Skip to main content

Cytotoxic and Protective Activity of Nitric Oxide in Cancers

  • 1025 Accesses

Part of the Cancer Drug Discovery and Development book series (CDD&D)

Abstract

Nitric oxide (NO), synthesized from l-arginine by NO synthases, is a small, lipophilic, diffusible, highly reactive molecule with dichotomous regulatory roles in many biological events under physiological and pathological conditions. NO promotes apoptosis in some tumor cells, but provokes anti-apoptotic activity in other tumor cells. For this reason, conflicting viewpoints have arisen as to whether nitric oxide is cytotoxic or protective in cancer cells.

Part of the complexity of NO concentrations in tumor cells or tissues can be attributed to cell death and the formation of an anti-apoptotic cascade with nitrosylation of biological molecules from substances such as metal ions, thiol, the amino acid tyrosine, and reactive oxygen species. During the last 5 years, there have been many excellent reviews concerning the role of NO in cancer therapy, tumor apoptosis, and metastases. Here, the recent knowledge of cytotoxic (apoptotic) and cytoprotective (anti-apoptotic) activity of NO in cancer will be reviewed.

Keywords

  • Apoptosis
  • Anti-apoptosis
  • Caspase
  • Bcl
  • Mitochondria
  • TNF
  • Fas
  • TRAIL
  • NF-κB
  • S-nitrosylation
  • Proteasome

This is a preview of subscription content, access via your institution.

Buying options

Chapter
USD   29.95
Price excludes VAT (USA)
  • DOI: 10.1007/978-1-4419-1432-3_6
  • Chapter length: 30 pages
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
eBook
USD   269.00
Price excludes VAT (USA)
  • ISBN: 978-1-4419-1432-3
  • Instant PDF download
  • Readable on all devices
  • Own it forever
  • Exclusive offer for individuals only
  • Tax calculation will be finalised during checkout
Softcover Book
USD   349.99
Price excludes VAT (USA)
Hardcover Book
USD   349.99
Price excludes VAT (USA)
Fig. 6.1
Fig. 6.2
Fig. 6.3
Fig. 6.4

References

  • Adams, C., McCarthy, H.O., Coulter, J.A., Worthington, J., Murphy, C., Robson, T., and Hirst, D. G. (2009). Nitric oxide synthase gene therapy enhances the toxicity of cisplatin in cancer cells. J. Gene Med. 11, 160–168.

    PubMed  CAS  CrossRef  Google Scholar 

  • Ambs, S., Merriam, W.G., Ogunfusika, M.O., Bennett, W.P., Ishibe, N., Hussain, S.P., Tzeng, E.E., Geller, D.A., Billiar, T.R., and Harris, C.C. (1998). P53 and vascular endothelial growth factor regulate tumor growth of nos2-expressing human carcinoma cells. Nat. Med. 4, 1371–1376.

    PubMed  CAS  CrossRef  Google Scholar 

  • Azad, N., Vallyathan, V., Wang, L., Tantishaiyakul, V., Stehlik, C., Leonard, S.S., and Rojanasakul, Y. (2006). S-nitrosylation of bcl-2 inhibits its ubiquitin-proteasomal degradation. A novel antiapoptotic mechanism that suppresses apoptosis. J. Biol. Chem. 281, 34124–34134.

    PubMed  CAS  CrossRef  Google Scholar 

  • Azizzadeh, B., Yip, H.T., Blackwell, K.E., Horvath, S., Calcaterra, T.C., Buga, G.M., Ignarro, L.J., and Wang, M.B. (2001). Nitric oxide improves cisplatin cytotoxicity in head and neck squamous cell carcinoma. Laryngoscope 111, 1896–1900.

    PubMed  CAS  CrossRef  Google Scholar 

  • Basolo, F., Fiore, L., Baldanzi, A., Giannini, R., Dell’Omodarme, M., Fontanini, G., Pacini, F., Danesi, R., Miccoli, P., and Toniolo, A. (2000). Suppression of fas expression and down-regulation of fas ligand in highly aggressive human thyroid carcinoma. Lab Invest. 80, 1413–1419.

    PubMed  CAS  CrossRef  Google Scholar 

  • Bauer, P.M., Buga, G.M., Fukuto, J.M., Pegg, A.E., and Ignarro, L.J. (2001). Nitric oxide inhibits ornithine decarboxylase via s-nitrosylation of cysteine 360 in the active site of the enzyme. J. Biol. Chem. 276, 34458–34464.

    PubMed  CAS  CrossRef  Google Scholar 

  • Beltz, L.A., Bayer, D.K., Moss, A.L., and Simet, I.M. (2006). Mechanisms of cancer prevention by green and black tea polyphenols. Anticancer Agents Med. Chem. 6, 389–406.

    PubMed  CAS  CrossRef  Google Scholar 

  • Ben-Hur, H., Gurevich, P., Ben-Arie, A., Huszar, M., Berman, V., Tendler, Y., Tchanishev, R., Mor, G., Gershon, S., and Zusman, I. (2000). Apoptosis and apoptosis-related proteins (fas, fas ligand, bcl-2, p53) in macrophages of human ovarian epithelial tumors. Eur. J. Gynaecol. Oncol. 21, 141–145.

    PubMed  CAS  Google Scholar 

  • Benhar, M., Forrester, M.T., Hess, D.T., and Stamler, J.S. (2008). Regulated protein denitrosylation by cytosolic and mitochondrial thioredoxins. Science 320, 1050–1054.

    PubMed  CAS  CrossRef  Google Scholar 

  • Bonavida, B., Baritaki, S., Huerta-Yepez, S., Vega, M. I., Chatterjee, D., and Yeung, K. (2008). Novel therapeutic applications of nitric oxide donors in cancer: Roles in chemo- and immunosensitization to apoptosis and inhibition of metastases. Nitric Oxide 19, 152–157.

    PubMed  CAS  CrossRef  Google Scholar 

  • Bonavida, B., Khineche, S., Huerta-Yepez, S., and Garban, H. (2006). Therapeutic potential of nitric oxide in cancer. Drug Resist. Updat. 9, 157–173.

    PubMed  CAS  CrossRef  Google Scholar 

  • Boudreau, N. and Myers, C. (2003). Breast cancer-induced angiogenesis: Multiple mechanisms and the role of the microenvironment. Breast Cancer Res. 5, 140–146.

    PubMed  CAS  CrossRef  Google Scholar 

  • Bratasz, A., Selvendiran, K., Wasowicz, T., Bobko, A., Khramtsov, V.V., Ignarro, L.J., and Kuppusamy, P. (2008). Ncx-4040, a nitric oxide-releasing aspirin, sensitizes drug-resistant human ovarian xenograft tumors to cisplatin by depletion of cellular thiols. J. Transl. Med. 6, 9.

    PubMed  CrossRef  CAS  Google Scholar 

  • Bratasz, A., Weir, N.M., Parinandi, N.L., Zweier, J.L., Sridhar, R., Ignarro, L.J., and Kuppusamy, P. (2006). Reversal to cisplatin sensitivity in recurrent human ovarian cancer cells by ncx-4016, a nitro derivative of aspirin. Proc. Natl. Acad. Sci. U S A 103, 3914–3919.

