Fertil Steril 68(1):118-122

    PubMed  Google Scholar 

  425. Kim ST, Cha YB, Park JM, Gye MC (2001) Successful pregnancy and delivery from frozen-thawed embryos after intracytoplasmic sperm injection using round-headed spermatozoa and assisted oocyte activation in a globozoospermic patient with mosaic Down syndrome. Fertil Steril 75(2):445-447

    PubMed  Google Scholar 

  426. Rybouchkin AV, Van der Straeten F, Quatacker J, De Sutter P, Dhont M (1997) Fertilization and pregnancy after assisted oocyte activation and intracytoplasmic sperm injection in a case of round-headed sperm associated with deficient oocyte activation capacity. Fertil Steril 68(6):1144-1147

    PubMed  Google Scholar 

  427. Sengoku K, Tamate K, Takaoka Y et al (1999) Requirement of sperm-oocyte plasma membrane fusion for establishment of the plasma membrane block to polyspermy in human pronuclear oocytes. Mol Reprod Dev 52(2):183-188

    PubMed  Google Scholar 

  428. Wortzman-Show GB, Kurokawa M, Fissore RA, Evans JP (2007) Calcium and sperm components in the establishment of the membrane block to polyspermy: studies of ICSI and activation with sperm factor. Mol Hum Reprod 13(8):557-565

    PubMed  Google Scholar 

  429. Morozumi K, Yanagimachi R (2005) Incorporation of the acrosome into the oocyte during intracytoplasmic sperm injection could be potentially hazardous to embryo development. Proc Natl Acad Sci U S A 102(40):14209-14214

    PubMed  Google Scholar 

  430. Morozumi K, Shikano T, Miyazaki S, Yanagimachi R (2006) Simultaneous removal of sperm plasma membrane and acrosome before intracytoplasmic sperm injection improves oocyte activation/embryonic development. Proc Natl Acad Sci U S A 103(47):17661-17666

    PubMed  Google Scholar 

  431. Katayama M, Sutovsky P, Yang BS et al (2005) Increased disruption of sperm plasma membrane at sperm immobilization promotes dissociation of perinuclear theca from sperm chromatin after intracytoplasmic sperm injection in pigs. Reproduction 130(6):907-916

    PubMed  Google Scholar 

  432. Takeuchi T, Colombero LT, Neri QV, Rosenwaks Z, Palermo GD (2004) Does ICSI require acrosomal disruption? An ultrastructural study. Hum Reprod 19(1):114-117

    PubMed  Google Scholar 

  433. Gomez-Torres MJ, Ten J, Girela JL, Romero J, Bernabeu R, De Juan J (2007) Sperm immobilized before intracytoplasmic sperm injection undergo ultrastructural damage and acrosomal disruption. Fertil Steril 88(3):702-704

    PubMed  Google Scholar 

  434. Dozortsev D, Rybouchkin A, De Sutter P, Dhont M (1995) Sperm plasma membrane damage prior to intracytoplasmic sperm injection: a necessary condition for sperm nucleus decondensation. Hum Reprod 10(11):2960-2964

    PubMed  Google Scholar 

  435. Pasten C, Morales P, Kong M (2005) Role of the sperm proteasome during fertilization and gamete interaction in the mouse. Mol Reprod Dev 71(2):209-219

    PubMed  Google Scholar 

  436. Wang WH, Day BN, Wu GM (2003) How does polyspermy happen in mammalian oocytes? Microsc Res Tech 61(4):335-341

    PubMed  Google Scholar 

  437. Sun QY, Fuchimoto D, Nagai T (2004) Regulatory roles of ubiquitin-proteasome pathway in pig oocyte meiotic maturation and fertilization. Theriogenology 62(1-2):245-255

    PubMed  Google Scholar 

  438. Wang H, Song C, Duan C et al (2002) Effects of ubiquitin-proteasome pathway on mouse sperm capacitation, acrosome reaction and in vitro fertilization. Chin Sci Bull 47:127-132

    Google Scholar 

Download references

Acknowledgments

I would like to acknowledge the support from my past and present associates and graduate students at the University of Missouri, including Gauri Manandhar, Young-Joo Yi, Kathleen Baska, Kyle Lovercamp, Alex Wu, Katie Fischer, Shawn Zimmerman, Jen Antelman, and Miriam Sutovsky. Clerical and editorial assistance from Kathy Craighead is much appreciated. Support from my colleagues and collaborators, Drs. Randy Prather, Jon Green, Billy N. Day and Gary Clark, and their associates are much appreciated. Special thanks to Dr. Richard Oko for sharing unpublished data from our collaborative research projects for the purpose of this chapter and to the staff of the Electron Microscopy Core Facility of UM for sample procesing. Critical reading of this manuscript by Drs. Vera Jonakova, Richard Oko and Gary Clark is gratefully acknowledged. In the last 7 years, my laboratory was/has been supported by generous grants from the USDA-NRI Animal Reproduction Program, the NIH, Canadian Institutes of Health Research, Pfizer Inc., Monsanto Inc, and seed funding from the Food for the twenty-first Century Program of the University of Missouri-Columbia.

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Peter Sutovsky .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and permissions

Copyright information

© 2010 Springer Science+Business Media, LLC

About this chapter

Cite this chapter

Sutovsky, P. (2010). Sperm Capacitation, the Acrosome Reaction, and Fertilization. In: Carrell, D., Peterson, C. (eds) Reproductive Endocrinology and Infertility. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1436-1_25

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-1436-1_25

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-1435-4

  • Online ISBN: 978-1-4419-1436-1

  • eBook Packages: MedicineMedicine (R0)

Publish with us

Policies and ethics