    PubMed  CAS  CrossRef  Google Scholar 

  • Brookes, P.S., Salinas, E.P., Darley-Usmar, K., Eiserich, J.P., Freeman, B.A., Darley-Usmar, V.M., and Anderson, P.G. (2000). Concentration-dependent effects of nitric oxide on mitochondrial permeability transition and cytochrome c release. J. Biol. Chem. 275, 20474–20479.

    PubMed  CAS  CrossRef  Google Scholar 

  • Brune, B., Sandau, K., and von Knethen, A. (1998). Apoptotic cell death and nitric oxide: Activating and antagonistic transducing pathways. Biochemistry (Mosc) 63, 817–825.

    CAS  Google Scholar 

  • Butler, A.R., Al-Sa’doni, H.H., Megson, I.L., and Flitney, F.W. (1998). Synthesis, decomposition, and vasodilator action of some new s-nitrosated dipeptides. Nitric Oxide 2, 193–202.

    PubMed  CAS  CrossRef  Google Scholar 

  • Campbell, M.J., Esserman, L.J., Zhou, Y., Shoemaker, M., Lobo, M., Borman, E., Baehner, F., Kumar, A.S., Adduci, K., Marx, C., Petricoin, E.F., Liotta, L.A., Winters, M., Benz, S., and Benz, C.C. (2006). Breast cancer growth prevention by statins. Cancer Res. 66, 8707–8714.

    PubMed  CAS  CrossRef  Google Scholar 

  • Carmeliet, P. and Jain, R.K. (2000). Angiogenesis in cancer and other diseases. Nature 407, 249–257.

    PubMed  CAS  CrossRef  Google Scholar 

  • Chakrapani, H., Goodblatt, M.M., Udupi, V., Malaviya, S., Shami, P.J., Keefer, L.K., and Saavedra, J.E. (2008). Synthesis and in vitro anti-leukemic activity of structural analogues of js-k, an anti-cancer lead compound. Bioorg. Med. Chem. Lett. 18, 950–953.

    PubMed  CAS  CrossRef  Google Scholar 

  • Chandele, A., Prasad, V., Jagtap, J.C., Shukla, R., and Shastry, P.R. (2004). Upregulation of survivin in g2/m cells and inhibition of caspase 9 activity enhances resistance in staurosporine-induced apoptosis. Neoplasia 6, 29–40.

    PubMed  CAS  Google Scholar 

  • Chanvorachote, P., Nimmannit, U., Wang, L., Stehlik, C., Lu, B., Azad, N., and Rojanasakul, Y. (2005). Nitric oxide negatively regulates fas cd95-induced apoptosis through inhibition of ubiquitin-proteasome-mediated degradation of flice inhibitory protein. J. Biol. Chem. 280, 42044–42050.

    PubMed  CAS  CrossRef  Google Scholar 

  • Choi, B.M., Pae, H.O., Jang, S.I., Kim, Y.M., and Chung, H.T. (2002). Nitric oxide as a pro-apoptotic as well as anti-apoptotic modulator. J. Biochem. Mol. Biol. 35, 116–126.

    PubMed  CAS  CrossRef  Google Scholar 

  • Chung, P., Cook, T., Liu, K., Vodovotz, Y., Zamora, R., Finkelstein, S., Billiar, T., and Blumberg, D. (2003). Overexpression of the human inducible nitric oxide synthase gene enhances radiation-induced apoptosis in colorectal cancer cells via a caspase-dependent mechanism. Nitric Oxide 8, 119–126.

    PubMed  CAS  CrossRef  Google Scholar 

  • Condeelis, J. and Pollard, J.W. (2006). Macrophages: Obligate partners for tumor cell migration, invasion, and metastasis. Cell 124, 263–266.

    PubMed  CAS  CrossRef  Google Scholar 

  • Coulter, J.A., McCarthy, H.O., Xiang, J., Roedl, W., Wagner, E., Robson, T., and Hirst, D.G. (2008). Nitric oxide – a novel therapeutic for cancer. Nitric Oxide 19, 192–198.

    PubMed  CAS  CrossRef  Google Scholar 

  • Noble, D.R., Swift, H.R., and Williams., D.L.H. (1999). Nitric oxide release from s-nitrosoglutathione (gsno). Chem. Commun. 2317–2318.

    Google Scholar 

  • Dash, P.R., McCormick, J., Thomson, M.J., Johnstone, A.P., Cartwright, J.E., and Whitley, G.S. (2007). Fas ligand-induced apoptosis is regulated by nitric oxide through the inhibition of fas receptor clustering and the nitrosylation of protein kinase cepsilon. Exp. Cell Res. 313, 3421–3431.

    PubMed  CAS  CrossRef  Google Scholar 

  • De Nadai, C., Sestili, P., Cantoni, O., Lievremont, J.P., Sciorati, C., Barsacchi, R., Moncada, S., Meldolesi, J., and Clementi, E. (2000). Nitric oxide inhibits tumor necrosis factor-alpha-induced apoptosis by reducing the generation of ceramide. Proc. Natl. Acad. Sci. USA 97, 5480–5485.

    PubMed  CrossRef  Google Scholar 

  • Decker, N.K., Abdelmoneim, S.S., Yaqoob, U., Hendrickson, H., Hormes, J., Bentley, M., Pitot, H., Urrutia, R., Gores, G.J., and Shah, V.H. (2008). Nitric oxide regulates tumor cell cross-talk with stromal cells in the tumor microenvironment of the liver. Am. J. Pathol. 173, 1002–1012.

    PubMed  CAS  CrossRef  Google Scholar 

  • Dilla, T., Velasco, J.A., Medina, D.L., Gonzalez-Palacios, J.F., and Santisteban, P. (2000). The mdm2 oncoprotein promotes apoptosis in p53-deficient human medullary thyroid carcinoma cells. Endocrinology 141, 420–429.

    PubMed  CAS  CrossRef  Google Scholar 

  • Dimmeler, S., Breitschopf, K., Haendeler, J., and Zeiher, A.M. (1999). Dephosphorylation targets bcl-2 for ubiquitin-dependent degradation: A link between the apoptosome and the proteasome pathway. J. Exp. Med. 189, 1815–1822.

    PubMed  CAS  CrossRef  Google Scholar 

  • Dunlap, T., Abdul-Hay, S.O., Chandrasena, R.E., Hagos, G.K., Sinha, V., Wang, Z., Wang, H., and Thatcher, G.R. (2008). Nitrates and no-nsaids in cancer chemoprevention and therapy: In vitro evidence querying the no donor functionality. Nitric Oxide 19, 115–124.

    PubMed  CAS  CrossRef  Google Scholar 

  • Ekmekcioglu, S., Tang, C.H., and Grimm, E.A. (2005). No news is not necessarily good news in cancer. Curr Cancer Drug Targets 5, 103–115.

    PubMed  CAS  CrossRef  Google Scholar 

  • Engels, K., Knauer, S.K., Loibl, S., Fetz, V., Harter, P., Schweitzer, A., Fisseler-Eckhoff, A., Kommoss, F., Hanker, L., Nekljudova, V., Hermanns, I., Kleinert, H., Mann, W., du Bois, A., and Stauber, R.H. (2008). No signaling confers cytoprotectivity through the survivin network in ovarian carcinomas. Cancer Res. 68, 5159–5166.

    PubMed  CAS  CrossRef  Google Scholar 

  • Estrada, C., Gomez, C., Martin-Nieto, J., De Frutos, T., Jimenez, A., and Villalobo, A. (1997). Nitric oxide reversibly inhibits the epidermal growth factor receptor tyrosine kinase. Biochem. J. 326 (Pt 2), 369–376.

    PubMed  CAS  Google Scholar 

  • Fei, X.F., Wang, B.X., Li, T.J., Tashiro, S., Minami, M., Xing, D.J., and Ikejima, T. (2003). Evodiamine, a constituent of evodiae fructus, induces anti-proliferating effects in tumor cells. Cancer Sci. 94, 92–98.

    PubMed  CAS  CrossRef  Google Scholar 

  • Ferrari, N., Morini, M., Pfeffer, U., Minghelli, S., Noonan, D.M., and Albini, A. (2003). Inhibition of kaposi’s sarcoma in vivo by fenretinide. Clin. Cancer Res. 9, 6020–6029.

    PubMed  CAS  Google Scholar 

  • Ferrer, P., Asensi, M., Priego, S., Benlloch, M., Mena, S., Ortega, A., Obrador, E., Esteve, J.M., and Estrela, J.M. (2007). Nitric oxide mediates natural polyphenol-induced bcl-2 down-regulation and activation of cell death in metastatic b16 melanoma. J. Biol. Chem. 282, 2880–2890.

    PubMed  CAS  CrossRef  Google Scholar 

  • Ferrero, R., Rodriguez-Pascual, F., Miras-Portugal, M.T., and Torres, M. (1999). Comparative effects of several nitric oxide donors on intracellular cyclic gmp levels in bovine chromaffin cells, Correlation with nitric oxide production. Br. J. Pharmacol. 127, 779–787.

    PubMed  CAS  CrossRef  Google Scholar 

  • Fetz, V., Bier, C., Habtemichael, N., Schuon, R., Schweitzer, A., Kunkel, M., Engels, K., Kovacs, A.F., Schneider, S., Mann, W., Stauber, R.H., and Knauer, S.K. (2008). Inducible no synthase confers chemoresistance in head and neck cancer by modulating survivin. Int. J. Cancer 124, 2033–2041.

    CrossRef  CAS  Google Scholar 

  • Frerart, F., Sonveaux, P., Rath, G., Smoos, A., Meqor, A., Charlier, N., Jordan, B.F., Saliez, J., Noel, A., Dessy, C., Gallez, B., and Feron, O. (2008). The acidic tumor microenvironment promotes the reconversion of nitrite into nitric oxide: towards a new and safe radiosensitizing strategy. Clin. Cancer Res. 14, 2768–2774.

    PubMed  CAS  CrossRef  Google Scholar 

  • Fukuzawa, K., Kogure, K., Morita, M., Hama, S., Manabe, S., and Tokumura, A. (2004). Enhancement of nitric oxide and superoxide generations by alpha-tocopheryl succinate and its apoptotic and anticancer effects. Biochemistry (Mosc) 69, 50–57.

    CAS  CrossRef  Google Scholar 

  • Gao, J., Kashfi, K., Liu, X., and Rigas, B. (2006). No-donating aspirin induces phase ii enzymes in vitro and in vivo. Carcinogenesis 27, 803–810.

    PubMed  CAS  CrossRef  Google Scholar 

  • Gao, J., Kashfi, K., and Rigas, B. (2005). In vitro metabolism of nitric oxide-donating aspirin: The effect of positional isomerism. J. Pharmacol. Exp. Ther. 312, 989–997.

    PubMed  CAS  CrossRef  Google Scholar 

  • Garban, H.J. and Bonavida, B. (1999). Nitric oxide sensitizes ovarian tumor cells to Fas-induced apoptosis. Gynecol. Oncol. 73, 257–264.

    PubMed  CAS  CrossRef  Google Scholar 

  • Garban, H.J. and Bonavida, B. (2001). Nitric oxide inhibits the transcription repressor yin-yang 1 binding activity at the silencer region of the fas promoter: a pivotal role for nitric oxide in the up-regulation of fas gene expression in human tumor cells. J. Immunol. 167, 75–81.

    PubMed  CAS  Google Scholar 

  • Ghosh, S., Maurya, D.K., and Krishna, M. (2008). Role of inos in bystander signaling between macrophages and lymphoma cells. Int. J. Radiat. Oncol. Biol. Phys. 72, 1567–1574.

    PubMed  CAS  CrossRef  Google Scholar 

  • Gonzalez-Fernandez, O., Jimenez, A., and Villalobo, A. (2008). Differential p38 mitogen-activated protein kinase-controlled hypophosphorylation of the retinoblastoma protein induced by nitric oxide in neuroblastoma cells. Free Radic. Biol. Med. 44, 353–366.

    PubMed  CAS  CrossRef  Google Scholar 

  • Gordon, S. (2003). Alternative activation of macrophages. Nat. Rev. Immunol. 3, 23–35.

    PubMed  CAS  CrossRef  Google Scholar 

  • Guastadisegni, C., Nicolini, A., Balduzzi, M., Ajmone-Cat, M.A., and Minghetti, L. (2002). Modulation of pge(2) and TNF alpha by nitric oxide and LPS-activated raw 264.7 cells. Cytokine 19, 175–180.

    PubMed  CAS  CrossRef  Google Scholar 

  • Hagemann, T., Lawrence, T., McNeish, I., Charles, K.A., Kulbe, H., Thompson, R.G., Robinson, S.C., and Balkwill, F.R. (2008). “Re-educating” Tumor-associated macrophages by targeting NF-kappab. J. Exp. Med. 205, 1261–1268.

    PubMed  CAS  CrossRef  Google Scholar 

  • Hahn, S. and Erb, P. (1999). The immunomodulatory role of cd4-positive cytotoxic t-lymphocytes in health and disease. Int. Rev. Immunol. 18, 449–464.

    PubMed  CAS  CrossRef  Google Scholar 

  • Hara, M.R., Agrawal, N., Kim, S.F., Cascio, M.B., Fujimuro, M., Ozeki, Y., Takahashi, M., Cheah, J.H., Tankou, S.K., Hester, L.D., Ferris, C.D., Hayward, S.D., Snyder, S.H., and Sawa, A. (2005). S-nitrosylated gapdh initiates apoptotic cell death by nuclear translocation following siah1 binding. Nat. Cell Biol. 7, 665–674.

    PubMed  CAS  CrossRef  Google Scholar 

  • Harris, S.R., Schoeffner, D.J., Yoshiji, H., and Thorgeirsson, U.P. (2002). Tumor growth enhancing effects of vascular endothelial growth factor are associated with increased nitric oxide synthase activity and inhibition of apoptosis in human breast carcinoma xenografts. Cancer Lett. 179, 95–101.

    PubMed  CAS  CrossRef  Google Scholar 

  • Hirakawa, M., Oike, M., Masuda, K., and Ito, Y. (2002). Tumor cell apoptosis by irradiation-induced nitric oxide production in vascular endothelium. Cancer Res. 62, 1450–1457.

    PubMed  CAS  Google Scholar 

  • Hirst, D. and Robson, T. (2007). Targeting nitric oxide for cancer therapy. J. Pharm. Pharmacol. 59, 3–13.

    PubMed  CAS  CrossRef  Google Scholar 

  • Hofseth, L.J. (2008). Nitric oxide as a target of complementary and alternative medicines to prevent and treat inflammation and cancer. Cancer Lett. 268, 10–30.

    PubMed  CAS  CrossRef  Google Scholar 

  • Holmgren, A. (1989). Thioredoxin and glutaredoxin systems. J. Biol. Chem. 264, 13963–13966.

    PubMed  CAS  Google Scholar 

  • Huang, J., Tatsumi, T., Pizzoferrato, E., Vujanovic, N., and Storkus, W.J. (2005). Nitric oxide sensitizes tumor cells to dendritic cell-mediated apoptosis, uptake, and cross-presentation. Cancer Res. 65, 8461–8470.

    PubMed  CAS  CrossRef  Google Scholar 

  • Huerta-Yepez, S., Vega, M., Escoto-Chavez, S.E., Murdock, B., Sakai, T., Baritaki, S., and Bonavida, B. (2009). Nitric oxide sensitizes tumor cells to trail-induced apoptosis via inhibition of the dr5 transcription repressor yin yang 1. Nitric Oxide 20, 39–52.

    PubMed  CAS  CrossRef  Google Scholar 

  • Huerta, S., Chilka, S., and Bonavida, B. (2008). Nitric oxide donors: Novel cancer therapeutics (review). Int. J. Oncol. 33, 909–927.

    PubMed  CAS  Google Scholar 

  • Ignarro, L.J., Lippton, H., Edwards, J.C., Baricos, W.H., Hyman, A.L., Kadowitz, P.J., and Gruetter, C.A. (1981). Mechanism of vascular smooth muscle relaxation by organic nitrates, nitrites, nitroprusside and nitric oxide: Evidence for the involvement of s-nitrosothiols as active intermediates. J. Pharmacol. Exp. Ther. 218, 739–749.

    PubMed  CAS  Google Scholar 

  • Jeannin, J.F., Leon, L., Cortier, M., Sassi, N., Paul, C., and Bettaieb, A. (2008). Nitric oxide-induced resistance or sensitization to death in tumor cells. Nitric Oxide 19, 158–163.

    PubMed  CAS  CrossRef  Google Scholar 

  • Jeon, H.K., Choi, S.U., and Jung, N.P. (2005). Association of the erk1/2 and p38 kinase pathways with nitric oxide-induced apoptosis and cell cycle arrest in colon cancer cells. Cell Biol. Toxicol. 21, 115–125.

    PubMed  CAS  CrossRef  Google Scholar 

  • Kashfi, K. and Rigas, B. (2005). Molecular targets of nitric-oxide-donating aspirin in cancer. Biochem. Soc. Trans. 33, 701–704.

    PubMed  CAS  CrossRef  Google Scholar 

  • Kashiwagi, S., Tsukada, K., Xu, L., Miyazaki, J., Kozin, S.V., Tyrrell, J.A., Sessa, W.C., Gerweck, L.E., Jain, R.K., and Fukumura, D. (2008). Perivascular nitric oxide gradients normalize tumor vasculature. Nat. Med. 14, 255–257.

    PubMed  CAS  CrossRef  Google Scholar 

  • Keefer, L.K., Nims, R.W., Davies, K.M., and Wink, D.A. (1996). “Nonoates” (1-substituted diazen-1-ium-1,2-diolates) as nitric oxide donors: Convenient nitric oxide dosage forms. Methods Enzymol. 268, 281–293.

    PubMed  CAS  CrossRef  Google Scholar 

  • Kherrouche, Z., Blais, A., Ferreira, E., De Launoit, Y., and Monte, D. (2006). Ask-1 (apoptosis signal-regulating kinase 1) is a direct e2f target gene. Biochem. J. 396, 547–556.

    PubMed  CAS  CrossRef  Google Scholar 

  • Kim, J.H., Tanabe, T., Chodak, G.W., and Rukstalis, D.B. (1995). In vitro anti-invasive effects of n-(4-hydroxyphenyl)-retinamide on human prostatic adenocarcinoma. Anticancer Res. 15, 1429–1434.

    PubMed  CAS  Google Scholar 

  • Kim, K.M., Kim, P.K., Kwon, Y.G., Bai, S.K., Nam, W.D., and Kim, Y.M. (2002). Regulation of apoptosis by nitrosative stress. J. Biochem. Mol. Biol. 35, 127–133.

    PubMed  CAS  CrossRef  Google Scholar 

  • Kim, P.K., Zamora, R., Petrosko, P., and Billiar, T.R. (2001). The regulatory role of nitric oxide in apoptosis. Int. Immunopharmacol. 1, 1421–1441.

    PubMed  CAS  CrossRef  Google Scholar 

  • Kim, Y.M., Chung, H.T., Simmons, R.L., and Billiar, T.R. (2000). Cellular non-heme iron content is a determinant of nitric oxide-mediated apoptosis, necrosis, and caspase inhibition. J. Biol. Chem. 275, 10954–10961.

    PubMed  CAS  CrossRef  Google Scholar 

  • Kim, Y.M., Kim, T.H., Seol, D.W., Talanian, R.V., and Billiar, T.R. (1998). Nitric oxide suppression of apoptosis occurs in association with an inhibition of bcl-2 cleavage and cytochrome c release. J. Biol. Chem. 273, 31437–31441.

    PubMed  CAS  CrossRef  Google Scholar 

  • Kim, Y.M., Talanian, R.V., and Billiar, T.R. (1997). Nitric oxide inhibits apoptosis by preventing increases in caspase-3-like activity via two distinct mechanisms. J. Biol. Chem. 272, 31138–31148.

    PubMed  CAS  CrossRef  Google Scholar 

  • Kiziltepe, T., Hideshima, T., Ishitsuka, K., Ocio, E.M., Raje, N., Catley, L., Li, C.Q., Trudel, L.J., Yasui, H., Vallet, S., Kutok, J.L., Chauhan, D., Mitsiades, C.S., Saavedra, J.E., Wogan, G.N., Keefer, L.K., Shami, P.J., and Anderson, K.C. (2007). Js-k, a gst-activated nitric oxide generator, induces DNA double-strand breaks, activates DNA damage response pathways, and induces apoptosis in vitro and in vivo in human multiple myeloma cells. Blood 110, 709–718.

    PubMed  CAS  CrossRef  Google Scholar 

  • Kolb, J.P. (2000). Mechanisms involved in the pro- and anti-apoptotic role of no in human leukemia. Leukemia 14, 1685–1694.

    PubMed  CAS  CrossRef  Google Scholar 

  • Kotamraju, S., Williams, C.L., and Kalyanaraman, B. (2007). Statin-induced breast cancer cell death: Role of inducible nitric oxide and arginase-dependent pathways. Cancer Res. 67, 7386–7394.

    PubMed  CAS  CrossRef  Google Scholar 

  • Kuntscher, M.V., Juran, S., Menke, H., Gebhard, M.M., Erdmann, D., and Germann, G. (2002). The role of pre-ischaemic application of the nitric oxide donor spermine/nitric oxide complex in enhancing flap survival in a rat model. Br. J. Plast Surg. 55, 430–433.

    PubMed  CAS  CrossRef  Google Scholar 

  • Kusama, T., Mukai, M., Iwasaki, T., Tatsuta, M., Matsumoto, Y., Akedo, H., Inoue, M., and Nakamura, H. (2002). 3-hydroxy-3-methylglutaryl-coenzyme a reductase inhibitors reduce human pancreatic cancer cell invasion and metastasis. Gastroenterology 122, 308–317.

    PubMed  CAS  CrossRef  Google Scholar 

  • LaCasse, E.C., Baird, S., Korneluk, R.G., and MacKenzie, A.E. (1998). The inhibitors of apoptosis (iaps) and their emerging role in cancer. Oncogene 17, 3247–3259.

    PubMed  CrossRef  Google Scholar 

  • Lechner, M., Lirk, P., and Rieder, J. (2005). Inducible nitric oxide synthase (inos) in tumor biology: The two sides of the same coin. Semin. Cancer Biol. 15, 277–289.

    PubMed  CAS  CrossRef  Google Scholar 

  • Liao, C.H., Pan, S.L., Guh, J.H., Chang, Y.L., Pai, H.C., Lin, C.H., and Teng, C.M. (2005). Antitumor mechanism of evodiamine, a constituent from chinese herb evodiae fructus, in human multiple-drug resistant breast cancer nci/adr-res cells in vitro and in vivo. Carcinogenesis 26, 968–975.

    PubMed  CAS  CrossRef  Google Scholar 

  • Lim, S., Hung, A.C., and Porter, A.G. (2009). Focused pcr screen reveals p53 dependence of nitric oxide-induced apoptosis and up-regulation of maspin and plasminogen activator inhibitor-1 in tumor cells. Mol. Cancer Res. 7, 55–66.

    PubMed  CAS  CrossRef  Google Scholar 

  • MacMicking, J., Xie, Q.W., and Nathan, C. (1997). Nitric oxide and macrophage function. Annu. Rev. Immunol. 15, 323–350.

    PubMed  CAS  CrossRef  Google Scholar 

  • Mattace Raso, G., Esposito, E., Iacono, A., Pacilio, M., Coppola, A., Bianco, G., Diano, S., Di Carlo, R., and Meli, R. (2006). Leptin induces nitric oxide synthase type ii in c6 glioma cells. Role for nuclear factor-kappab in hormone effect. Neurosci. Lett. 396, 121–126.

    PubMed  CAS  CrossRef  Google Scholar 

  • McCarthy, H.O., Coulter, J.A., Robson, T., and Hirst, D.G. (2008). Gene therapy via inducible nitric oxide synthase: A tool for the treatment of a diverse range of pathological conditions. J. Pharm. Pharmacol. 60, 999–1017.

    PubMed  CAS  CrossRef  Google Scholar 

  • Medvedev, A.E., Johnsen, A.C., Haux, J., Steinkjer, B., Egeberg, K., Lynch, D.H., Sundan, A., and Espevik, T. (1997). Regulation of fas and fas-ligand expression in nk cells by cytokines and the involvement of fas-ligand in nk/lak cell-mediated cytotoxicity. Cytokine 9, 394–404.

    PubMed  CAS  CrossRef  Google Scholar 

  • Mendelsohn, J. and Baselga, J. (2000). The egf receptor family as targets for cancer therapy. Oncogene 19, 6550–6565.

    PubMed  CAS  CrossRef  Google Scholar 

  • Millet, A., Bettaieb, A., Renaud, F., Prevotat, L., Hammann, A., Solary, E., Mignotte, B., and Jeannin, J.F. (2002). Influence of the nitric oxide donor glyceryl trinitrate on apoptotic pathways in human colon cancer cells. Gastroenterology 123, 235–246.

    PubMed  CAS  CrossRef  Google Scholar 

  • Mocellin, S., Bronte, V., and Nitti, D. (2007). Nitric oxide, a double edged sword in cancer biology: Searching for therapeutic opportunities. Med. Res. Rev. 27, 317–352.

    PubMed  CAS  CrossRef  Google Scholar 

  • Muerkoster, S., Wegehenkel, K., Arlt, A., Witt, M., Sipos, B., Kruse, M.L., Sebens, T., Kloppel, G., Kalthoff, H., Folsch, U.R., and Schafer, H. (2004). Tumor stroma interactions induce chemoresistance in pancreatic ductal carcinoma cells involving increased secretion and paracrine effects of nitric oxide and interleukin-1beta. Cancer Res. 64, 1331–1337.

    PubMed  CrossRef  Google Scholar 

  • Nicolas, A., Cathelin, D., Larmonier, N., Fraszczak, J., Puig, P.E., Bouchot, A., Bateman, A., Solary, E., and Bonnotte, B. (2007). Dendritic cells trigger tumor cell death by a nitric oxide-dependent mechanism. J. Immunol. 179, 812–818.

    PubMed  CAS  Google Scholar 

  • Ogasawara, M. and Suzuki, H. (2004). Inhibition by evodiamine of hepatocyte growth factor-induced invasion and migration of tumor cells. Biol. Pharm. Bull. 27, 578–582.

    PubMed  CAS  CrossRef  Google Scholar 

  • Ogura, T., Tatemichi, M., and Esumi, H. (1997). TNF-alpha mediates inducible nitric oxide synthase expression in human neuroblastoma cell line by cisplatin. Biochem. Biophys. Res. Commun. 233, 788–791.

    PubMed  CAS  CrossRef  Google Scholar 

  • Ohno, S., Inagawa, H., Dhar, D.K., Fujii, T., Ueda, S., Tachibana, M., Suzuki, N., Inoue, M., Soma, G., and Nagasue, N. (2003a). The degree of macrophage infiltration into the cancer cell nest is a significant predictor of survival in gastric cancer patients. Anticancer Res. 23, 5015–5022.

    PubMed  Google Scholar 

  • Ohno, S., Ohno, Y., Suzuki, N., Inagawa, H., Kohchi, C., Soma, G., and Inoue, M. (2005). Multiple roles of cyclooxygenase-2 in endometrial cancer. Anticancer Res 25, 3679–3687.

    PubMed  CAS  Google Scholar 

  • Ohno, S., Ohno, Y., Suzuki, N., Kamei, T., Koike, K., Inagawa, H., Kohchi, C., Soma, G., and Inoue, M. (2004). Correlation of histological localization of tumor-associated macrophages with clinicopathological features in endometrial cancer. Anticancer Res. 24, 3335–3342.

    PubMed  Google Scholar 

  • Ohno, S., Suzuki, N., Ohno, Y., Inagawa, H., Soma, G., and Inoue, M. (2003b). Tumor-associated macrophages: Foe or accomplice of tumors? Anticancer Res. 23, 4395–4409.

    PubMed  CAS  Google Scholar 

  • Olson, M.V., Lee, J., Zhang, F., Wang, A., and Dong, Z. (2006). Inducible nitric oxide synthase activity is essential for inhibition of prostatic tumor growth by interferon-beta gene therapy. Cancer Gene Ther. 13, 676–685.

    PubMed  CAS  CrossRef  Google Scholar 

  • Olson, S.Y. and Garban, H.J. (2008). Regulation of apoptosis-related genes by nitric oxide in cancer. Nitric Oxide 19, 170–176.

    PubMed  CAS  CrossRef  Google Scholar 

  • Ono, M. and Kuwano, M. (2006). Molecular mechanisms of epidermal growth factor receptor (egfr) activation and response to gefitinib and other egfr-targeting drugs. Clin. Cancer Res. 12, 7242–7251.

    PubMed  CAS  CrossRef  Google Scholar 

  • Ouyang, N., Williams, J.L., Tsioulias, G.J., Gao, J., Iatropoulos, M.J., Kopelovich, L., Kashfi, K., and Rigas, B. (2006). Nitric oxide-donating aspirin prevents pancreatic cancer in a hamster tumor model. Cancer Res. 66, 4503–4511.

    PubMed  CAS  CrossRef  Google Scholar 

  • Pae, H.O., Choi, B.M., Oh, G.S., Lee, M.S., Ryu, D.G., Rhew, H.Y., Kim, Y.M., and Chung, H.T. (2004). Roles of heme oxygenase-1 in the antiproliferative and antiapoptotic effects of nitric oxide on jurkat t cells. Mol. Pharmacol. 66, 122–128.

    PubMed  CAS  CrossRef  Google Scholar 

  • Paragh, G., Kertai, P., Kovacs, P., Paragh, G., Jr., Fulop, P., and Foris, G. (2003). Hmg coa reductase inhibitor fluvastatin arrests the development of implanted hepatocarcinoma in rats. Anticancer Res. 23, 3949–3954.

    PubMed  CAS  Google Scholar 

  • Perrotta, C., De Palma, C., Falcone, S., Sciorati, C., and Clementi, E. (2005). Nitric oxide, ceramide and sphingomyelinase-coupled receptors: A tale of enzymes and messengers coordinating cell death, survival and differentiation. Life Sci. 77, 1732–1739.

    PubMed  CAS  CrossRef  Google Scholar 

  • Pipili-Synetos, E., Papageorgiou, A., Sakkoula, E., Sotiropoulou, G., Fotsis, T., Karakiulakis, G., and Maragoudakis, M.E. (1995). Inhibition of angiogenesis, tumour growth and metastasis by the no-releasing vasodilators, isosorbide mononitrate and dinitrate. Br. J. Pharmacol. 116, 1829–1834.

    PubMed  CAS  CrossRef  Google Scholar 

  • Polytarchou, C., Hatziapostolou, M., Poimenidi, E., Mikelis, C., Papadopoulou, A., Parthymou, A., and Papadimitriou, E. (2009). Nitric oxide stimulates migration of human endothelial and prostate cancer cells through up-regulation of pleiotrophin expression and its receptor protein tyrosine phosphatase beta/zeta. Int. J. Cancer 124, 1785–1793.

    PubMed  CAS  CrossRef  Google Scholar 

  • Prakash, A. and Markham, A. (1999). Long-acting isosorbide mononitrate. Drugs 57, 93–99; discussion 100.

    PubMed  CAS  CrossRef  Google Scholar 

  • Quader, S.T., Bello-DeOcampo, D., Williams, D.E., Kleinman, H.K., and Webber, M.M. (2001). Evaluation of the chemopreventive potential of retinoids using a novel in vitro human prostate carcinogenesis model. Mutat. Res. 496, 153–161.

    PubMed  CAS  CrossRef  Google Scholar 

  • Rao, C.V., Reddy, B.S., Steele, V.E., Wang, C.X., Liu, X., Ouyang, N., Patlolla, J.M., Simi, B., Kopelovich, L., and Rigas, B. (2006). Nitric oxide-releasing aspirin and indomethacin are potent inhibitors against colon cancer in azoxymethane-treated rats: Effects on molecular targets. Mol. Cancer Ther. 5, 1530–1538.

    PubMed  CAS  CrossRef  Google Scholar 

  • Ray, D. and Kiyokawa, H. (2007). Cdc25a levels determine the balance of proliferation and checkpoint response. Cell Cycle 6, 3039–3042.

    PubMed  CAS  CrossRef  Google Scholar 

  • Ridnour, L.A., Thomas, D.D., Donzelli, S., Espey, M.G., Roberts, D.D., Wink, D.A., and Isenberg, J.S. (2006). The biphasic nature of nitric oxide responses in tumor biology. Antioxid Redox Signal 8, 1329–1337.

    PubMed  CAS  CrossRef  Google Scholar 

  • Rieder, J., Jahnke, R., Schloesser, M., Seibel, M., Czechowski, M., Marth, C., and Hoffmann, G. (2001). Nitric oxide-dependent apoptosis in ovarian carcinoma cell lines. Gynecol. Oncol. 82, 172–176.

    PubMed  CAS  CrossRef  Google Scholar 

  • Rigas, B. (2007). Novel agents for cancer prevention based on nitric oxide. Biochem. Soc. Trans. 35, 1364–1368.

    PubMed  CAS  CrossRef  Google Scholar 

  • Rigas, B. and Kashfi, K. (2004). Nitric-oxide-donating nsaids as agents for cancer prevention. Trends Mol. Med. 10, 324–330.

    PubMed  CAS  CrossRef  Google Scholar 

  • Rivoltini, L., Carrabba, M., Huber, V., Castelli, C., Novellino, L., Dalerba, P., Mortarini, R., Arancia, G., Anichini, A., Fais, S., and Parmiani, G. (2002). Immunity to cancer: Attack and escape in t lymphocyte-tumor cell interaction. Immunol. Rev. 188, 97–113.

    PubMed  CAS  CrossRef  Google Scholar 

  • Rosetti, M., Tesei, A., Ulivi, P., Fabbri, F., Vannini, I., Brigliadori, G., Amadori, D., Bolla, M., and Zoli, W. (2006). Molecular characterization of cytotoxic and resistance mechanisms induced by ncx 4040, a novel no-nsaid, in pancreatic cancer cell lines. Apoptosis 11, 1321–1330.

    PubMed  CAS  CrossRef  Google Scholar 

  • Ruano, M.J., Hernandez-Hernando, S., Jimenez, A., Estrada, C., and Villalobo, A. (2003). Nitric oxide-induced epidermal growth factor-dependent phosphorylations in a431 tumour cells. Eur. J. Biochem. 270, 1828–1837.

    PubMed  CAS  CrossRef  Google Scholar 

  • Saavedra, J.E., Shami, P.J., Wang, L.Y., Davies, K.M., Booth, M.N., Citro, M.L., and Keefer, L.K. (2000). Esterase-sensitive nitric oxide donors of the diazeniumdiolate family: In vitro antileukemic activity. J. Med. Chem. 43, 261–269.

    PubMed  CAS  CrossRef  Google Scholar 

  • Saddoughi, S.A., Song, P., and Ogretmen, B. (2008). Roles of bioactive sphingolipids in cancer biology and therapeutics. Subcell Biochem. 49, 413–440.

    PubMed  CrossRef  Google Scholar 

  • Salvucci, O., Carsana, M., Bersani, I., Tragni, G., and Anichini, A. (2001). Antiapoptotic role of endogenous nitric oxide in human melanoma cells. Cancer Res. 61, 318–326.

    PubMed  CAS  Google Scholar 

  • Shami, P.J., Saavedra, J.E., Wang, L.Y., Bonifant, C.L., Diwan, B.A., Singh, S.V., Gu, Y., Fox, S.D., Buzard, G.S., Citro, M.L., Waterhouse, D.J., Davies, K.M., Ji, X., and Keefer, L.K. (2003). Js-k, a glutathione/glutathione s-transferase-activated nitric oxide donor of the diazeniumdiolate class with potent antineoplastic activity. Mol. Cancer Ther. 2, 409–417.

    PubMed  CAS  Google Scholar 

  • Sharp, R.M., Bello-DeOcampo, D., Quader, S.T., and Webber, M.M. (2001). N-(4-hydroxyphenyl)retinamide (4-hpr) decreases neoplastic properties of human prostate cells: An agent for prevention. Mutat. Res. 496, 163–170.

    PubMed  CAS  CrossRef  Google Scholar 

  • Shieh, Y.S., Hung, Y.J., Hsieh, C.B., Chen, J.S., Chou, K.C., and Liu, S.Y. (2009). Tumor-associated macrophage correlated with angiogenesis and progression of mucoepidermoid carcinoma of salivary glands. Ann. Surg. Oncol. 16, 751–760.

    PubMed  CrossRef  Google Scholar 

  • Sica, A., Schioppa, T., Mantovani, A., and Allavena, P. (2006). Tumour-associated macrophages are a distinct m2 polarised population promoting tumour progression: Potential targets of anti-cancer therapy. Eur. J. Cancer 42, 717–727.

    PubMed  CAS  CrossRef  Google Scholar 

  • Simeone, A.M., Colella, S., Krahe, R., Johnson, M.M., Mora, E., and Tari, A.M. (2006). N-(4-hydroxyphenyl)retinamide and nitric oxide pro-drugs exhibit apoptotic and anti-invasive effects against bone metastatic breast cancer cells. Carcinogenesis 27, 568–577.

    PubMed  CAS  CrossRef  Google Scholar 

  • Simeone, A.M., Ekmekcioglu, S., Broemeling, L.D., Grimm, E.A., and Tari, A.M. (2002). A novel mechanism by which n-(4-hydroxyphenyl)retinamide inhibits breast cancer cell growth: The production of nitric oxide. Mol. Cancer Ther. 1, 1009–1017.

    PubMed  CAS  Google Scholar 

  • Sivaprasad, U., Abbas, T., and Dutta, A. (2006). Differential efficacy of 3-hydroxy-3-methylglutaryl coa reductase inhibitors on the cell cycle of prostate cancer cells. Mol. Cancer Ther. 5, 2310–2316.

    PubMed  CAS  CrossRef  Google Scholar 

  • Sordella, R., Bell, D.W., Haber, D.A., and Settleman, J. (2004). Gefitinib-sensitizing egfr mutations in lung cancer activate anti-apoptotic pathways. Science 305, 1163–1167.

    PubMed  CAS  CrossRef  Google Scholar 

  • Subbarayan, P.R., Wang, P.G., Lampidis, T.J., Ardalan, B., and Braunschweiger, P. (2008). Differential expression of glut 1 mrna and protein levels correlates with increased sensitivity to the glyco-conjugated nitric oxide donor (2-glu-snap) in different tumor cell types. J. Chemother. 20, 106–111.

    PubMed  CAS  Google Scholar 

  • Suliman, A., Lam, A., Datta, R., and Srivastava, R.K. (2001). Intracellular mechanisms of trail: Apoptosis through mitochondrial-dependent and -independent pathways. Oncogene 20, 2122–2133.

    PubMed  CAS  CrossRef  Google Scholar 

  • Tanaka, S., Akaike, T., Fang, J., Beppu, T., Ogawa, M., Tamura, F., Miyamoto, Y., and Maeda, H. (2003). Antiapoptotic effect of haem oxygenase-1 induced by nitric oxide in experimental solid tumour. Br. J. Cancer 88, 902–909.

    PubMed  CAS  CrossRef  Google Scholar 

  • Tarr, J.M., Eggleton, P., and Winyard, P.G. (2006). Nitric oxide and the regulation of apoptosis in tumour cells. Curr. Pharm. Des. 12, 4445–4468.

    PubMed  CAS  CrossRef  Google Scholar 

  • Tesei, A., Zoli, W., Fabbri, F., Leonetti, C., Rosetti, M., Bolla, M., Amadori, D., and Silvestrini, R. (2008). Ncx 4040, an no-donating acetylsalicylic acid derivative: Efficacy and mechanisms of action in cancer cells. Nitric Oxide 19, 225–236.

    PubMed  CAS  CrossRef  Google Scholar 

  • Tomko, R.J., Jr. and Lazo, J.S. (2008). Multimodal control of cdc25a by nitrosative stress. Cancer Res. 68, 7457–7465.

    PubMed  CAS  CrossRef  Google Scholar 

  • Torok, N.J., Higuchi, H., Bronk, S., and Gores, G.J. (2002). Nitric oxide inhibits apoptosis downstream of cytochrome c release by nitrosylating caspase 9. Cancer Res. 62, 1648–1653.

    PubMed  CAS  Google Scholar 

  • Tsujimoto, Y. and Shimizu, S. (2000). Bcl-2 family: Life-or-death switch. FEBS Lett. 466, 6–10.

    PubMed  CAS  CrossRef  Google Scholar 

  • Udupi, V., Yu, M., Malaviya, S., Saavedra, J.E., and Shami, P.J. (2006). Js-k, a nitric oxide prodrug, induces cytochrome c release and caspase activation in hl-60 myeloid leukemia cells. Leuk. Res. 30, 1279–1283.

    PubMed  CAS  CrossRef  Google Scholar 

  • Um, S.J., Lee, S.Y., Kim, E.J., Han, H.S., Koh, Y.M., Hong, K.J., Sin, H.S., and Park, J.S. (2001). Antiproliferative mechanism of retinoid derivatives in ovarian cancer cells. Cancer Lett. 174, 127–134.

    PubMed  CAS  CrossRef  Google Scholar 

  • Vadrot, N., Legrand, A., Nello, E., Bringuier, A.F., Guillot, R., and Feldmann, G. (2006). Inducible nitric oxide synthase (inos) activity could be responsible for resistance or sensitivity to IFN-gamma-induced apoptosis in several human hepatoma cell lines. J. Interferon. Cytokine Res. 26, 901–913.

    PubMed  CAS  CrossRef  Google Scholar 

  • Vasilev, S., Vucevic D., Gasic S., Majstrovic I., Vasilijic S., Cupic V., and Colic M. (2008). The effect of a new nitro-aspirin on apoptosis of neutrophil granulocytes. Acta Veterinaria (Beograd) 58, 449–457.

    Google Scholar 

  • Verhoef, C., de Wilt, J.H., Grunhagen, D.J., van Geel, A.N., ten Hagen, T.L., and Eggermont, A.M. (2007). Isolated limb perfusion with melphalan and TNF-alpha in the treatment of extremity sarcoma. Curr. Treat Options Oncol. 8, 417–427.

    PubMed  CrossRef  Google Scholar 

  • Webber, M.M., Bello-DeOcampo, D., Quader, S., Deocampo, N.D., Metcalfe, W.S., and Sharp, R.M. (1999). Modulation of the malignant phenotype of human prostate cancer cells by n-(4-hydroxyphenyl)retinamide (4-hpr). Clin. Exp. Metastasis 17, 255–263.

    PubMed  CAS  CrossRef  Google Scholar 

  • Weigert, A. and Brune, B. (2008). Nitric oxide, apoptosis and macrophage polarization during tumor progression. Nitric Oxide 19, 95–102.

    PubMed  CAS  CrossRef  Google Scholar 

  • Wenzel, U., Kuntz, S., De Sousa, U.J., and Daniel, H. (2003). Nitric oxide suppresses apoptosis in human colon cancer cells by scavenging mitochondrial superoxide anions. Int. J. Cancer 106, 666–675.

    PubMed  CAS  CrossRef  Google Scholar 

  • Williams, J.L., Nath, N., Chen, J., Hundley, T.R., Gao, J., Kopelovich, L., Kashfi, K., and Rigas, B. (2003). Growth inhibition of human colon cancer cells by nitric oxide (no)-donating aspirin is associated with cyclooxygenase-2 induction and beta-catenin/t-cell factor signaling, nuclear factor-kappab, and no synthase 2 inhibition: Implications for chemoprevention. Cancer Res. 63, 7613–7618.

    PubMed  CAS  Google Scholar 

  • Wink, D.A., Ridnour, L.A., Hussain, S.P., and Harris, C.C. (2008). The reemergence of nitric oxide and cancer. Nitric Oxide 19, 65–67.

    PubMed  CAS  CrossRef  Google Scholar 

  • Xie, K., Wang, Y., Huang, S., Xu, L., Bielenberg, D., Salas, T., McConkey, D.J., Jiang, W., and Fidler, I.J. (1997). Nitric oxide-mediated apoptosis of k-1735 melanoma cells is associated with downregulation of bcl-2. Oncogene 15, 771–779.

    PubMed  CAS  CrossRef  Google Scholar 

  • Yamamoto, T. and Bing, R.J. (2000). Nitric oxide donors. Proc. Soc. Exp. Biol. Med. 225, 200–206.

    PubMed  CAS  CrossRef  Google Scholar 

  • Yang, J., Wu, L.J., Tashino, S., Onodera, S., and Ikejima, T. (2008)a. Reactive oxygen species and nitric oxide regulate mitochondria-dependent apoptosis and autophagy in evodiamine-treated human cervix carcinoma hela cells. Free Radic. Res. 42, 492–504.

    PubMed  CAS  CrossRef  Google Scholar 

  • Yang, J., Wu, L.J., Tashiro, S., Onodera, S., and Ikejima, T. (2008)b. Nitric oxide activated by p38 and nf-kappab facilitates apoptosis and cell cycle arrest under oxidative stress in evodiamine-treated human melanoma a375-s2 cells. Free Radic. Res. 42, 1–11.

    PubMed  CrossRef  CAS  Google Scholar 

  • Yasuda, H. (2008). Solid tumor physiology and hypoxia-induced chemo/radio-resistance: Novel strategy for cancer therapy: Nitric oxide donor as a therapeutic enhancer. Nitric Oxide 19, 205–216.

    PubMed  CAS  CrossRef  Google Scholar 

  • Ye, J., Cippitelli, M., Dorman, L., Ortaldo, J.R., and Young, H.A. (1996a). The nuclear factor yy1 suppresses the human gamma interferon promoter through two mechanisms: Inhibition of ap1 binding and activation of a silencer element. Mol. Cell. Biol. 16, 4744–4753.

    PubMed  CAS  Google Scholar 

  • Ye, J., Young, H.A., Zhang, X., Castranova, V., Vallyathan, V., and Shi, X. (1999). Regulation of a cell type-specific silencer in the human interleukin-3 gene promoter by the transcription factor yy1 and an ap2 sequence-recognizing factor. J. Biol. Chem. 274, 26661–26667.

    PubMed  CAS  CrossRef  Google Scholar 

  • Ye, J., Zhang, X., and Dong, Z. (1996b). Characterization of the human granulocyte-macrophage colony-stimulating factor gene promoter: An ap1 complex and an sp1-related complex transactivate the promoter activity that is suppressed by a yy1 complex. Mol. Cell Biol. 16, 157–167.

    PubMed  CAS  Google Scholar 

  • Yoshiji, H., Harris, S.R., and Thorgeirsson, U.P. (1997). Vascular endothelial growth factor is essential for initial but not continued in vivo growth of human breast carcinoma cells. Cancer Res. 57, 3924–3928.

    PubMed  CAS  Google Scholar 

  • Zhang, N., Ahsan, M.H., Zhu, L., Sambucetti, L.C., Purchio, A.F., and West, D.B. (2005). Nf-kappab and not the mapk signaling pathway regulates gadd45beta expression during acute inflammation. J. Biol. Chem. 280, 21400–21408.

    PubMed  CAS  CrossRef  Google Scholar 

Download references

Author information

Authors and Affiliations

Authors

Corresponding author

Correspondence to Gen-Ichiro Soma .

Editor information

Editors and Affiliations

Rights and permissions

Reprints and Permissions

Copyright information

© 2010 Springer Science + Business Media, LLC

About this chapter

Cite this chapter

Soma, GI., Kohchi, C., Inagawa, H. (2010). Cytotoxic and Protective Activity of Nitric Oxide in Cancers. In: Bonavida, B. (eds) Nitric Oxide (NO) and Cancer. Cancer Drug Discovery and Development. Springer, New York, NY. https://doi.org/10.1007/978-1-4419-1432-3_6

Download citation

  • DOI: https://doi.org/10.1007/978-1-4419-1432-3_6

  • Published:

  • Publisher Name: Springer, New York, NY

  • Print ISBN: 978-1-4419-1431-6

  • Online ISBN: 978-1-4419-1432-3

  • eBook Packages: MedicineMedicine (R0)